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Introduction Context and Objectives

Introduction
Context and Objectives

Context

Transformation tool to improve automatically the quality
of computations: accuracy and time

Validation of software

Goal

To improve the accuracy of floating-point computations

Working on Summation Algorithms: Motivation

Simple but significant problems in our application scope

Lot of research on this subject

Many algorithms to improve accuracy

P. Langlois, M. Martel, L. Thévenoux Accuracy VS Time – 2/26



Introduction Context and Objectives

Introduction
Context and Objectives

Accuracy and time do not cohabit well[Demmel]

How can we improve the accuracy of numerical algorithms
if we relax slightly the performance constraints?

Example

For example, let us consider the sum:

s =

N∑
i=1

ai, with ai =
1

2i
, 1 ≤ i ≤ N
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Introduction Context and Objectives

Introduction
Context and Objectives

Accuracy and time do not cohabit well[Demmel]

How can we improve the accuracy of numerical algorithms
if we relax slightly the performance constraints?

Example

Two extreme algorithms compute s

s1:=
(

((a1 + a2) + a3) + . . . aN−1

)
+ aN

s1 is computed in linear time
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Introduction Context and Objectives

Introduction
Context and Objectives

Accuracy and time do not cohabit well[Demmel]

How can we improve the accuracy of numerical algorithms
if we relax slightly the performance constraints?

Example

and, assuming N = 2k,

s2:=
((

(a1 + a2) + (a3 + a4)
)

+ . . .+ (aN
2 −1 + aN

2
)
)

+((
(aN

2 +1 + aN
2 +2) + (aN

2 +3 + aN
2 +4)

)
+ . . .+ (aN−1 + aN )

)
s2 is computed in logarithmic time
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Introduction Context and Objectives

Introduction
Context and Objectives

Accuracy and time do not cohabit well[Demmel]

How can we improve the accuracy of numerical algorithms
if we relax slightly the performance constraints?

Example

However, in double precision, we have, for N = 10:

s = 0.9990234375 s1 = 0.9990234375 s2 = 0.99609375

and it happens that s1 is more precise than s2
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Introduction Approach

Outline of the talk: our approach

Background material

Performing an exhaustive study: generating all the
equivalent expressions of an expression using associativity
and commutativity

Computing the worst errors which may arise during their
evaluation (for different datasets, using intervals)

Comparing errors and parallelism level to find the best
ratio between time and accuracy

Extend results to bounded parallelism and compensated
algorithms
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Introduction Approach

Our Main Conclusion

Our main conclusion is that relaxing very slightly the time
constraints by choosing algorithms whose critical path are a bit
longer than the optimal makes it possible to strongly optimize
the accuracy.
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Background Summation Algorithms

Outline of the talk

Background material

Performing an exhaustive study: generating all the
equivalent expressions of an expression using associativity
and commutativity

Computing the worst errors which may arise during their
evaluation (for different datasets, using intervals)

Comparing errors and parallelism level to find the best
ratio between time and accuracy

Extend results to bounded parallelism and compensated
algorithms
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Background Summation Algorithms

Summation Algorithms
Two Extreme Algorithms for Parallelism

+

+ +

+

+

+

O(log(n)) O(n)

Algorithm in O(n) is the extreme
sequential algorithm. It computes
a sum in n operations successively
summing the n+ 1 FP numbers

Pairwise summation algorithm is
the most parallel algorithm. It
computes a sum in O(log(n))
successive stages

Merging Parallelism and Accuracy

Mixing these algorithms gives many algorithms of parallelism
levels between those two extreme ones
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Background Summation Algorithms

Summation Algorithms (2)
Improve Accuracy of One Computed Sum

Extreme Parallel Algorithms do not have the same worst case
error bound

To improve accuracy of one computed sum:

sort the terms according to their characteristics
(increasingly, decreasingly, negative, positive sort, etc.)

inserting methods

use compensated or EFT (Error-Free Transformation)
algorithms

etc.
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Background Summation Algorithms

Summation Algorithms (3)
More Accuracy with Compensation

Compensation is a well known and efficient technique to
improve accuracy

It uses EFT (Error-Free Transformation)

Many kinds of compensation algorithm:

VecSum[Rump]: Error-Free Vector transformation of n+ 1
FP Numbers
Sum2, SumComp: Compensated Summation of n+ 1 FP
Numbers

Sum2 applies compensation at the last summation
SumComp[Kahan] applies compensation to the next
summand before adding it to the previous partial sum
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Background Measuring the Error Terms

Measuring the Error Terms(1)

Let x be a real number, in FP arithmetic, x is approximated by
x̂, such that x = x̂+ εx, εx ∈ R

Let us consider the sum S = x+ y approximated by Ŝ = x̂⊕ ŷ
(where ⊕ is a floating-point addition)

We write the difference εS between S and Ŝ

εS = S − Ŝ = εx + εy + ε+

where ε+ denotes the round-off error introduced by the
operation x̂⊕ ŷ itself
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Background Measuring the Error Terms

Measuring the Error Terms(2)

We use interval x, y, . . . instead of FP numbers x̂, ŷ, . . .

To improve accuracy of any dataset or, at least, of a wide
range of datasets

Necessarily to represent real numbers (as error terms)
using rounding modes towards outside

Finally used in compiler tools[Fluctuat]

An interval x with related interval error εx denotes all the
floating-point numbers x̂ ∈ x with a related error εx ∈ εx. This
means that the pair (x, εx) represents the set of exact results
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Background Measuring the Error Terms

Measuring the Error Terms(3)

Let x and y be two sets of floating-point numbers with error
terms εx ⊆ R and εy ⊆ R. We have

S = x⊕I y ; εS = εx ⊕O εy ⊕O ε+

where ⊕I is the sum round to the nearest, ⊕O is the sum round
towards outside and ε+ is the round-off error of x̂⊕I ŷ

Measuring ε+

Let ulp(x) a function which computes the ulp of x and let
S = [S, S] We bound ε+ by the interval [−u, u] with

u =
1

2
max(ulp(|S|), ulp(|S|))
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Generation of Expressions

Outline of the talk

Background material

Performing an exhaustive study: generating all the
equivalent expressions of an expression using associativity
and commutativity

Computing the worst errors which may arise during their
evaluation (for different datasets, using intervals)

Comparing errors and parallelism level to find the best
ratio between time and accuracy

Extend results to bounded parallelism and compensated
algorithms
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Generation of Expressions

Generation of Expressions
Generalities

How our tool generates all the re-parsings of an expression

In case of summation, the combinatorial is huge, this was
often studied but no general solution exists

Our tool finds all the equivalent expressions of an
expression but generates only the different equivalent
expressions : a+ (b+ c) == a+ (c+ b)

Terms All expressions Different expressions
5 1680 120
10 1.76432e+10 4.66074e+07

15 3.4973e+18 3.16028e+14

20 4.29958e+27 1.37333e+22

Table: Number of terms and expressions.
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Generation of Expressions

Generation of Expressions
Structures

1 algorithm (expression) is represented by 1 binary tree:
nodes are sums and leaves are values

Recursively:

An expression is composed of one term at least: n ≥ 1

A leaf x has only one representation, it is a tree of one

term represented like this: 1

x

Then the number of structures for one term trivially
reduces to one
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Generation of Expressions

Generation of Expressions
Structures

1 algorithm (expression) is represented by 1 binary tree:
nodes are sums and leaves are values

Recursively:

Expression x1 + x2 is a tree of two terms 2 It has the
following structural representation:

+

1 1

With two terms we can create only one tree:
+

x1 x2
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Generation of Expressions

Generation of Expressions
Structures

1 algorithm (expression) is represented by 1 binary tree:
nodes are sums and leaves are values

Recursively:

Recursively, we apply the same rules

For a tree of n terms, we generate all the different
structural trees for all the possible combinations of
sub-trees, i.e. for all i ∈ [1, n− 1], two sub-trees with,
respectively, i and (n− i) terms

Because summation is commutative, it is sufficient to
generate these (i;n− i)-sub-trees for all i ∈ [1, bn2 c]
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Generation of Expressions

Generation of Expressions
Structures

1 algorithm (expression) is represented by 1 binary tree:
nodes are sums and leaves are values

Recursively:

This is represented as it follows:

∀i ∈ [1, bn2 c],

+

i n− i
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Generation of Expressions

Generation of Expressions
Structures

1 algorithm (expression) is represented by 1 binary tree:
nodes are sums and leaves are values

Recursively:

So, for n terms, we generate the following numbers of
structurally different trees,

Struct(1) = Struct(2) = 1,

Struct(n) =

bn
2
c∑

i=1

Struct(n− i) · Struct(i)
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Generation of Expressions

Generation of Expressions
Permutations

To generate only different permutations, the leaves are related to
the tree structure

There is a restriction on permutation, for example, we do not
wish to have the following two permutations: a + (d + (b + c))
and a+ ((c+ b) + d)

In order to generate all the permutations, we use a similar method
as described for the generation of structures
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Generation of Expressions

Generation of Expressions
Permutations

Firstly, we know that for an expression of one term, we generate
only one permutation. Perm(1) = 1

Using our permutation restriction, it is sufficient to generate one
permutation for an expression of two terms; so again Perm(2) = 1

Permutations is related to the tree structure and we count it with
the following recursive relation:

Perm(1) = Perm(2) = 1

Perm(n) =

bn
2
c∑

i=1

Ci
n · Perm(n− i) · Perm(i)
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Numerical Accuracy of Non Time-Optimal-Algorithms

Outline of the talk

Background material

Performing an exhaustive study: generating all the
equivalent expressions of an expression using associativity
and commutativity

Computing the worst errors which may arise during their
evaluation (for different datasets, using intervals)

Comparing errors and parallelism level to find the best
ratio between time and accuracy

Extend results to bounded parallelism and compensated
algorithms
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Numerical Accuracy of Non Time-Optimal-Algorithms

Numerical Accuracy
of Non Time-Optimal-Algorithms

Maximum errors among
each algorithms for a
sumation of six terms.

uniformly distributed

belong to a small
number of stages
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Numerical Accuracy of Non Time-Optimal-Algorithms

Numerical Accuracy
of Non Time-Optimal-Algorithms

Error repartition when summing
ten terms.

very few small of very large
errors is small

most of the algorithms
present an average accuracy
between small and large
errors

find the best accurate (as
well as the worst one)
algorithm is difficult
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Numerical Accuracy of Non Time-Optimal-Algorithms

Numerical Accuracy
of Non Time-Optimal-Algorithms

Using different levels of parallelism

We observe that the most parallel one does not allow us to
compute the most accurate results

Parallelism Best Error Percent
no parallelism 2.273e−13 0.006
blog(n)c+ 1 4.547e−13 0.007
blog(n)c+ k 2.273e−13 0.006
k × blog(n)c 2.273e−13 0.007

Table: Error value and average on level parallelism.
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Numerical Accuracy of Non Time-Optimal-Algorithms

Numerical Accuracy
of Non Time-Optimal-Algorithms

The more the level of parallelism is, the harder it is to find the
most accurate algorithms among all of them

Error repartition with three different degrees of parallelism.
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Numerical Accuracy Larger Experiments

Numerical Accuracy (2)
Larger Experiments

To study a more representative sets of data

Using various kinds of values chosen as well-known
error-prone problems, i.e. ill conditioned sets of summands

condition number for computing s =
∑N

i=1 xi, is

cond(s) =

∑N
i=1 |(xi)|
|s|

suffering of absorption and cancellation

Using 9 different datasets to generate different type of
absorptions and cancellations

Using interval data, more precisely, small variation around
scalar values
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Numerical Accuracy Larger Experiments

Numerical Accuracy (3)
Larger Experiments - Datasets

D1. Positive sign, 20% of LV among SV

D2. Negative sign, 20% of LV among SV

D3. Positive sign, 20% of LV among SV and MV

D4. Negative sign, 20% of LV among SV and MV

D5. Both signs, 20% of ill-conditioned LV among SV

D6. Both signs, few SM, MV and ill-conditioned LV

D7. Both signs, few SM, ill-conditioned LV and MV

D8. Both signs, few SM, LV and ill-conditioned MV

D9. Data representative of values sent by a sensor

SV = Small value = 10−16, LV = large value = 1016 and MV = medium value = 1

(justified in double precision IEEE-754 arithmetic)
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Numerical Accuracy Proportion of the Optimal Algorithms

Numerical Accuracy (4)
Proportion of the Optimal Algorithms

Proportion of optimal algorithms (average on 10 datasets).
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Further Examples Example with Compensated Summation

Outline of the talk

Background material

Performing an exhaustive study: generating all the
equivalent expressions of an expression using associativity
and commutativity

Computing the worst errors which may arise during their
evaluation (for different datasets, using intervals)

Comparing errors and parallelism level to find the best
ratio between time and accuracy

Extend results to bounded parallelism and compensated
algorithms
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Further Examples Example with Compensated Summation

Further Examples
Compensated Summation

To improve the accuracy of expression E, we compute an
expression Ecmp which could be generated by a compiler

To illustrate this, we present an example with a summation of
five terms (((a+ b) + c) + d) + e:

a = −9.5212224350e−18

b = −2.4091577979e−17

c = 3.6620086288e+03

d = −4.9241247828e+16

e = 1.4245601293e+04
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Further Examples Example with Compensated Summation

Further Examples
Compensated Summation

The maximal accuracy which can be obtained is given by the
algorithm (((a+ b) + c) + e) + d. It generates the absolute error
∆ = 4.0000000000020472513. We observe that this algorithm is
Algorithm Sum with increase order

The maximal accuracy given by the maximal level of parallelism
is obtained by the algorithm ((a+ c) + (b+ e)) + d. In this case,
the absolute error is

δnocomp = 4.0000000000029558578
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Further Examples Example with Compensated Summation

Further Examples
Compensated Summation

When applying compensation on this algorithm, we obtain the
following more accurate algorithm:

(f + (g + (h+ i))) + (d+ ((b+ e) + (a+ c))),

with:

f = C(a, c) = −9.5212224350000e−18

g = C(b, e) = −2.4091577978999e−17

h = C(f, g) = −1.8189894035458e−12

i = C(h, d) = 3.6099218000017
It appears that this algorithm found with the application of

compensation is actually the Sum2 algorithm
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Further Examples Example with Compensated Summation

Further Examples
Compensated Summation

Now we measure the improved absolute error

δcomp = 4.0000000000000008881

δnocomp = 4.0000000000029558578

∆ = 4.0000000000020472513

These results illustrates that we can automatically find
algorithms existing in the bibliography and that the
transformation improves the accuracy
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Further Examples Example on Bounded Parallelism

Further Examples
Bounded Parallelism

In processor architectures parallelism is bounded, so it is
possible to execute an algorithm less parallel in the same
execution time as the fastest one

blog(n)c+ 1 algorithm does not provide the maximum accuracy

a b c d e f g h i j

+ +

+ +

++

++

+

1

2

3

4

5
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Further Examples Example on Bounded Parallelism

Further Examples
Bounded Parallelism

In processor architectures parallelism is bounded, so it is
possible to execute an algorithm less parallel in the same
execution time as the fastest one

Algorithm in blog(n)c+ k provide the maximum accuracy

a b c de f gh ij

+ +

+ +

+ +

+ +

+

1

2

3

4

5
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Conclusion and Perspectives

Conclusion

First steps towards the development of a tool that aims at
automatically improving the accuracy of numerical
expressions in floating-point arithmetic

Algorithms described in bibliography can be automatically
generated

Trade-Off between time and accuracy is reasonable in
practice

Relaxing very slightly the time constraints by choosing
algorithms whose critical paths are a bit longer than the
optimal makes it possible to strongly optimize the accuracy
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Conclusion and Perspectives

Perspectives

Increase the complexity of the case study : including more
and different operations

Solve the problem of the combinatorics of possible
transformation

How to develop significant datasets corresponding to any
data interval provided by the user of the expression to
transform

Certified an accurate transformation with a certification
tool (static analysis, abstract interpretation)
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