Pollard Rho on the PlayStation 3

Joppe W. Bos¹ <u>Marcelo E. Kaihara¹</u> Peter L. Montgomery²

¹ EPFL IC LACAL, CH-1015 Lausanne, Switzerland ² Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

RAIM'09 October 27th 2009 LIP ENS Lyon

Motivation

Elliptic Curve Cryptography (ECC):

- Widely standardized
 - Standard for Efficient Cryptography 2, SEC2 (112-521 bit)
 - Wireless Transport Layer Security Specification (112-224 bit)
 - Digital Signature Standard, FIPS 186-3, NIST (192-521 bit)
- Security relies on hardness of solving Elliptic Curve Discrete Logarithm Problem (ECDLP)

Are the standardized key sizes secure?

What is the practical cost of solving the ECDLP?

Objective

 Evaluate cost of solving ECDLP for small key sizes

112-bit ECC standard

 Use broadly available platform

PlayStation 3:

- Low price
- Hybrid multi-core architecture

- Implement Pollard rho on the Cell architecture
 - Design SIMD arithmetic algorithms
 - Optimize modular arithmetic for 112-bit prime

E is an elliptic curve over F_p with *P* odd prime $P \in E(F_p)$ is a point of order *n* $Q = k \cdot P \in \langle P \rangle$

• <u>Problem</u>: Given *E*, *p*, *P*, *n* and *Q* what is $k \ge k \ge \log_P Q$

- Largest solved instance 109-bit prime field (2002)
- It took "10⁴ computers (mostly PCs) running 24 hours a day for 549 days".

Solving the ECDLP

Pollard rho:

The most efficient algorithm in the literature (for generic curves).

The underlying idea of this method is to search for two distinct pairs

 $(c_{i}, d_{i}), (c_{j}, d_{j}) \in Z/nZ \times Z/nZ \text{ such that}$ $c_{i} \cdot P + d_{i} \cdot Q = c_{j} \cdot P + d_{j} \cdot Q$ $(c_{i} - c_{j}) \cdot P = (d_{j} - d_{i}) \cdot Q = (d_{j} - d_{i}) k \cdot P$ $k \equiv (c_{i} - c_{j}) \cdot (d_{j} - d_{i})^{-1} \mod n$

 J.M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 32:918-924, 1978.

Pollard Rho

• "Walk" through the set $\langle P \rangle$ $X_i = c_i \cdot P + d_i \cdot Q$

• Iteration function $f : \langle P \rangle \rightarrow \langle P \rangle$ $X_{i+1} = f(X_i), i \ge 0$

This sequence eventually collides

Expected number of iterations

Optimization I

 Parallel version: distinguish points and send them to a central server
 P.C. van Oorschot and M. J. Wiener, [1999].

- Mark points with a certain property e.g., X_i=(x_i,y_i), DPT: 2²⁴ | x_i
- Communicate them to a central DB to check collisions

 Leads to a linear speed-up on the number of processors.

Optimization II

Use the least significant 4-bit to determine the next partition r-adding walks, *E. Teske*, [2001].
Divide (*P*) into r different partitions *h*: (*P*) → [0, r - 1]

For each partition: *R_j* = c_j · *P*+ d_j · *Q X_{i+1}* = *f*(*X_i*) = *X_i* + *R_{h(X_i)*}

 $r \ge 16$ partitions \approx random mapping

Optimization III

 Simultaneous Inversion, trade inversions for multiplications *P.L. Montgomery*, [1987].

- Suitable for cryptanalytic purposes
- Trade M modular inversions for 3(M-1) modular multiplications and 1 modular inversion

Affine Weierstrass representation

Optimization IV

Negation Map (not used)
 M.J. Wiener and R. J. Zuccherato, [1998].

Computation of the negative is cheap - $P = (x_r - y)$

Given an equivalence relation ~ on $\langle P \rangle$ Iterate over the set of equivalence classes $\langle P \rangle / \sim$

Reduce search space by a factor of 2

The PlayStation 3

- The Cell contains
 - 1 "Power Processor Element " (PPE)
 - 8 "Synergistic Processing Elements" (SPEs)
 - (6 available to the user in the PS3 under Linux)
 - Characteristics of the SPEs:
 - Synergistic Processing Unit (SPU)
 - Access to 128 registers of 128-bit
 - SIMD operations
 - Dual pipeline (odd and even)
 - In-order processor
 - 256 KB of fast local memory (Local Store)

Programming Constraints

Memory

The executable and all data should fit in the LS (256KB).

• Branches

- No "smart" dynamic branch prediction.
- Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets.

Instruction set limitations

• $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)

• Dual pipeline

One odd and one even instruction can be dispatched per clock cycle.

Arithmetic

μ

• Using affine Weierstrass representation $P, Q \in E(F_p) \setminus \{O\}$ $P = (x_1, y_1) \text{ and } Q = (x_2, y_2)$ If $P \neq Q$ then $P + Q = (x_3, y_3)$

> $X_3 = \mu^2 - X_1 - X_2$ $Y_3 = \mu(X_1 - X_3) - Y_1$

$$=\begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \text{ if } P \neq Q\\ \frac{3x_1^2 + a}{2y_1} \text{ if } P = Q \end{cases}$$

Using Montgomery's simultaneous inversion and running *M* curves in parallel. 6 modular multiplications 6 modular subtractions $\frac{1}{M}$ modular inversions

Integer Representation

Integers A, B, C, D represented in radix 2¹⁶

If $0 \le a$; b; c; $d < 2^{16}$, then $a \ge b + c + d < 2^{32}$. Use the multiply-and-add instruction and an extra addition of carries. Branch-free implementation.

Modular Reduction

• The prime 112-bit p in the target curve $E(F_p)$ is

 $p = DB7C2ABF62E35E668076BEAD208B_{16}$

Modular Reduction

• The prime 112-bit p in the target curve $E(F_p)$ is $p = DB7C2ABF62E35E668076BEAD208B_{16}$

$$p = \frac{2^{128} - 3}{11 \cdot 6949}$$

Modular Reduction

• The prime 112-bit p in the target curve $E(F_p)$ is $p = DB7C2ABF62E35E668076BEAD208B_{16}$

 $p=\frac{2^{128}-3}{11\cdot 6949}$

Perform calculation using a redundant representation

 $\widetilde{p} = 11 \cdot 6949 \cdot p = 2^{128} - 3$

Fast reduction

$$R: Z/2^{256}Z \to Z/2^{256}Z$$

$$x \to (x \mod 2^{128}) + 3 \cdot \left\lfloor \frac{x}{2^{128}} \right\rfloor$$

$$x = x_H \cdot 2^{128} + x_L \equiv x_L + 3 \cdot x_H = R(x) \mod x$$

 \tilde{b}

Fast Modular Multiplication

Proposition

For independent random 128-bit non-negative integers x and y there is overwhelming probability that $0 \le R(R(x \cdot y)) < \widetilde{p}$

Counter-examples easy to construct: $0 \le R(R(x)) < 2^{128} + 6$

During the whole run not a single faulty reduction

Distinguish Point Property

Need to uniquely determine the partition number and DTP property during the r-adding walk.

P = (x, y) $x: 0 \le x < \widetilde{p}$

Partial Montgomery Reduction in order to reduce modulo p.

 $x' = x \cdot 2^{-16} \mod p$

Check least significant 24 bits of x in partial Montgomery representation.

SIMD-operations: $[A_1, B_1, A_2, B_2] \leftarrow [A_1 >> t_1, B_1 << t_2, A_2 >> t_2, B_2 << t_1]$ $[A_1, B_1, A_2, B_2] \leftarrow [A_1 - A_2, B_1 - B_2, A_2, B_2]$ $[A_1, B_1, A_2, B_2] \leftarrow [A_1, B_1, A_2 - A_1, B_2 - B_1]$

Branches significantly reduced

Modular Inversion

Algorithm 1 4-SIMD Extended Binary GCD **Input:** $p: r^{n-1} and <math>gcd(p, 2) = 1$ $x: 0 < x < r^n$ and gcd(x, p) = 1**Output:** $z \equiv \frac{1}{n} \mod p$ 1: $[A_1, B_1, A_2, B_2] := [p, 0, x, 1]$ and $[k_1, k_2] := [0, 0]$ 2: while true do 3: /* Start of shift reduction. */ 4: Find t_1 such that $2^{t_1}|A_1$ 5: Find t_2 such that $2^{t_2}|A_2$ 6: $[k_1, k_2] := [k_1 + t_1, k_2 + t_2]$ 7: $[A_1, B_1, A_2, B_2] := [A_1 >> t_1, B_1 << t_2, A_2 >> t_2, B_2 << t_1]$ 8: 9: /* Start of subtraction reduction. */ if $(A_1 > A_2)$ then 10: $[A_1, B_1, A_2, B_2] := [A_1 - A_2, B_1 - B_2, A_2, B_2]$ 11: 12:else if $(A_2 > A_1)$ then $[A_1, B_1, A_2, B_2] := [A_1, B_1, A_2 - A_1, B_2 - B_1]$ 13:14: else return $z := B_2 \cdot (2^{-(k_1+k_2)}) \mod p$ 15:16: end if 17: end while

Performance Results

Operation	#cycles required by each operation	#operation per iteration	#cycles per iteration
Mod Mul	53	6	318
Mod Sub	5	6	30
Partial Mon Red	24	1	24
Mod Inv	4941	1/400	12
Misc.	69	1	69
Total			453

[1 SPU, 4-SIMD @3.2 GHZ]

Hence, our cluster of 214 PS3s computes: $9.1 \cdot 10^9 \approx 2^{33}$ iterations per sec It works on > 0.5M curves in parallel

Performance Comparison

 XC3S1000 FPGAs[1] FPGA results of EC over 96 and 128-bit generic prime fields for COPACABANA [2] Can host up to 120 FPGAs (Cost: 10'000 USD)

PlayStation 3 (our implementation)
 Targeted at 112-bit prime curve.
 Use 128-bit multiplication + fast reduction modulo $\tilde{\rho}$ For 10'000 USD \approx 33 PS3s

[1] T.Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.

[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. *Breaking ciphers with COPACOBANA a cost-optimized parallel code breaker*. In CHES 2006, vol. 4249 of LNCS, pages 101-118, 2006.

Comparison

	96 bits	128 bits	
COPACABANA (XC3S1000)	4.0 ·10 ⁷	2.1 ·10 ⁷	
+ Moore's law	7.9 ·10 ⁷	4.2 ·10 ⁷	
+Negation map	1.1 ·10 ⁸	5.9 ·10 ⁷	
PS3	4.2 ·10 ⁷		
33 PS3	1.4 ·10 ⁹		

Table: Iterations per second

33 PS3 / COPACABANA (96 bits): 12.4 times faster 33 PS3 / COPACABANA (128 bits): 23.8 times faster Note: numbers without using 33 dual-threaded PPEs!

The 112-bit Solution

- The point P of order n is given in the standard.
- The X-coordinate of Q was chose as $\lfloor (\pi 3)10^{34} \rfloor$

• Expected # iterations:
$$\sqrt{\frac{\pi \cdot n}{2}} \approx 8.4 \cdot 10^{16}$$

- January 13, 2009 July 8, 2009 (not run continuously).
- If run continuously, using the latest version of our code, the same calculation would have taken 3.5 months.

 $\mathsf{P} = (1882814650\,5797253489\,2223778713\,752,341987\,5491033170\,8271678618\,96082688\,)$

 $\mathbf{Q} = (1415926535897932384626433832795028, 3846759606494706724286139623885544)$

 $n = \, 4451685225\,0937147764\,9189154254\,8933$

 $Q = 312521636014772477161767351856699 \cdot P$

Conclusions

We have measured the hardness of solving the ECDLP on a 112-bit prime field. Requires 62.6 PS3 years to solve it.

- We have presented modular arithmetic algorithms using SIMD instructions. Optimized for 112-bit prime.
- Set a new record for solving the ECDLP.

Do not use the standardized elliptic curve over 112-bit prime fields!

The PS3 cluster at LACAL

- Cluster room: 190 PS3s
- PlayLaB: 6 x 4 PS3s (connected to the cluster)
- Offices: 5 PS3s (for programming purposes)
- Total: 219 PS3s