
March 20, 2006

EVA-Flo

Évaluation et Validation Automatiques pour le calcul Flottant

New automatic tools for validated floating-point computation

Contents

1 State-of-the-art and objectives 2
1.1 Automatic generation and validation of floating-point code 2
1.2 Expertise of projects members . 2
1.3 Other related works . 3

2 Description of the project and expected results 4
2.1 Description of the project . 5

2.1.1 Specification of qualitative aspects of floating-point codes 6
2.1.2 Algorithms for the evaluation of floating-point expressions 7
2.1.3 Interface with automatic proof checkers . 8
2.1.4 Integrated and interoperable automatic tools 8

2.2 Qualification of the proponents and collaborative added value 9
2.3 Dissemination of results . 10
2.4 Methodology and schedule . 10

3 Motivation of expected funding 12

1

1 State-of-the-art and objectives

This project addresses the need for better floating-point code, obtained faster, and with guaran-
tees on the quality of the result. Indeed, floating-point arithmetic is now used everywhere, from
embedded systems to supercomputers. In safety-critical applications such as avionics and auto-
motive, offering a guarantee on the results of some floating-point computations is often crucial.
In other applications, the critical factors may be accuracy, time-to-market, cost, or performance
(speed, code size, memory requirements. . .) of the final product.

1.1 Automatic generation and validation of floating-point code

The project addresses the development of floating-point programs which, without sacrificing per-
formance, offer quantified and guaranteed quality. Quality criteria may be accuracy (a small and
bounded error), reliability (e.g. guarantee that over/underflows will not occur), portability, among
others. Another essential goal of this project is to automate both development and validation.

Floating-point arithmetic used to be a mere set of cooking recipes that sometimes worked well,
and sometimes did not work at all. Floating-point numbers were approximations of real numbers,
rounding errors were a fuzzy concept, and finally floating-point programs were approximations
of algorithms over the reals. Many numerical analysis techniques were developed to manage the
accuracy of floating-point programs in this context.

More recently, thanks to widespread standards such as IEEE-754, floating-point numbers and
operations have become well-defined mathematical objects. This new view is compatible with
the previous one, but is much more powerful. For example, it enables to compute on-the-fly
the rounding error of a critical operation as a floating-point number, to be incorporated in later
computations (compensated algorithms)1. It also makes it possible to analyse the actual code in
the last details – not an approximation of this code. It even enables the derivation of a formal
proof of bit-level properties of the code, to be checked by a formal proof assistant.

The challenge of this new approach is that it requires considerable attention to the details: so
far, it has been successfully applied to the development of very small programs (a few operations).
One reason is that such studies are usually performed “manually” and on a case-by-case basis for
each program, using human expertise. This is both error-prone, time-consuming and not reusable,
since the work must be done from scratch each time the program is modified.

The purpose of the EVA-Flo project is therefore to extend this approach to larger floating-
point programs. Arbitrary programs are still out of reach, and our method will be to focus on
classes of problems for which floating-point experts are already able to derive efficient programs
and/or useful proofs. Our ambition is to automate enough of this expertise to allow considering
problems of much larger size than those considered so far. This automation will have several
aspects: specification and analysis of the mathematical object to implement in floating-point,
generation of efficient floating-point code, validation of properties of this code with respect to the
initial specification. The same tools, of course, may be used to validate existing code.

1.2 Expertise of projects members

This project builds up on previous work in the Arenaire team, concerning in particular algorithms
for the evaluation of elementary functions in hardware and in software (the latter for processors
with or without a floating-point unit), polynomial and rational approximation under constraints,

1Members of the Arénaire team have defined a portable algorithm that returns the error of an FMA (fused
multiply-and-add) instruction as the sum of two floating-point numbers.

2

the use of arbitrary precision interval arithmetic for validated numerics, algorithmic complexity,
computer algebra algorithms and tools, formal proofs and proof-checking for floating-point oper-
ators and small sequences of operators, automatic or interactive construction of formal proofs for
larger codes.

With three former members of Arenaire in the DALI team, there is a strong collaboration
between both teams. DALI brings useful expertise in numerical error analysis, compensated
algorithms, and formal proofs. They will also target our tools to exotic architectures such as
graphics coprocessors.

The TROPICS team will bring theoretical expertise as well as a practical tool for automatic
differentiation. This will be used to study the sensitivity of numerical code to rounding errors, to
compute accurate approximations, and to improve interval analysis.

The CEA LIST team has an established expertise, implemented in the Fluctuat tool, about
static analysis of floating-point code and automatic invariant computation. This work has also
given them practical experience concerning larger, industrial codes.

1.3 Other related works

This project gathers members of the very strong French community in computer arithmetic. Other
members of this community relevant to this project include

• the CADNA project at LIP6, working on probabilistic estimation of rounding errors,
• the CerPAN project (ANR Projet Blanc 2005), focusing on formal proofs for real and

floating-point arithmetic in a scientific computing framework, which should be considered
as a back-end or target for the tools we propose to build,

• people from computational geometry (the Galapagos ANR proposal) who share the dual
concern of generation and validation of floating-point code.

The project will keep various links with this community (in particular through the AriNews
working group organized twice a year) and with the French community in computer algebra. The
Arénaire team is also involved in a sub-project (named SCEPTRE - Atelier du Futur) of the
“Pôle de compétitivité mondial” MINALOGIC. Our industrial partner is the compilation group
of STMicroelectronics in Grenoble. We will collaborate with STMicroelectronics on the aspects
of code generation of this project.

To obtain guaranteed enclosures of a numerical result, one solution we will use and develop
is interval arithmetic. The combined expertise in floating-point and interval arithmetic will yield
results which are both tighter and really guaranteed, as illustrated by a collaboration with the
COSY team at Michigan State University.

Other research teams with past or ongoing collaborations relevant to this project include those
of Kahan at Berkeley (floating-point standardization), Rump at Hamburg Tech. Univ. (accurate
summations algorithms), Shewchuk at Berkeley (accurate triangulation algorithms), and Yap at
NYU (exact geometric computation). Industrial partners include STMicroelectronics, the NASA
and EADS.

Formal proofs for floating-point operations are developed by constructors (Harrison at Intel,
Russinov at AMD), that do not want to repeat the “Pentium bug” (an error in the floating-point
division of the Intel processor, that cost them $475M). They have worked on the validation of
individual operations, and on small sequences of operations, up to a complete elementary function,
but always manually. When implementing elementary functions, they are also faced with some of
the aspects of code generation relevant to our project (Tang at Intel, Markstein at HP, Toda at
Sun, Ziv at IBM).

3

2 Description of the project and expected results

Floating-point arithmetic is widespread in numerical applications, and common programming
languages require it to be present, either in hardware or emulated in software. Integer (or fixed-
point) arithmetic often no longer suffices for numerical applications, and most general-purpose
microprocessors and an increasing number of DSP chips have a floating-point unit. In this context,
the behaviour of basic floating-point operators is governed by the IEEE-754 standard. Before going
through the project in details, let us first see some central notions around this standard.

A few years ago, approaches for modelling floating-point arithmetic were “fuzzy approaches”,
describing it as a mere approximation to the arithmetic of real numbers. Such approaches allowed
to get probabilistic or deterministic bounds to numerical errors, but were unable to catch the
properties of subtle programs such as the one given by the following three C instructions:

s = (a1 + a2); z = (s - a1); r = (a2 - z);

If |a1| > |a2|, then on all systems of current commercial significance, this program—known
in the literature as FastTwoSum—returns s equal to the floating-point number that is closest to
a+ b, and r equal to the (exact) error of the previous addition. These facts cannot be proven just
by considering floating-point operations as mere approximations to the real operations: one has
to use the specification of floating-point arithmetic provided by the IEEE-754 standard.

The IEEE-754 standard defines precisely the format of the floating-point numbers (e.g. single
and double-precision), and defines four rounding modes (to nearest, or towards −∞, +∞, or
0). It also mandates correct rounding for the basic operations +, −, ×, ÷ and for √ , that is,
the system must behave as if the result was first computed exactly , with infinite precision, and
then rounded. The latter requirement has a number of advantages that will play key roles in the
project. Correct rounding first leads to full compatibility between computing systems: a given
program will produce the same values on different computers. Correct rounding also allows the
computation of lower or upper bounds on the exact result of a sequence of arithmetic operations,
and more generally leads to efficient implementations of interval arithmetic. Further, algorithms
can also be specifically designed for benefiting from the property, especially for improved accuracy.
One can for instance derive very accurate yet reasonably fast methods for adding many numbers
(a crucial operation in linear algebra, integration, etc.). This is illustrated by the figure below,
where each TwoSum box represents a generalization of the previous FastTwoSum sequence.

a1

?

TwoSum - TwoSum -
?

?

TwoSum -
?

?

TwoSum -
?

?

- -...

a2 a3 a4 an

S

rn−1r3r2r1

?

Taking S+(r1 +r2 + · · · +rn−1) for the result of the summation allows, in conventional double
precision arithmetic when all the ai’s have the same sign, to add up to 240 terms and yet keep an
error less than the weight of the last bit of the returned result.

This example typically shows the possibilities offered by a thorough specification that are
the foundations of EVA-Flo. The specification will make possible highly accurate and efficient
algorithms for expression evaluation. It will enable us to establish, and formally check, the
corresponding proofs of accuracy.

4

2.1 Description of the project

Most numerical codes compute data whose main qualities are to approximate “ideal” values that
are generally unknown, and to be computed at a reasonable cost using standard floating point
operation libraries (compared to other types of arithmetics) on a wide variety of machines and
architectures. For more than twenty years, the IEEE-754 standard for basic arithmetic operators
(presented above) has provided extra qualitative properties on computed data that we propose to
carry over to the expression or critical code level (§2.1.1). Our new expression and code evaluation
approach will lead to gains of performance and accuracy (§2.1.2).

The originality of our approach is also to allow validation, and a much higher level of confidence
in codes than in the past. Better qualitative properties and specifications (correct rounding, error
bounds, portability, . . .) of numerical data are first ingredients in this direction.

Another crucial ingredient for producing reliable codes is a development methodology based
of proof assistant tools. Indeed, modern techniques for floating-point expression evaluation lead
to sophisticated algorithms whose proofs are complex and highly sensitive to slight changes of
the codes. A human-based only process is therefore expensive and leads to unsecure codes. We
aim at producing better specified codes whose proofs are automatically generated and checked in
interaction with the algorithm developer.

A third ingredient for validated codes concerns all the components of the project, and requires
a strong support for development forces. We propose to introduce automation in every branches
of our work. We mean: automatic tools for algorithm conception and code generation, for instance
automatic approximation generation, or automatic algorithmic choices depending on the target
architecture; automatic tools for specifying and checking properties of numerical data, such as
for computing certified error bounds; automatic assisting tools for proof elaboration, and use of
highly-trusted automatic proof checkers. This “ubiquitous” automation approach relies on—and
is made possible by—our savoir-faire and collaboration. The essential and immediate benefits will
be to reduce the risk of dramatic failure at execution, to reduce the overall development cost, and
increase the speed of the development accordingly.

These various aspects of efficient expression evaluation and validation organize the project in
four directions that are presented in Sections 2.1.1-2.1.4.

Terminology. The acronym EVA-Flo stands for Évaluation et Validation Automatiques pour le
calcul FLOttant (Automatic Evaluation and Validation of Floating-point computations).

By floating-point computations, we mean expressions or portions of codes we want to evaluate
in floating-point. Such numerical expressions may contain arithmetic and algebraic operations,
and elementary functions (sin, exp, atanh. . .). In codes we may accept branching (tests) and
loops. However, we only target critical pieces of code, not large code solving general mathe-
matical problems. For example, partial differential equation solvers answer a question of a more
mathematical nature than just the evaluation of an expression.

By evaluation, we mean to compute a floating-point value close to the exact mathematical
value. This exact value may be defined by a mathematical expression or a sequence of instructions
in a specific programming language. The choice of a pertinent input format is a research subject
of the project. A first step may be to construct an approximant of the mathematical quantity that
exhibits good floating-point properties: this implies that both approximation and rounding errors
will be considered. Another step is to determine a good way for evaluating the given approximant
in order to minimize the rounding error, or the computing time, or a tradeoff between both.

Validation (or certification, or verification: the vocabulary does not seem to be totally fixed)
corresponds to some guarantee on the quality of the evaluation. Several directions will be consid-
ered, for instance the full error (approximation plus rounding errors) between the exact mathemat-

5

ical value and the computed floating-point result, or some guarantee on the range of a function.
Validation also comprises a proof of this guarantee that is checked by a proof checker.

Automation is crucial since most development steps require specific expertise in floating-point
computing that can neither be required from code developers nor be mobilised manually for
every problems. An automated evaluation tool with guaranty should incorporate the knowledge
accumulated by the members of this EVA-Flo project to offer high quality results at each step.
Nevertheless, we anticipate that such a tool will not be totally automatic, but should rather
interact with the author of the floating-point expression to be handled. How this interaction
should take place? Which information is relevant for efficient automation? How to design an
easy-to-use tool? These are the first questions we have to investigate.

2.1.1 Specification of qualitative aspects of floating-point codes

A first goal of EVA-Flo is better formalism and specifications for floating-point evaluation. Be-
fore developing this aspect, let us remark that since the validation process is performed once for
a given code, then it can be (relatively) time-consuming compared to the execution time. Let us
also note that even if we primarily aim at a priori validation, validation tools can also be applied
a posteriori. Formalism and specification will especially concern the following quality aspects.

Specification. Typically, this will mean a proven error bound between the value computed by the
program and a mathematical value specified by the user in some high-level format. For example
with log(1 + ex), this may concern the distance between the code output, and the mathematical
value of log(1 + ex) rather than the floating-point value specified by language standards. We will
consider the proven error bound as being part of the specification of the evaluation program.

Tight error bound computation. The total error between a mathematical expression and the
computed floating-point result is usually split as the sum of the approximation and the rounding
errors. Formalisms such as interval analysis and condition numbers are useful for both types of
errors, as well as automatic differentiation and its application to sensitivity analysis. For design-
ing efficient estimation tools, new results on the complexity of computing error bounds should also
be derived, based on concepts such as the complexity of computing derivatives.

Floating-point issues. Regarding the use of floating-point arithmetic, a frequent concern is
the portability of code, and thus the reproducibility of computations. Successive roundings (with
different intermediate precisions) can be sources of problems. A different concern is whether un-
derflows or overflows occur. To detect the possible occurence of these problems, our automatic tool
will need information on the input domains of variables, and also on the architecture and compiler.

Precision. Floating-point properties, such as the FastTwoSum (Introduction of §2) have led to al-
gorithms that yield accurate results, as if extra computing precision were available. The choice of
the method (compensated algorithm versus double-double versus quadruple precision for instance)
that will yield the required accuracy at given or limited cost must be studied. An automatic tool
will have either to be told or to decide when and how to rely on these methods.

Input domains and output ranges. The determination of input domain or output range
also constitutes a specification/guarantee of a computation. Since the quality of an approximant
depends on the input domain, this also enables optimizations during code generation. Interval
arithmetic and Taylor models will be key tools here. Automatic differentiation will be used for
Taylor expansions of order 1 whose evaluation using interval arithmetic give tighter enclosures of
results. An automated tool for determining intput or output intervals has to be notified of what
is known and what is sought.

6

Other arithmetics, dedicated techniques and algorithms for increased precision. For
studying the quality of the results, most of conception phases will require multiple-precision or
exact solutions to various algebraic problems. This will ask us further our understanding of the
practical and theoretical costs of the corresponding arithmetics. Our automatic tool should dis-
pose of a panel of arithmetics and dedicated algorithms.

The tools developed here for identifying, measuring, and checking properties will be in tight
interaction with the proof process of the overall expression evaluation (addressed in §2.1.3).

2.1.2 Algorithms for the evaluation of floating-point expressions

Another goal of EVA-Flo is to improve and automate the evaluation of floating-point expres-
sions. This will reduce to computing good approximants (i.e which both involve only machine-
representable coefficients and minimize the errors), and evaluating them fast and accurately. Here,
there are many challenges to the automation and we plan to proceed in three steps, as follows.

Good approximants with respect to the method error. First we will focus on the elabo-
ration of automatic processes to get polynomials (or rational fractions or sums of cosines) whose
coefficients fit the constraints imposed by the application and that approximate well the given
function with respect to the absolute or relative error. Our aim is to be able to produce either
very quickly good approximants inside an on-the-fly process of function evaluation (this is the
main target here) or the best possible approximants (several hours or days for computing it are
then acceptable: we aim here at computing it once and then use it millions, if not billions, of
times). The tools involved include linear programming and lattice reduction.

Algorithms for evaluating approximants. Once we have a good approximant, how to eval-
uate it as accurately and efficiently as possible in IEEE-754 floating-point arithmetic? Such an
approximant is typically a polynomial evaluated with Horner’s method. However, several other
evaluation algorithms exist, which are much faster. Our first goal is thus to study the accuracy
of such algorithms. In particular, an expected conclusion is that some of these fast algorithms
may be also highly accurate. Our second goal is, given a target accuracy like the one wanted for
correctly rounded elementary functions, to design algorithms that, while achieving this accuracy,
are faster than the algorithms in use today. To obtain such an improvement we shall combine
three approaches: design hybrid algorithms that are halfway between Horner-like methods and
the fast methods; exploit the known proven properties of the arithmetic model; exploit the struc-
ture of the approximant. This whole algorithmic design process will be only possible if one can
routinely compute certified error bounds; it thus requires some of the validation tools of §2.1.1.
Furthermore, we shall consider the impact of enriching the floating-point model with higher-level
proven properties, such as FMA with correct rounding. Finally, the fast algorithms mentioned
above usually assume a so-called preconditioning phase, which consists in solving systems of linear
or polynomial equations over the rationals. Hence a need for further complexity results in exact
and multi-precision arithmetics.

Automated expression evaluation. Once the two tasks above are completed, the ultimate goal
is to be able to perform them automatically so as to produce a best approximation code with respect
to both approximation and roundoff errors. This will be highly context-dependent. In particular,
we will have to detect at compile-time for which expressions of a numerical program we should
compute on-the-fly special expressions (typically, expressions that will be very frequently evaluated
at run-time). When a compound function is computed, one could directly build approximations to
that function, instead of using several consecutive approximations. This would improve accuracy

7

and speed, and possibly usage of memory caches. We also need to estimate the domain of the
input variables of these expressions and to exploit fully the instruction set of the target processor.
This is obviously true for special purpose processors such as DSPs, but also for more “general”
microprocessors such as PowerPCs and Itaniums, where an FMA instruction is available.

2.1.3 Interface with automatic proof checkers

The process presented in the preceding pages aims at providing a fully specified, well optimized
and fairly robust piece of code. In most situations the code produced could be used with no
further questioning. Yet, some users may want to obtain a higher level of certification as will be
provided by the work described in this section. We propose to investigate two paths. Both paths
add transparencies to a process that we want to present as an all-inclusive black box to anybody
that is not highly trained in computer arithmetic or numerical analysis.

Formal proofs. We will provide formal proofs that can be checked by an independent highly-
trusted automatic proof checker. This approach has been coined as invisible formal methods as
we attain the certification level of formal methods without requiring any specific training from
end users. Work initiated in previous projects will allow us to use the Coq and the PVS auto-
matic proof checkers. Our burden to obtain a formal proof of correctness will be greatly reduced
by the fact that we will produce codes with our own automatic tools. Where a project such
as ANR CerPAN would have to infer many properties, as experts we will have no difficulty to
provide tight and numerous code annotations about arithmetic properties required for proofs of
correctness. Hence, a main goal is to obtain quickly an accurate and efficient set of annotations so
that producing the proof becomes a much simpler task. This goal will be met by collaborations
between tool and proof generator developers. Members EVA-Flo have already experienced this
type of collaboration, especially for designing the Gappa tool. We may still have to pass some
annotations from one tool to the next one, such a process has been presented as invariant trans-
lation. The annotation approach will be complemented by the use of static analysis with Fluctuat.

Semantics. We will also express some code manipulations related to floating-point arithmetics
in a formal semantics framework, that is as semantics based program transformation. Providing
semantics will help to promote our code transformations to people trained in that field as people
in charge of compiler developments, for example for certified compilers like Scade. Our goal is
twofold as we bring not only transparency but we also encourage the integration of some of our
techniques into compilers. As a mean to settle expert knowledge, we will translate some expert
practices into semantics based program transformations and heuristics.

2.1.4 Integrated and interoperable automatic tools

Various automatic components have been somehow independently introduced in Sections 2.1.1-
2.1.3, that correspond to the three main complementary steps of the design of a floating-point
code for the evaluation of an expression:

i/ Tools for I/O domains, accuracy, and specification study.
ii/ Tools for approximation/evaluation algorithms and code generation.
iii/ Tools for proof design and check.

A main objective of EVA-Flo is to study how the tools—possibly seen as black boxes—will
collaborate for providing an entire automatic approach taking in input an expression to evaluate
(with possible annotations), and returning an executable validated code. The complete automa-

8

tion with optimal or at least good resulting performance seems to be far beyond the current
knowledge. However, we see our objective as a major step for prototyping future compilers. We
thus aim at developing a piece of software that automates the steps described in the previous
pages. The result should be an easy-to-use integrated environment, and for this purpose we need
the help and manpower of an engineer devoted to this development.

Especially, the project will propose interactive exchanges with the user, and code annotations.
For proof generation, one possible approach is proof generation from the execution traces of other
used tools (for instance traces of a rounding error calculator). Since many tools are planned to
be involved in the general conception process, the proof elaboration process needs to be discussed
and implemented jointly. A key motivation here is the sensitivity of the proof generation with
respect to changes at the algorithm or the code level.

2.2 Qualification of the proponents and collaborative added value

Arénaire, Lyon. Arénaire team (LIP, Lyon) expertise is computer arithmetic. One of its re-
search directions concerns the properties of floating-point arithmetic. Arénaire is also well known
for its results on the evaluation of elementary functions with correct rounding, which requires
the determination of a good approximant and an implementation that exploits the properties of
the floating-point arithmetic. Other research directions of Arénaire include interval arithmetic or
algorithmic complexity. Arénaire takes part in the “Pôle de compétitivité mondial” MINALOGIC
where its role is to generate automatically, at compile-time, code for the floating-point evaluation
of composite functions for embedded systems. EVA-Flo generalizes the latter to more general
expressions and processors, together with more emphasis on validation.

DALI, Perpignan. DALI develops research on computer arithmetic and computer archi-
tecture. The goal of the team is to propose higher performance architectures and softwares to
deliver more reliable results when rounding error cannot be avoided. The collaborative added value
within EVA-Flo includes compensated algorithms (new algorithms with dynamic and validated
error bounds, detailed performance analysis with and without processor dependence), formal
proof checkers (invisible formal methods, semantic extensions), emerging architectures and ex-
otic arithmetics (graphical processor units, non-IEEE 754 floating-point arithmetic). DALI takes
part with CEA-LIST to the cooperating project OVALIE of the ”Pôle de compétitivité mondial”
Aerospace Valley (Midi-Pyrénées and Aquitaine) including industrial partners as Airbus, Alcatel,
EADS, Siemens and PSA. OVALIE stands for ”verification tools with static analysis of embedded
software”.

TROPICS, Sophia-Antipolis. The Tropics team develops an AD tool named ”Tapenade”,
which differentiates programs written in Fortran (and soon in C). This tool provides directional
derivatives, gradients, and Jacobian matrices. These derivatives actually help refining the inter-
vals that represent the influence of truncation errors. Extension of Tapenade to provide second
derivatives (Hessians) may help refine these intervals further. Tapenade can also be used to de-
tect the fragments of a code that are most sensitive to truncation errors. From this work, Tropics
expects a better insight of trucation error evaluation and new application domains for Tapenade.
Tropics will also bring experience in static analysis of source programs, and hopes to find inter-
esting new analyses to study and incorporate in its tool.

CEA LIST (Fluctuat tool), Saclay. The Fluctuat static analyzer automatically computes
invariants related to the numerical precision of large size C and assembly codes. Concerning
numerical algorithms, for example, it has been used to bound the maximal number of iterations

9

of some Newton algorithms for any input in a large range. In this project Fluctuat will be used
for validation, in interaction with Gappa. In particular, we aim at defining, jointly with the
other partners of the project, how both tools should cooperate, how Fluctuat should be used and
improved in the context of the certification of the implementation of mathematical functions.

Added value of the collaboration. Each team of the EVA-Flo project is expert on one or
several aspects developed in §2.1 and has developed pieces of software that correspond to each
field. The ongoing collaboration of some groups of EVA-Flo, with main efforts for collaborative
softwares, has led to the CRlibm library. CRlibm is an efficient mathematical IEEE-754 compliant
library with proven correct rounding. Its development has only been possible with an heavy use
of the Gappa tool that is intended to help verifying and formally proving properties on numerical
programs. This first practical and successful experience, with a strong interaction between the
two different domains of floating-point arithmetic and of formal proving, is an important element
for proposing our new research directions.

2.3 Dissemination of results

Academic partners We plan to publish our results regularly and to present them at conferences
(we plan one conference or two per partner and per year), relevant in our field, such as Arith, RNC,
SCAN, ISSAC, ICMS. We also plan to apply for the organization of the next SCAN conference
(GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and
Validated Numerics) in 2008.

Industrial partners Our complementary partnership with ST Microelectronics is important
for us2: they bring problems and applications, and we can try our solutions on their platform.
Also, this project obviously requires tight relations with a good compilation team. Our first code
generations solutions will be tried on the C compilers for the ST200 familly.

Other partners are concerned by our future tools: current users of Fluctuat in particular,
people from control theory (for robustness issues even when the captors, and thus the input data,
are not accurate), people form computational geometry (cf. the ANR ”projet blanc” Galapagos
proposal) etc

2.4 Methodology and schedule

The working methodology will consist in frequent and long meetings (2-3 days, 4 times per
year) to elaborate together on the automation part mainly, i.e. on the interaction between each
constitutive component (such as approximant generation or output range determination). Each
component will be developed by the corresponding expert and our mutual effort will be on the
definition of what should be communicated by one component to the other. Related issues, such
as the input language for the mathematical expression, will also be handled collectively.

The planned schedule is the following.

• First year: starting from small examples (taken from embedded systems or from numerical
codes analyzed by Fluctuat), we shall:

– develop the underlying techniques necessary to reach our goals, which are not yet
formalized: choice of a computing precision, of an evaluation algorithm. . . ;

2Recall that we collaborate on a joint project in the “Pôle de compétitivité mondial” MINALOGIC.

10

– identify our needs in validation: for instance, do we need input domain, output range,
both? and how they can be fulfilled;

– define how automation can be reached: what each component requires as input, what
it can produce as output, for instance ”what kind of annotation should be provided by
the bounding rounding error component to the proof checker”.

• Second year: we shall then implement the techniques and put into practice the methodology
elaborated during the first year. Also, we shall refine the interaction part. The PhD
student(s) shall start here, since the directions of research will be clearly identified at that
stage. The engineer shall start there, since the development needs will be identified at that
stage.

• Third year: what will be started in the second year will be completed during the third year.
The integration of the various components is achieved during this year and the effort on
automation comes to a conclusion.

• Fourth year: this last year will be devoted to apply our results and tools to real life examples,
testing and refinements.

11

3 Motivation of expected funding

The project’s goals in terms of software development are ambitious: it should produce a working
prototype of a complete tool, aimed at non-specialists, allowing them to write and validate expert
floating-point code in reduced time.

It should be noted that several projects members are already involved in relevant software
projects : Gappa, Linbox, MPFI and CRLibm at Arenaire, Fluctuat at CEA/List, Tapenade at
TROPICS. These existing tools are usually complementary. The EVA-Flo project, however, is
not simply their integration in an heterogeneous toolbox. Firstly, the relevant aspects of these
various tools should be integrated in a consistent tool, with a consistent interface. Secondly, the
project should fill the gaps that currently exist between the existing approaches.

These aspects of software development should be managed by a professional software engineer
with a long-term view of the project: he/she should be recruited for 3 years. This engineer will
be working with Arénaire in Lyon.

Some more theoretical aspects of the project will be managed by a PhD student in the DALI
team, and under shared supervision of DALI and CEA/List. Funding is requested for this student
who will focus on formal proof tools (Why, Gappa and Fluctuat interoperability, enhancements
and extensions).

On the equipment side, EVA-Flo will fund workstations for the abovementionned engineer
and PhD student, and one workstation for each participating team. In addition, it will fund the
acquisition of development boards for exotic hardware targets, such as embedded processors and
DSPs.

Finally, EVA-Flo will fund regular meetings of project members in France (roughly one three-
day mission for each project member each year). Some of this funding will also allow the engineer
to spend some time in the various teams in order to coordinate the software aspects. It will also
fund each year one mission to an international conference for each team.

12

	State-of-the-art and objectives
	Automatic generation and validation of floating-point code
	Expertise of projects members
	Other related works

	Description of the project and expected results
	Description of the project
	Specification of qualitative aspects of floating-point codes
	Algorithms for the evaluation of floating-point expressions
	Interface with automatic proof checkers
	Integrated and interoperable automatic tools

	Qualification of the proponents and collaborative added value
	Dissemination of results
	Methodology and schedule

	Motivation of expected funding

