
Pollard Rho
on the PlayStation 3

RAIM’09 October 27th 2009 LIP ENS Lyon

Joppe W. Bos1

Marcelo E. Kaihara1

Peter L. Montgomery2

1 EPFL IC LACAL, CH-1015 Lausanne, Switzerland
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

2

Motivation

Elliptic Curve Cryptography (ECC):
 Widely standardized

Standard for Efficient Cryptography 2, SEC2 (112-521 bit)
Wireless Transport Layer Security Specification (112-224 bit)
Digital Signature Standard, FIPS 186-3, NIST (192-521 bit)

 Security relies on hardness of solving Elliptic Curve
Discrete Logarithm Problem (ECDLP)

 Are the standardized key sizes secure?
 What is the practical cost of solving the ECDLP?

3

Objective

Evaluate cost of solving
ECDLP for small key sizes

Use broadly available
platform

112-bit ECC standard

PlayStation 3:
Low price
Hybrid multi-core architecture

Implement Pollard rho on the Cell architecture
Design SIMD arithmetic algorithms
Optimize modular arithmetic for 112-bit prime

4

ECDLP
Settings:

Problem:

Ε pF pis an elliptic curve over with odd prime
)(pFEP ∈ nis a point of order

nP, p, E, Q kGiven and what is ?

〉〈∈⋅= PPkQ

 Largest solved instance 109-bit prime field (2002)
 It took “104 computers (mostly PCs) running 24 hours a day for

549 days”.

Qlogk P=

Pollard rho:
 The most efficient algorithm in the literature (for generic curves).
 The underlying idea of this method is to search for two distinct pairs

) , () , (

5

Solving the ECDLP

QPQP ⋅+⋅=⋅+⋅

PkQP ⋅−=⋅−=⋅−) () () (

 J.M. Pollard. Monte Carlo methods for index computation (mod p).
Mathematics of Computation, 32:918-924, 1978.

jj d c ,ii d c that such Z/nZZ/nZ ×∈

ic id jc jd

ic jc jd id jd id

nk mod) () (-1−⋅−≡ ic jc jd id

6

Pollard Rho
〉〈P

QdPcX iii ⋅+⋅=

〉〈→〉〈 PPf :

2

〉〈⋅π P

0i)(1 ≥=+ ,XfX ii

“Walk” through the set

Iteration function

This sequence eventually collides

Expected number of iterations

7

Optimization I

Parallel version: distinguish points
and send them to a central server
P.C. van Oorschot and M. J. Wiener,
[1999].

 Mark points with a certain property
e.g., Xi=(xi,yi), DPT: 224 | xi

 Communicate them to a central DB
to check collisions

Leads to a linear speed-up on the
number of processors.

1i-X

iX

1iX +
2iX +

1i-X ′

iX ′

1iX +′
2iX +′

1i-X ′′

iX ′′

1iX +′′ 2iX +′′

DB

8

Optimization II
r-adding walks, E. Teske, [2001].



1i-X

),(iii yxX =

1iX +

0i RX +

1i RX +

15i RX +

r

1]-r[0, : →〉〈Ph

QPRj ⋅+⋅= jj dc

)()(
iXhii1i RXXfX +==+

16r ≥
Use the least significant

4-bit to determine
the next partition

Divide into different partitions〉〈P

For each partition:

partitions random mapping≈

9

Optimization III
Simultaneous Inversion, trade
inversions for multiplications
P.L. Montgomery, [1987].

 Suitable for cryptanalytic purposes

 Trade M modular inversions for 3(M-1)
modular multiplications and 1 modular
inversion

1i-X

iX
1iX +

2iX +

1i-X ′

iX ′
1iX +′

2iX +′

1i-X ′′

iX ′′
1iX +′′

2iX +′′

Affine Weierstrass representation

Apply to
independent walks

10

Optimization IV
Negation Map (not used)
M.J. Wiener and R. J. Zuccherato, [1998].

Computation of the negative is cheap

Given an equivalence relation ~ on
Iterate over the set of equivalence classes

Reduce search space by a factor of 2

)yx(1i1i −− ,

)yx(1i1i −− −,

)yx(P- −= ,

P

~/P

1i−R

)yx(ii ,

)yx(ii −,

)yx(1i1i ++ ,

)yx(1i1i ++ −,

iR

11

The PlayStation 3
The Cell contains

1 “Power Processor Element ” (PPE)
8 “Synergistic Processing Elements” (SPEs)
(6 available to the user in the PS3 under Linux)

Characteristics of the SPEs:
Synergistic Processing Unit (SPU)
Access to 128 registers of 128-bit
SIMD operations
Dual pipeline (odd and even)
In-order processor
256 KB of fast local memory (Local Store)

12

Programming Constraints

Memory
 The executable and all data should fit in the LS (256KB).

Branches
 No “smart” dynamic branch prediction.
 Instead “prepare-to-branch” instructions to redirect instruction

prefetch to branch targets.

Instruction set limitations
 16 x 16 → 32 bit multipliers (4-SIMD)

Dual pipeline
 One odd and one even instruction can be dispatched per clock cycle.

13

Arithmetic
Using affine Weierstrass representation

Using Montgomery’s
simultaneous inversion
and running
M curves in parallel.

)(, pFEQP ∈)y(x and)y,(x 2211 ,QP ==}{Ο

)y,(x then If 33=+≠ QPQP

21
2

3 x-x-x µ=

1313 y-)x-(xy µ=










=
+

≠
−
−

=
QP

y
ax

QP
xx
yy

μ

1

2
1

12

12

 if
2

3

if

6 modular multiplications
6 modular subtractions

modular inversions
M
1

Integer Representation
162

∑
=

⋅⋅=
1-m

0i

i16
i 2aA

=V[0]

=V[i]

=1]-V[m





bit16 − bit16 −

high low

0b 0c 0d





ib ic idia

ima − imb − imc − imd −

SIMD-4

∑
=

⋅⋅=
1-m

0i

i16
i 2bB ∑

=

⋅⋅=
1-m

0i

i16
i 2cC ∑

=

⋅⋅=
1-m

0i

i16
i 2dD

0a

Integers A, B, C, D represented in radix

15

Modular Reduction
The prime 112-bit p in the target curve is

16B208BEAD668076E35E62ABF2C7DB=p

)(pFE

16

Modular Reduction
The prime 112-bit p in the target curve is

16B208BEAD668076E35E62ABF2C7DB=p

)(pFE

694911
32128

⋅
−

=p

17

Modular Reduction
The prime 112-bit p in the target curve is

16B208BEAD668076E35E62ABF2C7DB=p

)(pFE

694911
32128

⋅
−

=p

Perform calculation using a redundant representation

32694911 128 −=⋅⋅= pp~

18

Fast reduction

pp~ ⋅⋅=−= 69491132128

x′
hx3 ⋅

x ′′
hx3 ′⋅

+

+

x
1282hx

lx

 modulus Use

3×

3×

v
lv

}1 0{vh ,∈

0v h =

hx′ lx′





⋅+→ 128

128

2
3)2 mod (

x
x x

p~xRxxxxx HLLH mod)(32128 =⋅+≡+⋅=

ZZ/ZZ/R 256256 2 2: →

Overwhelming prob.

19

Fast Modular Multiplication

py))R(R(x0 ~<⋅≤

Proposition

For independent random 128-bit non-negative integers
x and y there is overwhelming probability that

Counter-examples easy to construct:

62R(R(x))0 128 +<≤

During the whole run not a single faulty reduction

20

Distinguish Point Property

),(yxP =

pxx mod 2-16⋅=′

Need to uniquely determine the partition number and DTP
property during the r-adding walk.

Partial Montgomery Reduction in order to reduce modulo p.

Check least significant 24 bits of x in partial Montgomery
representation.

p~xx <≤0 :

21

Modular Inversion
Based on Extended Binary GCD algorithm:

Compute
Obtain from almost Montgomery inverse:

1A 1B 2A 2B

p 0 x 1

p mod xB1A 11 ×≡×

p mod xB1A 22 ×≡×

]B,A,B,[A 2211

]BABBA[A 222121 ,,, −−←

]BBAAB[A 121211 −−← ,,,

]tB,tA,tB,t[A 12222111 <<>><<>>←

]B,A,B,[A 2211

]B,A,B,[A 2211

)AA(21 ,gcd

p 0

x 1

p mod xz -1≡

2B pmod2xz k1 ⋅= −

322r =

SIMD-operations:

Branches significantly reduced

22

Modular Inversion

23

Performance Results

Operation #cycles required by
each operation

#operation per
iteration

#cycles per
iteration

Mod Mul 53 6 318

Mod Sub 5 6 30

Partial Mon
Red 24 1 24

Mod Inv 4941 1/400 12

Misc. 69 1 69

Total 453

[1 SPU, 4-SIMD @3.2 GHZ]

Hence, our cluster of 214 PS3s computes:
339 2 109.1 ≈⋅ iterations per sec
0.5M>It works on curves in parallel

24

Performance Comparison

[1] T.Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete
logarithm problem. ACM Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a
cost-optimized parallel code breaker. In CHES 2006, vol. 4249 of LNCS, pages 101-118, 2006.

≈

XC3S1000 FPGAs[1]
FPGA results of EC over 96 and 128-bit generic prime
fields for COPACABANA [2]
Can host up to 120 FPGAs (Cost: 10’000 USD)

PlayStation 3 (our implementation)
Targeted at 112-bit prime curve.
Use 128-bit multiplication + fast reduction modulo
For 10’000 USD 33 PS3s

p~

25

Comparison

96 bits 128 bits

COPACABANA
(XC3S1000)

4.0 ·107 2.1 ·107

+ Moore’s law 7.9 ·107 4.2 ·107

+Negation map 1.1 ·108 5.9 ·107

PS3 4.2 ·107

33 PS3 1.4 ·109

33 PS3 / COPACABANA (96 bits): 12.4 times faster
33 PS3 / COPACABANA (128 bits): 23.8 times faster
Note: numbers without using 33 dual-threaded PPEs!

Table: Iterations per second

26

The 112-bit Solution

P

161048
2

 ⋅≈
⋅π

.
n

()9608268882716786185491033170752,341987222377871357972534891882814650P =

()623885544672428613959606494705028,38467264338327989793238461415926535Q =

8933918915425409371477644451685225n =

P Q ⋅=

The point of order is given in the standard.
The -coordinate of was chose as Q

n
x

January 13, 2009 – July 8, 2009 (not run continuously).
If run continuously, using the latest version of our code,
the same calculation would have taken 3.5 months.

699176735185614772477163125216360

 343)10-(π

Expected # iterations:

27

Conclusions

We have measured the hardness of solving the ECDLP on
a 112-bit prime field. Requires 62.6 PS3 years to solve it.

We have presented modular arithmetic algorithms using
SIMD instructions. Optimized for 112-bit prime.

Set a new record for solving the ECDLP.

Do not use the standardized elliptic curve
over 112-bit prime fields!

28

The PS3 cluster at LACAL

• Cluster room: 190 PS3s

• PlayLaB: 6 x 4 PS3s
(connected to the cluster)

• Offices: 5 PS3s
(for programming purposes)

• Total: 219 PS3s

	Pollard Rho �on the PlayStation 3
	Motivation
	Objective
	ECDLP
	Solving the ECDLP
	Pollard Rho
	Optimization I
	Optimization II
	Optimization III
	Optimization IV
	The PlayStation 3
	Programming Constraints
	Arithmetic
	Integer Representation
	Modular Reduction
	Modular Reduction
	Modular Reduction
	Fast reduction
	Fast Modular Multiplication
	Distinguish Point Property
	Modular Inversion
	Modular Inversion
	Performance Results
	Performance Comparison
	Comparison
	The 112-bit Solution
	Conclusions
	The PS3 cluster at LACAL

