RAIM'09 — October 27, 2009

Hardware Accelerator for the Tate Pairing based on Karatsuba Multipliers

Jérémie Detrey

CACAO project-team, LORIA **INRIA Nancy – Grand-Est** Jeremie.Detrey@loria.fr

loint work with.

lean-Luc Beuchat Nicolas Estibals Eiji Okamoto Francisco Rodríguez-Henríquez

LCIS, University of Tsukuba, Japan CACAO, LORIA, Nancy, France LCIS, University of Tsukuba, Japan CINVESTAV-IPN, Mexico City, Mexico

Nancy-Université

- *E* defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- \blacktriangleright E(K) set of rational points over a field K

- *E* defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- \blacktriangleright E(K) set of rational points over a field K
- Additive group law over E(K)

- *E* defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- \blacktriangleright E(K) set of rational points over a field K
- Additive group law over E(K)
- ► Many applications in cryptography since 1985
 - EC-based Diffie-Hellman key exchange
 - EC-based Digital Signature Algorithm
 - ...
- Interest: smaller keys than usual cryptosystems (RSA, DSA, ElGamal, ...)

- *E* defined by a Weierstraß equation of the form $y^2 = x^3 + Ax + B$
- \blacktriangleright E(K) set of rational points over a field K
- Additive group law over E(K)
- ► Many applications in cryptography since 1985
 - EC-based Diffie-Hellman key exchange
 - EC-based Digital Signature Algorithm
 - ...
- Interest: smaller keys than usual cryptosystems (RSA, DSA, ElGamal, ...)
- But there's more: bilinear pairings

Outline of the talk

Pairing-based cryptography

► Hardware accelerator for the Tate pairing

Implementation results

Concluding thoughts

Outline of the talk

Pairing-based cryptography

► Hardware accelerator for the Tate pairing

Implementation results

Concluding thoughts

▶ $(G_1, +)$, an additively-written cyclic group of prime order $#G_1 = \ell$

0

▶ $(G_1, +)$, an additively-written cyclic group of prime order $#G_1 = \ell$

0

- ▶ $(\mathbb{G}_1, +)$, an additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ *P*, a generator of the group: $G_1 = \langle P \rangle$
- Scalar multiplication: for any integer *k*, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

(G₁,+), an additively-written cyclic group of prime order #G₁ = ℓ
 P, a generator of the group: G₁ = ⟨P⟩
 Scalar multiplication: for any integer k, we have kP = P + P + ··· + P k times

0

kΡ

- ▶ $(G_1, +)$, an additively-written cyclic group of prime order $#G_1 = \ell$
- ▶ *P*, a generator of the group: $G_1 = \langle P \rangle$
- Scalar multiplication: for any integer *k*, we have $kP = \underbrace{P + P + \cdots + P}_{k \text{ times}}$

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

(G₁,+), an additively-written cyclic group of prime order #G₁ = ℓ
P, a generator of the group: G₁ = ⟨P⟩
Scalar multiplication: for any integer k, we have kP = P + P + ··· + P k times

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

(G₁,+), an additively-written cyclic group of prime order #G₁ = ℓ
P, a generator of the group: G₁ = ⟨P⟩
Scalar multiplication: for any integer k, we have kP = P + P + ··· + P k times

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

(G₁,+), an additively-written cyclic group of prime order #G₁ = ℓ
 P, a generator of the group: G₁ = ⟨P⟩
 Scalar multiplication: for any integer k, we have kP = P + P + ··· + P k times

▶ Discrete logarithm: given $Q \in G_1$, compute k such that Q = kP

▶ We assume that the discrete logarithm problem (DLP) in G_1 is hard

▶ (\mathbb{G}_2 , ×), a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$

- ▶ (\mathbb{G}_2, \times) , a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 imes \mathbb{G}_1 o \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

 $\hat{e}(Q_1+Q_2,R)=\hat{e}(Q_1,R)\cdot\hat{e}(Q_2,R)\qquad \hat{e}(Q,R_1+R_2)=\hat{e}(Q,R_1)\cdot\hat{e}(Q,R_2)$

• computability: ê can be efficiently computed

- ▶ (\mathbb{G}_2, \times) , a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 imes \mathbb{G}_1 o \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

 $\hat{e}(Q_1+Q_2,R)=\hat{e}(Q_1,R)\cdot\hat{e}(Q_2,R)\qquad \hat{e}(Q,R_1+R_2)=\hat{e}(Q,R_1)\cdot\hat{e}(Q,R_2)$

• computability: ê can be efficiently computed

▶ Immediate property: for any two integers k_1 and k_2

 $\hat{e}(\mathbf{k}_1 Q, \mathbf{k}_2 R) = \hat{e}(Q, R)^{\mathbf{k}_1 \mathbf{k}_2}$

- ▶ (\mathbb{G}_2, \times) , a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 imes \mathbb{G}_1 o \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

 $\hat{e}(Q_1+Q_2,R)=\hat{e}(Q_1,R)\cdot\hat{e}(Q_2,R)\qquad \hat{e}(Q,R_1+R_2)=\hat{e}(Q,R_1)\cdot\hat{e}(Q,R_2)$

• computability: ê can be efficiently computed

Immediate property: for any two integers k_1 and k_2

$$\hat{e}(\mathbf{k}_1 Q, \mathbf{k}_2 R) = \hat{e}(Q, R)^{\mathbf{k}_1 \mathbf{k}_2}$$

- ▶ (\mathbb{G}_2, \times) , a multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 imes \mathbb{G}_1 o \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

 $\hat{e}(Q_1+Q_2,R)=\hat{e}(Q_1,R)\cdot\hat{e}(Q_2,R)\qquad \hat{e}(Q,R_1+R_2)=\hat{e}(Q,R_1)\cdot\hat{e}(Q,R_2)$

• computability: ê can be efficiently computed

Immediate property: for any two integers k_1 and k_2

$$\hat{e}(\mathbf{k}_1 Q, \mathbf{k}_2 R) = \hat{e}(Q, R)^{\mathbf{k}_1 \mathbf{k}_2}$$

► At first, used to attack supersingular elliptic curves

• Menezes–Okamoto–Vanstone and Frey–Rück attacks, 1993 and 1994

 $\mathsf{DLP}_{\mathbb{G}_1}$

<mark>k</mark>Ρ

► At first, used to attack supersingular elliptic curves

• Menezes–Okamoto–Vanstone and Frey–Rück attacks, 1993 and 1994

 $\begin{array}{ll} \mathsf{DLP}_{\mathbb{G}_1} & <_\mathsf{P} & \mathsf{DLP}_{\mathbb{G}_2} \\ & \mathsf{k}P & \longrightarrow & \hat{\mathsf{e}}(\mathsf{k}P, P) = \hat{\mathsf{e}}(P, P)^{\mathsf{k}} \end{array}$

► At first, used to attack supersingular elliptic curves

• Menezes–Okamoto–Vanstone and Frey–Rück attacks, 1993 and 1994

 $\begin{array}{ll} \mathsf{DLP}_{\mathbb{G}_1} & <_{\mathsf{P}} & \mathsf{DLP}_{\mathbb{G}_2} \\ & \mathbf{k}P & \longrightarrow & \hat{\mathbf{e}}(\mathbf{k}P,P) = \hat{\mathbf{e}}(P,P)^{\mathbf{k}} \end{array}$

• for cryptographic applications, we will also require the DLP in \mathbb{G}_2 to be hard

► At first, used to attack supersingular elliptic curves

• Menezes–Okamoto–Vanstone and Frey–Rück attacks, 1993 and 1994

 $\begin{array}{rcl} \mathsf{DLP}_{\mathbb{G}_1} & <_{\mathsf{P}} & \mathsf{DLP}_{\mathbb{G}_2} \\ & \mathbf{k}P & \longrightarrow & \hat{\mathbf{e}}(\mathbf{k}P,P) = \hat{\mathbf{e}}(P,P)^{\mathbf{k}} \end{array}$

- for cryptographic applications, we will also require the DLP in \mathbb{G}_2 to be hard
- ▶ One-round three-party key agreement (Joux, 2000)
- Identity-based encryption
 - Boneh–Franklin, 2001
 - Sakai–Kasahara, 2001
- Short digital signatures
 - Boneh–Lynn–Shacham, 2001
 - Zang-Safavi-Naini-Susilo, 2004

Short signature (Boneh, Lynn & Shacham, 2001)

Short signature (Boneh, Lynn & Shacham, 2001)

Short signature (Boneh, Lynn & Shacham, 2001)

Reduced Tate pairing

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_q)[\ell]$

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_q)[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{q^k}^{\times}$

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_q)[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{q^k}^{\times}$
- ▶ Which elliptic curves?

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_q)[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{a^k}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_q)[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{a^k}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security \Rightarrow characteristic 3 (k = 6)

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_{3^m})[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{a^k}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security \Rightarrow characteristic 3 (k = 6)

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_{3^m})[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{36m}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security \Rightarrow characteristic 3 (k = 6)

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_{3^m})[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{36m}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security \Rightarrow characteristic 3 (k = 6)
- Need for a dedicated hardware accelerator
 - area optimized (embedded systems, RFID, ...)
 - speed optimized (bank servers, ...)

- Reduced Tate pairing
 - input: two points P and Q in $E(\mathbb{F}_{3^m})[\ell]$
 - output: an ℓ -th root of unity in the extension $\mathbb{F}_{36m}^{\times}$
- ▶ Which elliptic curves? Supersingular curves
 - easier arithmetic on the curve
 - lower security \Rightarrow characteristic 3 (k = 6)
- Need for a dedicated hardware accelerator
 - area optimized (embedded systems, RFID, ...)
 - speed optimized (bank servers, ...)

Outline of the talk

Pairing-based cryptography

► Hardware accelerator for the Tate pairing

Implementation results

Concluding thoughts

- Two very different steps
- Idea: use two distinct coprocessors

- Idea: use two distinct coprocessors
 - pipeline the two computations
 - balance the latencies

- ► Idea: use two distinct coprocessors
 - pipeline the two computations
 - balance the latencies

▶ η_T pairing: shorter loop

for $i \leftarrow 0$ to (m-1)/2 do

end for

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
 $x_P \leftarrow \sqrt[3]{x_P}$; $y_P \leftarrow \sqrt[3]{y_P}$
 $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$
 $t \leftarrow x_P + x_Q$ $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2$
 $R \leftarrow R \cdot S$

end for

- ▶ η_T pairing: shorter loop
- ► Based on Miller's algorithm:
 - 1 update of point coordinates

for $i \leftarrow 0$ to (m-1)/2 do (1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$ $\begin{array}{c} t \leftarrow x_P + x_Q & u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \\ R \leftarrow R \cdot S \end{array}$ end for

- ▶ η_T pairing: shorter loop
- ► Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$

(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \\ R \leftarrow R \cdot S \end{array}$

end for

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - ① update of point coordinates
 - 2 computation of line equation
 - $\ensuremath{\textcircled{3}}$ accumulation of the new factor

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$
(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $\begin{array}{c} R \leftarrow R \cdot S \end{array} \qquad 1 \times (\mathbb{F}_{3^{6m}})$
end for

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation
 - $\ensuremath{\textcircled{3}}$ accumulation of the new factor
- Multiplication is critical
- ► Fully parallel, pipelined multiplier over F_{3^m}

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$
(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $\begin{array}{c} R \leftarrow R \cdot S \end{array} \qquad 1 \times (\mathbb{F}_{3^{6m}}) \end{array}$
end for

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation
 - $\ensuremath{\textcircled{3}}$ accumulation of the new factor
- Multiplication is critical
- ► Fully parallel, pipelined multiplier over F_{3^m}
- ► Sparse multiplication over $\mathbb{F}_{3^{6m}}$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$
(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $R \leftarrow R \cdot S \qquad 1 \times (\mathbb{F}_{3^{6m}})$
end for

Jérémie Detrey — Hardware Accelerator for the Tate Pairing

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation
 - ③ accumulation of the new factor
- Multiplication is critical
- ► Fully parallel, pipelined multiplier over F_{3^m}
- ▶ Sparse multiplication over $\mathbb{F}_{3^{6m}}$
 - $12 \times \text{ and } 59 + \text{ over } \mathbb{F}_{3^m}$ (Gorla *et al.*, SAC 2007)

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$
(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $\begin{array}{c} R \leftarrow R \cdot S \end{array}$
12 $\times, 59 + \end{array}$
end for

Jérémie Detrey — Hardware Accelerator for the Tate Pairing

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation
 - ③ accumulation of the new factor
- Multiplication is critical
- ► Fully parallel, pipelined multiplier over F_{3^m}
- ▶ Sparse multiplication over $\mathbb{F}_{3^{6m}}$
 - $12 \times$ and 59 + over \mathbb{F}_{3^m} (Gorla *et al.*, SAC 2007)
 - $15 \times \text{ and } 29 + \text{ over } \mathbb{F}_{3^m}$ (Beuchat *et al.*, ARITH 18)

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_P \leftarrow \sqrt[3]{x_P} & ; \ y_P \leftarrow \sqrt[3]{y_P} \\ x_Q \leftarrow x_Q^3 & ; \ y_Q \leftarrow y_Q^3 \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^3 \end{array}$
(2) $\begin{array}{c} t \leftarrow x_P + x_Q & ; \ u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $\begin{array}{c} R \leftarrow R \cdot S \end{array}$
15 $\times, 29 + \end{array}$
end for

Jérémie Detrey — Hardware Accelerator for the Tate Pairing

- ▶ η_T pairing: shorter loop
- ▶ Based on Miller's algorithm:
 - 1 update of point coordinates
 - 2 computation of line equation
 - ③ accumulation of the new factor
- Multiplication is critical
- ► Fully parallel, pipelined multiplier over F_{3^m}
- ▶ Sparse multiplication over $\mathbb{F}_{3^{6m}}$
 - $12 \times \text{ and } 59 + \text{ over } \mathbb{F}_{3^m}$ (Gorla *et al.*, SAC 2007)
 - $15 \times \text{ and } 29 + \text{ over } \mathbb{F}_{3^m}$ (Beuchat *et al.*, ARITH 18)
- Objective: keep the multiplier pipeline busy
 - 7-stage pipeline
 - one product per cycle
 - 17 cycles per iteration

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do
(1) $\begin{array}{c} x_{P} \leftarrow \sqrt[3]{x_{P}} & ; y_{P} \leftarrow \sqrt[3]{y_{P}} \\ x_{Q} \leftarrow x_{Q}^{3} & ; y_{Q} \leftarrow y_{Q}^{3} \end{array} \begin{array}{c} 2 \sqrt[3]{\cdot} \\ 2 (\cdot)^{3} \end{array}$
(2) $\begin{array}{c} t \leftarrow x_{P} + x_{Q} & ; u \leftarrow y_{P}y_{Q} \\ S \leftarrow -t^{2} \pm u\sigma - t\rho - \rho^{2} \end{array} \begin{array}{c} 2 \times, 2 + \end{array}$
(3) $R \leftarrow R \cdot S$ $15 \times, 29 +$

end for

Coprocessor for the non-reduced pairing

Coprocessor for the non-reduced pairing

▶ Polynomial basis:

 $\mathbb{F}_{3^m}\cong \mathbb{F}_3[x]/(f(x))$

▶ Pipelined: optional registers

B

Final exponentiation

Design rationale:

- as small as possible
- at least as fast as the computation of the non-reduced pairing

- ► Highly sequential computation
- Very heterogeneous

Highly sequential computation
Very heterogeneous
General-purpose
finite-field arithmetic
processor

Register file

Outline of the talk

Pairing-based cryptography

► Hardware accelerator for the Tate pairing

Implementation results

Concluding thoughts

Experimental setup

- ► Full Tate pairing computation:
 - non-reduced pairing and
 - final exponentiation
- Prototyped on Xilinx Virtex-II Pro and Virtex-4 LX FPGAs
- Post-place-and-route timing and area estimations

Outline of the talk

Pairing-based cryptography

► Hardware accelerator for the Tate pairing

Implementation results

Concluding thoughts

Conclusion

► A new architecture for pairing computation

- two specialized coprocessors
- bet on parallelizing multiplier
- based on Karatsuba multiplication scheme
- importance of architecture-algorithm co-design
- careful bubble-free scheduling of Miller's loop
Conclusion

► A new architecture for pairing computation

- two specialized coprocessors
- bet on parallelizing multiplier
- based on Karatsuba multiplication scheme
- importance of architecture–algorithm co-design
- careful bubble-free scheduling of Miller's loop
- ► High-performance accelerator
 - the fastest coprocessor (17 μ s for 109 bits of security)
 - the best area-time trade-off
 - scales to higher security levels

Future work

► Fully parallel multipliers

• try other algorithms: Toom–Cook, Montgomery's formulae

Future work

► Fully parallel multipliers

• try other algorithms: Toom–Cook, Montgomery's formulae

▶ Final-exponentiation coprocessor

- full-featured finite-field processor
- compute the full pairing with it (work in progress)

Future work

► Fully parallel multipliers

• try other algorithms: Toom–Cook, Montgomery's formulae

Final-exponentiation coprocessor

- full-featured finite-field processor
- compute the full pairing with it (work in progress)

► Toward AES-128 security level

- characteristic 2 (recently submitted)
- genus-2 supersingular curves in characteristic 2 (work in progress)
- Barreto–Naehrig curves

Thank you for your attention

Questions?