Effect of round-off errors on the accuracy of randomized algorithms

Marc Daumas and Patrick Vilamajó

ÉLIAUS-PROMES (UPR 8521 CNRS)
Perpignan - France
marc.daumas@univ-perp.fr

Introduction

Applications
Probabilities
Statistics
Concluding remarks

Outline

(1) Introduction
(2) Applications
(3) Probabilities

4 Statistics
(5) Concluding remarks

Characterize the accuracy of the result of a program

- Running on powerful systems
- peta-flops ($10^{15} \approx 2^{45}$ operations each second)
- exa-flops ($10^{18} \approx 2^{54}$ operations each second)
- Using hardware accelerators
- ClearSpeed (PetaPath in WP8 of PRACE FP7 project)
- GPU (GENCI joint call for projects with Caps Entreprises)
- Operating in
- Single-precision (ulp $=2^{-23}$)
- Double precision (ulp $=2^{-52}$)
- Based on Monte-Carlo method
- Description containing 2,315,737 items

Route from Narita INTL to Paris Charles de Gaulle

Waypoint		$\mathrm{N}^{\circ} \times \mathrm{E}^{\circ}$	Dist (nm)	Worst case error $(1 \mathrm{kHz})$	Significant bits
Narita INTL	JP	36×140	0	0	25
Niigata	JP	38×139	180	0.04	4.6
Khabarovsk	RU	49×135	851	0.19	2.4
Neryungri	RU	57×125	1479	0.33	1.6
Igarka	RU	67×087	2698	0.60	0.7
Naryan-Mar	RU	68×053	3458	0.77	0.4
Josie	FI	63×030	4117	0.91	0.1
Marie	FI	60×020	4433	0.98	None
Dunker	SE	59×017	4538	1.01	None
Sveda	SE	56×013	4769	1.06	None
Alsie	DK	55×010	4885	1.08	None
Paris CDG	F	49×003	5342	1.18	None

Use almost certain bounds when worst case analysis fails

Random walks with probability of moving up or down equal to $1 / 2$

Propose theoretical strong results

- Control software errors due to round-off and truncation errors
- We continue and use a theory
- For extremely rare failures of very long processes
- That can be applied to numerical analysis and hybrid systems (heat transfers, aircraft, nuclear power plants)
- Formal developments
- Using PVS (SRI + NASA) and a previously published theory
- Force explicit statement of all hypotheses
- Prevent incorrect uses of theorems
- We assume in this work that round-off errors are
- Independent variables
- Independent of the Monte-Carlo variables

Outline

(1) Introduction
(2) Applications
(3) Probabilities
(4) Statistics
(5) Concluding remarks

Outline

(1) Introduction
(2) Applications
(3) Probabilities

4 Statistics
(5) Concluding remarks

First application: solar power plant

Simulations for the design of high performance solar receptors

Courtesy of Philippe Égéa (CNRS-PROMES)

Simplified geometry

Solar radiations (visible)

Metal pipe
Gas turbine

Experimental validation

Moyen d'Essais des Écoulements Turbulents pour I'Intensification des transferts de Chaleur

Project supervised by Gabriel Olalde (CNRS-PROMES)

HITRAN-HITEMP molecular spectroscopic database

One record per spectral line

Line-by-line radiative heat transfers

- Use Monte-Carlo method to estimate combined heat transfers

- Compute optical depth with backward ray tracing

Second application: greenhouse gazes

Evolution of net effect of radiative heat transfers between clouds and Earth surface

Courtesy of NASA

Outline

(1) Introduction
(2) Applications
(3) Probabilities

4 Statistics
(5) Concluding remarks

Probability of an inaccurate results

- Truncation error of Monte Carlo quadratures bounded by

$$
\mathbb{P}\left(\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)-\int d^{d} u f\left(u_{1}, \ldots, u_{d}\right)\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{N \epsilon^{2}}{2 M^{2}}\right)
$$

- where M bounds $f\left(u_{1}, \ldots, u_{d}\right)$
- M / ϵ represents the significant digits of the quadrature
- We focus on cases where $N \gg M^{2} / \epsilon^{2}$

Fixed and floating point numbers

- Floating point: $v=m \times 2^{e}$
- e is an integer called the exponent
- m is the signed mantissa
- IEEE 754 standard on floating-point arithmetic uses
- Sign-magnitude notation for the mantissa
- An implicit first bit $\left(b_{0}=1\right)$ for the mantissa in most cases

$$
v=(-1)^{s} \times b_{0} \cdot b_{1} \cdots b_{p-1} \times 2^{e}
$$

- Some circuits such as the TMS320 use two's complement

$$
v=\left(b_{0} \cdot b_{1} \cdots b_{p-1}-2 \times s\right) \times 2^{e}
$$

- Fixed point: e is a constant and b_{0} cannot be forced to 1

Individual measurement errors of physical constants

- v is a constant obtained from a database
- It is commonly admitted that
- Natural constants follow a logarithmic distribution
- Trailing digits are approximately uniformly distributed
- The difference between v and the actual value \bar{v} is
- In the range $\pm u l p(v) / 2$ with

$$
u l p(v)=2^{e-p+1} \quad(\text { unit in the last place })
$$

- Modeled by a uniformly distributed random variable X
- Less accurate constants use larger ranges $\pm u / 2$

Individual errors of fixed or floating point operations

- Round-off errors created by operators $(+, \times, \div, \sqrt{ })$ are discrete
- Distributions are very specific (not necessarily uniform)
- We may have to bound
- Their ranges
- Their moments

Accumulated round-off error of Monte-Carlo simulation

- Round-off errors δ_{n} are between $\pm M u / 2$
- Monte Carlo averages the values and the errors
- Probability of a large accumulation is bounded by

$$
\mathbb{P}\left(\left|\frac{1}{N} \sum_{n=1}^{N} \delta_{n}\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{N \epsilon^{2}}{2 M^{2} u^{2}}\right)
$$

- We focus on cases where $\epsilon / M u \ll 1$

Accumulated round-off error of Monte-Carlo simulation

- First application sums only positive numbers
- Various orders of magnitude
- Partial absorption of small floating point numbers
- Total absorption of $f\left(x_{n}\right)$ is not permitted
- $\delta_{n}=f\left(x_{n}\right)$ would be correlated with the Monte Carlo process
- Second application sums positive and negative numbers
- Transfers increase during daytime and decrease at night with the quantity of greenhouse gazes in the atmosphere
- Magnifying effect of cancellations between night and day.

Introduction

Outline

(1) Introduction
(2) Applications
(3) Probabilities
(4) Statistics
(5) Concluding remarks

Validity of the hypotheses

- On the random variables
- Law (uniform or logarithmic), parameters, symmetry
- Identity (sometimes) and independence
- Impossible to set beforehand (build counter-example)
- A posteriori estimation (instrument the code)
- High quality level
- Proofs validated by PVS
- Very low probability of failure $\left(10^{-9}\right)$

Develop and instrument real size applications

- Manage huge sets of data
- GPU
- ClearSpeed
- Converging problematic with BioWIC project of the ANR
- Theoretical and applied work

Outline

(1) Introduction
(2) Applications
(3) Probabilities

4 Statistics
(5) Concluding remarks

Working with formal methods

- Positioning a theory is a key issue
- Too simple, we will be blocked by its limitations
- Too evolved, we may not be able to use it (never finished)
- Its maturation is also a key issue
- Formal tools block on any shadow area of a proof
- Lester (among others) decided to follow textbooks
- Some decisions relate only to educational methods
- Separate discrete and continuous variables
- Use sections $[X \leq x]$ instead of the inverse image of Borel sets
- Milestone: Results proved but not fully certified formally yet

Formal proof assistants

- Used in areas where
- Common misunderstandings can falsify key assumptions
- Errors can cause loss of life
- Errors can cause significant financial damage
- Used for floating-point arithmetic and probabilistic or randomized algorithms
- Proof assistants include
- ACL2 (UT Austin)
- HOL (Cambridge)
- Coq (INRIA)
- PVS (SRI and NASA)

Example of an increasingly common misunderstanding

- Attribute to articles the bibliometric properties of their journal
- One example from the American Mathematical Society
- "Quantitative Assessment of Research Citation Statistics"
- //www. awm-math.org/CitationStatistics-FINAL.PDF
- Numbers of citations follow power laws
- Impact factor is
- 0,434 for the Proceedings (short articles less than 10 pages)
- 0,846 for the Transactions (longer articles)
- Probability of a random article of the Proceedings to have no less citations than a random article of the Transactions: 62\%

Conclusions and future work

- Worst case error analysis provides exponential bounds $O\left(A^{n}\right)$ suitable for small and toy applications
- Backward error analysis used to provide linear bounds $O(n)$ suitable for high performance computing
- We provide in this work sublinear bounds $O(\sqrt{n})$ suitable for peta- and exa-scale computing
- Our scheme is suitable to obtain the highest assurance level (EAL) of the ISO 15408 and 18045 standards establishing the Common Criteria for Information Technology Security Evaluation

Wider picture

- Most (all ?) recent applications of high performance computing are randomized algorithms
- Countless references
- This work is about discrete probabilities...
- Work of Joe Hurd
- Work of Philippe Audebaud \& Christine Paulin
- ... and continuous and general probabilities
- Work with David Lester
- Work with David Lester, Erik Martin-Dorel and Annick Truffert

Acknowledgment

This work has been partially funded by

- The EVA-Flo project of the ANR

Many thanks for you attention

- Any question?

