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Outline

FAA regulations for aircraft require that the probability 
of an error be below 10-9 for a 10 hour flight

Provides a bound on the number of numeric 
operations (fixed or floating point) that can safely be 
performed before accuracy is lost

Important implications for control systems with 
safety-critical software

Worst-case analysis would blindly advise the 
replacement of existing systems that have been 
successfully running for years

Set of formal theorems validated by the PVS proof 
assistant

Allow code analyzing tools to produce formal 
certificates
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Systems are now running fast enough and long 
enough for their errors to impact on their functionality

Worst case analysis is meaningless for applications that run 
for a long time

For example

A process adds numbers in ±1 to single precision

Each addition produces a round-off error of ± 2-25

This process adds 225 items

The accumulated error is ±1

Note that

10 hours of flight time

At operating frequency of 1 kHz

Is approximately 225 operations

Provided round-off errors are not correlated, the actual 
accumulated error will be much smaller
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Some easy ways to obtain worst case behavior

Systematic ad-hoc errors may 
lead to the slow accumulation of 
small quantities of the same 
sign

Biased measures

Synchronized time shift
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Developing probabilities on floating point 
arithmetic

Formal proof assistants such as ACL2, HOL, Coq and PVS are 
used in areas where

Errors can cause loss of life or significant financial damage

Common misunderstandings can falsify key assumptions

Developments in probability share many features with 
developments in floating point arithmetic:

Each result usually relies on a long list of hypotheses and 
slight variations induce a large number of results that look 
almost identical

Most people want a trustworthy result but they are not 
proficient enough to either select the best scheme or 
detect minor faults that can quickly lead to huge problems

Validation of a safety-critical numeric software using 
probability should be done using an automatic proof checker
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Related work in probability

Asymptotic behavior

Continuous space Markov random walks

Renewal-reward processes

We want to precisely bound the probability of remaining within 
bounds for a (large) given number of steps.

Ruin probabilities

Martingales (Doobs-Kolmogorov inequality)

Created round-off and measure errors are

Unbiased

Independent random variables

(their expectation conditional to the previous errors is zero)

I – Stochastic model

Individual round-off errors of fixed 
and floating point operations
Round off errors of an accumulation 
loop



5

EVA-Flo

Perpignan

Oct 2007

9

Individual round-off errors of fixed and floating 
point operations

We use sign-magnitude or two's complement notation for the 
mantissa and an implicit first bit for the mantissa is in most 
cases 

v = (-1)s · 1.b1 … bp-1 · 2e or   v = (1.b1 … bp-1 - 2 · s) · 2e

One unit in the last place of v defined as above is

ulp (v) = 2e - p + 1

Trailing digits of numbers randomly chosen from a logarithmic 
distribution are approximately uniformly distributed in 
±ulp(v)/2

Sensors may be less accurate leading to a larger variance but 
they should not be biased

Round-off errors created by operators are discrete and 
specific but expectations are 0 and we bound variances
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Round off errors of an accumulation loop :
Simple discrete integration 

We sum data produced by a sensor xi with a measure error Xi

a0 = 0; for (i = 0; i < n; i = i + 1) ai+1 = ai + xi ;

We can safely assume that Xi are independent identical 
uniformly distributed random variables over ±ulp(xi)/2

Data are fixed point

The sum ai + xi does not introduce any rounding error

One unit in the last place does not depend on xi

Using the Doobs-Kolmogorov inequality where Si = Σj=1
i Xj

We have the probability that the accumulated measure error 
have always been constrained into user specified bounds ε for
n iterations

P(max1 ≤ i ≤ n(|Si|) ≤ ε) ≥ 1 - n ulp2 / (12ε2)
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Round off errors of an accumulation loop :
Solving initial value problem ODE (1)
Compute an incremental slope Φ(ti, hi, xi, f)

Based on the current time, step size, value of the function 
and the differential equation x'(t) = f(t, x(t)).
Many methods (Euler, Runge-Kutta, implicit, adaptative…) 

for (i = 0; i < n; i = i + 1) 
{xi+1 = xi + hi · Φ(ti, hi, xi, f);  ti+1 = ti + hi; hi+1 = hi }

Introduce a sequence of random variables {Xn} that models the 
difference introduced by errors
In most cases Φ introduces 

A drift due to higher order effects
Correlations between the error introduced at step i+1 and 
errors of the previous steps

For example, the square of a rounded value v + V where v is 
the stored  value and V is a random variable, introduces a 
positive drift due to V2 term
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Round off errors of an accumulation loop :
Solving initial value problem ODE (2)

We model the effect of errors by two terms Xi and Yi

We use

The Doobs-Kolomogorov inequality for {Xn} that is 
constructed to contain only independent random variables 
with no drift and we only need to bound their variance

Worst case error analysis for {Yn} with interval arithmetic 
so that E(Xn; X1 … Xn-1) = 0

Random variables Xi+1 and Yi+1 account for the errors replacing

xi + Xi + Yi + hi · Φ (ti, xi + Xi + Yi, hi, f)

with

fl(xi + hi · Φ (ti, xi, hi, f))

fl(.) denote the evaluation of an expression on computer

Software such as Fluctuat is already able to distinguish 
between first order and higher order error terms
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Probability

Two main choices in presenting an account of probability

One is to take an informal approach

The second involves taking foundational matters seriously

I will consistently present matters informally, however the PVS 
system underlying these results is built on the firm 
foundations for probability theory (using measure theory) 

A random variable X has distribution function F, if P(X≤x) = 
F(x)

A random variable X is continuous if its distribution function 
can be expressed as F(x) = ∫-∞x f(x) dx for some integrable
function f:R→[0,∞) called the probability density function for 
the random variable X

The conditional probability of “A given B” is defined as P(A;B) 
= P(A∩B)/P(B) whenever P(B)>0
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Examples of probability

The temperature T in an industrial process can be modeled as a continuous 
random variable 

Even if an attempt is being made to hold this temperature constant, there will 
be minor fluctuations

Example of conditional probability
Event A is “I am carrying an umbrella”
Event B is “it is raining”
P(A;B) is the probability that “I am carrying an umbrella given that it is 
raining”
Note that in general P(A;B) ≠ P(B;A)

• Though, if you live in Perpignan or Manchester, then on most days: 
P(A;B) = P(B;A), though for rather different reasons

Example of independent random variables 
We model the outcomes of the tossing of two coins C1 and C2

We expect the result of tossing C1 to have no effect on the result of C2

Consider an alternative scenario where C1 and C2 are dependent
We toss C1 and discover that it has come up “heads”
We now define C2 as “the downward facing side of the coin C1 is tails”
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A Formal Development of probability

A σ-algebra over a type T, is a subset of the power-set of T, which 
includes the empty set {}, and is closed under the operations of
complement, countable union and countable intersection

For discrete random variables, T is countable and σ =P(T)
For continuous random variables, T is the reals and σ =B: the 
Borel sets

A Measurable Space (T,σ) is a set (or in PVS a type) T, and a σ-algebra 
over T
A function μ:σ→R>0 is a Measure over the σ-algebra σ , when μ({}) = 0, 
and for a sequence of disjoint elements {En} of σ: μ(Un=0

∞ En) = Σn=0
∞

μ(En)
A Measure Space (T,σ,μ) is a measurable space (T,σ) equipped with a 
measure μ
A Probability Space (T,σ,P) is a measure space (T,σ,P) in which the 
measure P is finite for any set in σ, and in which: P(Xc) = 1-P(X)
If (T1,σ1,P1) and (T2,σ2,P2) are probability spaces then we can construct 
a product probability space (T3,σ3,P3), where: T3 = T1·T2 , σ3 = σ(σ1·σ2) 
and P3'(a,b) = P1(a) P2(b) where P3 is the extension of P'3 that has the 
whole of σ3 as its domain

Note P3 has the effect of declaring that the experiments carried out 
in probability spaces (T1,σ1,P1) and (T2,σ2,P2) are independent



9

EVA-Flo

Perpignan

Oct 2007

17

Abbreviated probability space file in PVS

probability_space[T:TYPE+,         (IMPORTING finite_measure@subset_algebra_def[T]) % sample space 
S:sigma_algebra, (IMPORTING probability_measure[T,S])                                % permitted events
P:probability_measure % probability measure

]: THEORY
% To discuss continuous random variables we partially instantiate this PVS file with  T = real and S =   borel_set
BEGIN

IMPORTING finite_measure@sigma_algebra[T,S],probability_measure[T,S],continuous_functions_aux[real]
A,B: VAR (S)
x,y: VAR real …
null?(A)         :bool = P(A) = 0
non_null?(A)     :bool = NOT null?(A)
independent?(A,B):bool = P(intersection(A,B)) = P(A) * P(B) % Note that it DOES NOT say = 0
random_variable?(X:[T->real]):bool = FORALL x: member({t | X(t) <= x},S)
zero: (random_variable?) = (LAMBDA t: 0)
random_variable: TYPE+ = (random_variable?) CONTAINING zero

X,Y: VAR random_variable
XS:  VAR [nat->random_variable]
<=(X,x):(S) = {t | X(t) <= x}; …
complement_le1: LEMMA complement(X <= x) = (x <  X) …
+(X,Y)  :random_variable = (LAMBDA t: X(t) + Y(t)); …
partial_sum_is_random_variable: LEMMA random_variable?(LAMBDA t: sigma(0,n,LAMBDA n: XS(n)(t)))
distribution_function?(F:[real->probability]):bool = EXISTS X: FORALL x: F(x) = P(X <= x)
distribution_function: TYPE+ = (distribution_function?) CONTAINING (LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)
distribution_function(X)(x):probability = P(X <= x)
F: VAR distribution_function
convergence_in_distribution?(XS,X):bool = …

END probability_space
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Conditional probability file in PVS

conditional[T:TYPE+,          (IMPORTING finite_measure@subset_algebra_def[T]) % sample space
S:sigma_algebra,      (IMPORTING probability_measure[T,S])                % permitted events
P:probability_measure % probability measure
]: THEORY

BEGIN
IMPORTING probability_space[T,S,P],finite_measure@sigma_algebra[T,S]
A,B:   VAR (S)
n,i,j: VAR nat
AA,BB: VAR disjoint_sequence
P(A,B):probability = IF null?(B) THEN 0 ELSE P(intersection(A,B))/P(B) ENDIF

conditional_complement: LEMMA P(A,B)*P(B)+P(A,complement(B))*P(complement(B)) = P(A)

conditional_partition: LEMMA
Union(image(BB,fullset[below[n+1]])) = fullset[T] IMPLIES
P(A) = sigma(0,n, LAMBDA i: P(A, BB(i)) * P(BB(i)))

bayes_theorem: THEOREM
NOT null?(B) AND Union(image(AA,fullset[below[n+1]])) = fullset[T] IMPLIES
P(AA(j),B) = P(B,AA(j))*P(AA(j)) / sigma(0,n, LAMBDA i: P(B, AA(i)) * P(AA(i)))

END conditional
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Continuous Uniform Random Variables

If X is a continuous random variable distributed uniformly over 
the interval [a,b], then informally it takes any value within the 
interval [a,b] with equal probability

The characteristic function of a set S is the function χS, which 
takes the values 1  when it is applied to a member of S and 0 
otherwise

The probability density function f is 1/(b-a) χ(a,b]

The distribution function is F(x) = ∫-∞x f(x) dx

The probability P(x<X<=y) = F(y)-F(x)

If X is distributed U[a,b]

E(X)=(a+b)/2 and V(X)=(a-b)2/12

With a=0, b=1 we get E(X)=1/2 and V(X)=1/12
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Sums of Continuous Random Variables

We have a sequence of continuous random variables {Xn}

We define their partial sums as a sequence of continuous 
random variables {Sn} with the property Sn = Σi=1

n X_i.

If continuous random variables X and Y have joint probability 
density functions f, then Z=X+Y has probability density 
function

fZ(z) = ∫-∞∞ f(x,z-x) dx

Continuous Convolution Theorem: If continuous random 
variables X and Y are independent and have probability 
density functions fX and fY respectively, then Z=X+Y has 
probability density function

fZ(z) = ∫-∞∞ fX(x)fY(z-x) dx = ∫-∞∞ fX(z-x)fY(x) dx
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Reliability of long calculations
P(max1 ≤ i ≤ n(|Si|) ≤ ε)

A sequence {Sn} is a martingale with respect to the   sequence 
{Xn}, if for all n: E(|Sn|)<∞ and E(Sn+1;X1,X2,…,Xn) = Sn

The sequence {Sn}, where Sn= Σi=1
n Xi is martingale with respect 

to the sequence {Xn} if Xn are independent random variables 
with E(Xn)=0 or for all i, E(Xi) = 0 and E(Xi;X1 … Xi-1) = 0
Doobs-Kolmogorov Inequality: If {Sn} is a martingale with 
respect to {Xn} then, provided that ε>0: P(max1 ≤ i ≤ n(|Si|) ≥ ε) ≤
E(Sn

2) / ε2

When each Xi is an independent random variable with E(Xi)=0, 
we observe that P(max1 ≤ i ≤ n(|Si|) ≤ ε) ≥ 1 - 1/ε2 Σi=1

n V(Xi)2

Eventually errors will accumulate and overwhelm the accuracy 
of any numerical software

If ε is large enough and each of the V(Xi)2 are small enough
The number of iterations required for this to occur will be 
high enough to be of no practical significance

Crucially, the results hinge critically on the errors {Xn} being 
independent

III – Concluding remarks

The Central Limit Theorem in action
Future work 
Conclusions
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The Central Limit Theorem in action (n = 1, 2 or 5)

EVA-Flo

Perpignan

Oct 2007

24

Limitations of the Central Limit Theorem to target 
probability 10-9 (n = 5, 40, 100 or 200)
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Future work
1 - Invisible formal methods (Shankar & Rushby™)

Modify Fluctuat to generate theorems that can be checked 
automatically by PVS using ProofLite

Collaboration with the developers of
• Fluctuat (CEA)
• ProofLite (NASA & NIA)

Conservatively estimate the final effect of the error introduced
by each individual floating point operations

Compute upper bounds of their variances

Obtain tighter results with tools that are able to infer and solve 
inductions on variances of random variables 
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Future work
2 – Contribute theories, theorems and facts

Develop and validate in PVS accurate proofs about the round-
off errors of operations

Handle random variables with a drift through Wald Identity

Two's complement operation of TMS320 may truncate 
results

Address higher order error terms

Library and future work will be included into NASA Langley 
PVS library
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Conclusions
1 - First generic formal development in PVS

Able to handle random variables

Continuous

Discrete

Non-continuous non-discrete

Previous developments in higher order logic were

Targeting other applications

Using other proof assistants (Coq, HOL or Mizar)

See

Hurd’s PhD and references herein (Cambridge→Oxford)

ALEA library by Audebaud and Paulin (ENS Lyon & Orsay)
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Conclusions
2 – One last warning

First application of the Doobs-Kolmogorov Inequality to 
software reliability

The limit on the reliability of a piece of numeric software can 
be expressed succinctly

Even with a high tolerance of error, and with independent 
errors, we will still eventually fail

Our results permit the development of safe upper limits on the 
number of operations that a piece of numeric software should 
be permitted to undertake similar to what was done in Gappa

Violating our assumptions (independence of errors, and zero 
drift) would lead to worse results, so one should treat the 
limits we have deduced with caution, should these 
assumptions not be met


