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Abstract: We present the first efficient algorithm for computing an exact parametric representation
of the intersection of two quadrics in three-dimensional real space given by implicit equations with
rational coefficients. The output functions parameterizing the intersection are rational functions
whenever it is possible, which is the case when the intersection is not a smooth quartic (for example, a
singular quartic, a cubic and a line, or two conics). Furthermore, the parameterization is near-optimal
in the sense that the number of square roots appearing in the coefficients of these functions is minimal
except in a small number of cases where there may be an extra square root. In addition, the algorithm
is practical: a complete, robust and efficient C++ implementation is described in Part IV [12] of this
paper.

In Part I, we present an algorithm for computing a parameterization of the intersection of two ar-
bitrary quadrics which we prove to be near-optimal in the generic, smooth quartic, case. Parts II and
III [4, 5] treat the singular cases. We present in Part II the first classification of pencils of quadrics
according to the real type of the intersection and we show how this classification can be used to
efficiently determine the type of the real part of the intersection of two arbitrary quadrics. This clas-
sification is at the core of the design of our algorithms for computing near-optimal parameterizations
of the real part of the intersection in all singular cases. We present these algorithms in Part III and
give examples covering all the possible situations in terms of both the real type of intersection and
the number and depth of square roots appearing in the coefficients.
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Paramétrisation quasi-optimale de l’intersection de quadriques :

I. L’algorithme générique

Résumé : Nous présentons le premier algorithme efficace pour le calcul d’une représentation para-
métrique exacte de l’intersection de deux quadriques de l’espace tridimensionnel réel données par
leurs équations implicites à coefficients rationnels. Le paramétrage calculé est polynomial chaque
fois que cela est possible, c’est-à-dire quand l’intersection n’est pas une quartique lisse (par exemple,
une quartique singulière, une cubique et une droite, ou deux coniques). De plus, le paramétrage est
quasi-optimal dans le sens où le nombre de racines carrées apparaissant dans les coefficients des po-
lynômes du paramétrage est minimal sauf dans un petit nombre de cas où ils contiennent une racine
carrée possiblement inutile.

Dans la partie I, nous présentons un algorithme pour le calcul du paramétrage de l’intersection de
deux quadriques arbitraires dont nous prouvons qu’il est quasi-optimal dans le cas générique d’une
intersection constituée d’une quartique lisse.

Nous présentons dans la partie II [4] une nouvelle classification des faisceaux de quadriques
selon le type réel de l’intersection et montrons comment utiliser cette classification pour déterminer
efficacement le type de la partie réelle de l’intersection de deux quadriques arbitraires.

Dans la partie III [5], nous montrons comment utiliser l’information obtenue sur le type réel de
l’intersection pour diriger le paramétrage de l’intersection. Dans chaque cas possible, nous donnons
la trame d’un algorithme quasi-optimal pour paramétrer la partie réelle de l’intersection et donnons
des exemples couvrant toutes les situations possibles en terme de nombre et de profondeur de radi-
caux impliqués.

Enfin, nous présentons dans la partie IV [12] une implantation complète, robuste et efficace de
notre algorithme en C++.

Mots-clés : Intersection de surfaces, quadriques, faisceaux de quadriques, paramétrisation.
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1 Introduction

The simplest of all the curved surfaces, quadrics (i.e., algebraic surfaces of degree two), are funda-
mental geometric objects, arising in such diverse contexts as geometric modeling, statistical classifi-
cation, pattern recognition, and computational geometry. In geometric modeling, for instance, they
play an important role in the design of mechanical parts; patches of natural quadrics (planes, cones,
spheres and cylinders) and tori make up to 95% of all mechanical pieces according to Requicha and
Voelcker [22].

Computing the intersection of two general quadrics is a fundamental problem and an explicit
parametric representation of the intersection is desirable for most applications. Indeed, computing
intersections is at the basis of many more complex geometric operations such as computing con-
vex hulls of quadric patches [9], arrangements of sets of quadrics [1, 18, 25, 36], and boundary
representations of quadric-based solid models [10, 24].

Until recently, the only known general method for computing a parametric representation of the
intersection between two arbitrary quadrics was due to J. Levin [13, 14]. It is based on an analysis
of the pencil generated by the two quadrics, i.e. the set of linear combinations of the two quadrics.

Though useful, Levin’s method has serious limitations. When the intersection is singular or
reducible, a parameterization by rational functions is known to exist, but Levin’s pencil method
fails to find it and generates a parameterization that involves the square root of some polynomial. In
addition, when a floating point representation of numbers is used, Levin’s method sometimes outputs
results that are topologically wrong and it may even fail to produce any parameterization at all and
crash. On the other hand a correct implementation using exact arithmetic is essentially out of reach
because Levin’s method introduces algebraic numbers of fairly high degree. A good indication of
this impracticality is that even for the simple generic example of Section 8.2, an exact parametric
form output by Levin’s algorithm (computed by hand with Maple [15]) fills up over 100 megabytes
of space!

Over the years, Levin’s seminal work has been extended and refined in several different direc-
tions. Wilf and Manor [35] use a classification of quadric intersections by the Segre characteristic
(see [2]) to drive the parameterization of the intersection by the pencil method. Recently, Wang,
Goldman and Tu [32] further improved the method by making it capable of computing structural
information on the intersection and its various algebraic components and able to produce a parame-
terization by rational functions when it exists. Whether their refined algorithm is numerically robust
is open to question.

Another method of algebraic flavor was introduced by Farouki, Neff and O’Connor [6] when the
intersection is degenerate. In such cases, using a combination of classical concepts (Segre character-
istic) and algebraic tools (factorization of multivariate polynomials), the authors show that explicit
information on the morphological type of the intersection curve can be reliably obtained. A notable
feature of this method is that it can output an exact parameterization of the intersection in simple
cases, when the input quadrics have rational coefficients. No implementation is however reported.

Rather than restricting the type of the intersection, others have sought to restrict the type of
the input quadrics, taking advantage of the fact that geometric insights can then help compute the
intersection curve [8, 16, 17, 26, 27, 28]. Specialized routines are devised to compute the intersection
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4 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

curve in each particular case. Even though such geometric approaches are numerically more stable
than the algebraic ones, they are essentially limited to the class of so-called natural quadrics (i.e., the
planes, right cones, circular cylinders and spheres) and planar intersections.

Perhaps the most interesting of the known algorithms for computing an explicit representation
of the intersection of two arbitrary quadrics is the method of Wang, Joe and Goldman [34]. This
algebraic method is based on a birational mapping between the intersection curve and a plane cubic
curve. The cubic curve is obtained by projection from a point lying on the intersection. Then the
classification and parameterization of the intersection are obtained by invoking classical results on
plane cubics. The authors claim that their algorithm is the first to produce a complete topological
classification of the intersection (singularities, number and types of algebraic components, etc.).
Numerical robustness issues have however not been studied and the intersection may not be correctly
classified. Also, the center of projection is currently computed using Levin’s (enhanced) method:
with floating point arithmetic, it will in general not exactly lie on the curve, which is another source
of numerical instability.

1.1 Contributions

In this paper, we present the first exact and efficient algorithm for computing a parametric represen-
tation of the intersection of two quadric surfaces in three-dimensional real space given by implicit
equations with rational coefficients. (A preliminary version of this paper was presented in [3].)

Our algorithm, as well as its implementation, has the following main features:

• it computes an exact parameterization of the intersection of two quadrics with rational coeffi-
cients of arbitrary size;

• it places no restriction of any kind on the type of the intersection or the type of the input
quadrics;

• it correctly identifies, separates and parameterizes all the algebraic components of the inter-
section and gives all the information on the incidence between the components, that is where
and how (e.g., tangentially or not) two components intersect;

• the parameterization is rational when one exists; otherwise the intersection is a smooth quartic
and the parameterization involves the square root of a polynomial;

• the parameterizations are either optimal in the degree of the extension of Q on which their co-
efficients are defined or, in a small number of well-identified cases, involve one extra possibly
unnecessary square root.

Moreover, our implementation of this algorithm, which uses arbitrary-precision integer arith-
metic, can routinely compute parameterizations of the intersection of quadrics with input integer
coefficients having ten digits in less than 50 milliseconds on a mainstream PC (see Part IV [12]).

The above features imply in particular that the output parameterization of the intersection is
almost as “simple” as possible, meaning that the parameterization is rational if one exists, and that the
coefficients appearing in the parameterization are almost as rational as possible. This “simplicity” is,

INRIA



Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm 5

in itself, a key factor for making the parameterization process both feasible and efficient (by contrast,
an implementation of Levin’s method using exact arithmetic is essentially out of reach). It is also
crucial for the easy and efficient processing of parameterizations in further applications.

Formally, we prove the following.

Theorem 1.1. In three-dimensional real space, given two quadrics in implicit form with rational

coefficients, our algorithm first tests if their intersection is a smooth quartic or not. If it is a smooth

quartic, there does not exist any rational parameterization of the intersection and our algorithm

computes a parameterization such that, in projective space, each coordinate belongs to K[!,
√
"]

(the ring of polynomials in ! and
√
"with coefficients inK), where ! is the (real) parameter, "∈K[!]

is a polynomial in !, and K is either the field of the rationals or an extension of Q by the square

root of an integer. If the intersection is not a smooth quartic, our algorithm computes a rational

parameterization of each component of the intersection over a field K of coefficients which is Q or

an extension of Q of degree 2 or 4; this means that each projective coordinate of the component of

the intersection is a polynomial in K[!].
In all cases, eitherK is a field of smallest possible degree1 over which there exists such a param-

eterization or K is an extension of such a smallest field by the square root of an integer. In the latter

situation, testing if this extra square root is unnecessary and, if so, finding an optimal parameteri-

zation are equivalent to finding a rational point on a curve or a surface (which is computationally

hard and can even be undecidable).

Due to the number of contributions and results of this work, this paper has been broken down
into four parts. In Part I, we present a first and major improvement to Levin’s pencil method and
the accompanying theoretical tools. This simple algorithm, referred to from now on as the “generic
algorithm”, outputs a near-optimal parameterization when the intersection is a smooth quartic, i.e.
the generic case. However, the generic algorithm ceases to be optimal (both from the point of view of
the functions used in the parameterizations and the size of their coefficient field) in several singular
situations. Parts II and III [4, 5] refine the generic algorithm by considering in turn all the possible
types of intersection. Part II focuses on the classification of pencils of quadrics over the reals and on
the detection of each case. Part III then gives an optimal or near-optimal algorithm in each possible
situation. In Part IV [12], we present a complete, robust, and efficient C++ implementation of our
algorithm.

1.2 Overview of Part I

Part I is organized as follows. In Section 2, we present basic definitions, notations and useful
known results. Section 3 summarizes the ideas on which the pencil method of Levin for intersecting
quadrics is based and discusses its shortcomings. In Section 4 we present our generic algorithm.
Among the results of independent interest presented in this section are the almost always existence

1Recall that, if K is a field extension of Q, the degree of the extension is defined as the dimension of K as a vector space
over Q. For instance, if Q(#) is a field extension of Q (distinct from Q), then its degree is 2 since there is a one-to-one
correspondence between any element x ∈ Q(#) and ($1,$2) ∈ Q2 such that x = $1 +$2 #. Similarly, if Q and two field
extensions Q(#) and Q(#′) are pairwise distinct, then the degree of Q(#,#′) is 4 since there is a one-to-one correspondence
between any element x ∈ Q(#) and ($1,$2,$3,$4) ∈ Q2 such that x= $1+$2 #+$3 #

′ +$4 # #
′.
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6 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

of a ruled quadric with rational coefficients in a pencil (proved in Section 5) and new parameteriza-
tions of ruled projective quadrics involving an optimal number of radicals in the worst case (a fact
proved in Section 6). In Section 7, we prove the near-optimality of the output parameterization in
the generic case, that is when the intersection curve is a smooth quartic, and show that the parame-
terization is optimal in the worst case, meaning that there are examples in which the possibly extra
square root is indeed needed. Then, in Section 8, we give several examples and show the result of
our implementation on these examples, before concluding.

2 Notations and preliminaries

In what follows, all the matrices considered are real square matrices. Given a real symmetric matrix
S of size n+1, the upper left submatrix of size n, denoted Su, is called the principal submatrix of S
and the determinant of Su the principal subdeterminant of S.

We call a quadric associated to S the set

QS = {x ∈ Pn | xT Sx= 0},

where Pn = P(R)n denotes the real projective space of dimension n. (Note that every matrix of the
form $S, where $∈R\{0}, represents the same quadric QS.) When the ambient space is Rn instead
of P(R)n, the quadric is simply QS minus its points at infinity.

In the rest of this paper, geometric objects and parameterizations are assumed to live in projective
space. For instance, a point of P3 has four coordinates. An object (point, line, plane, cone, quadric,
etc.) given by its implicit equation(s) is said to be rational over a field K if the coefficients of its
equation(s) live in the field K. Note that, when talking about parameterizations, some confusion
can arise between two different notions: the rationality of the coefficients and the rationality of the
defining functions (a quotient of two polynomial functions is often called a rational function). The
meaning should be clear depending on the context.

Matrix S being symmetric, all of its eigenvalues are real. Let %+ and %− be the numbers of
positive and negative eigenvalues of S, respectively. The rank of S is the sum of %+ and %−. We
define the inertia of S and QS as the pair

(max(%+,%−),min(%+,%−)).

(Note that it is more usual to define the inertia as the pair (%+,%−), but our definition, in a sense,
reflects the fact that QS and Q−S are one and the same quadric.) A matrix of inertia (n,0) is called
definite. It is positive definite if %− = 0, negative definite otherwise. Matrix S and quadric QS are
called singular if the determinant of S is zero; otherwise they are called nonsingular.

The inertia of a quadric in P3 is a fundamental concept which somehow replaces the usual type of
a quadric in R3. For the convenience of the reader we recall in Table 1 the correspondence between
inertias in P3 and types in R3.

In P3, any quadric not of inertia (3,1) is either a ruled surface or not a surface. Also, the quadrics
of inertia (3,1) are the only ones with a strictly negative determinant. The nonsingular quadrics are
those of rank 4, i.e. those of inertia (4,0),(3,1) and (2,2). Quadrics of inertia (4,0) are however

INRIA
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Inertia of QS Inertia of Su Euclidean Euclidean type of QS

canonical equation

(4,0) (3,0) x2+ y2+ z2+1 /0 (imaginary ellipsoid)
(3,1) (3,0) x2+ y2+ z2−1 ellipsoid

(2,1) x2+ y2− z2+1 hyperboloid of two sheets
(2,0) x2+ y2+ z elliptic paraboloid

(3,0) (3,0) x2+ y2+ z2 point
(2,0) x2+ y2+1 /0 (imaginary elliptic cylinder)

(2,2) (2,1) x2+ y2− z2−1 hyperboloid of one sheet
(1,1) x2− y2+ z hyperbolic paraboloid

(2,1) (2,1) x2+ y2− z2 cone
(2,0) x2+ y2−1 elliptic cylinder
(1,1) x2− y2+1 hyperbolic cylinder
(1,0) x2+ y parabolic cylinder

(2,0) (2,0) x2+ y2 line
(1,0) x2+1 /0 (imaginary parallel planes)

(1,1) (1,1) x2− y2 intersecting planes
(1,0) x2−1 parallel planes
(0,0) x simple plane

(1,0) (1,0) x2 double plane
(0,0) 1 /0 (double plane at infinity)

Table 1: Correspondence between quadric inertias and Euclidean types.

empty of real points. A quadric of rank 3 is called a cone. The cone is said to be real if its inertia
is (2,1). It is said to be imaginary otherwise, in which case its real projective locus is limited to
its singular point. A quadric of rank 2 is a pair of planes. The pair of planes is real if its inertia is
(1,1). It is called imaginary if its inertia is (2,0), in which case its real projective locus consists of
its singular line, i.e. the line of intersection of the two planes. A quadric of inertia (1,0) is called a
double plane and is necessarily real.

Two real symmetric matrices S and S′ of size n are said to be similar if and only if there exists a
nonsingular matrix P such that

S′ = P−1SP.

Note that two similar matrices have the same characteristic polynomial, and thus the same eigenval-
ues. Two matrices are said to be congruent or projectively equivalent if and only if there exists a
nonsingular matrix P with real coefficients such that

S′ = PTSP.

RR n° 5667



8 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

Sylvester’s Inertia Law asserts that the inertia is invariant under a congruence transformation [11],
i.e. S and S′ have the same inertia. Note also that the determinant of S is invariant by a congruence
transformation, up to a square factor (the square of the determinant of the transformation matrix).

Let S and T be two real symmetric matrices of the same size and let R(&,µ) = &S+µT . The set

{R(&,µ) | (&,µ) ∈ P1}

is called the pencil of matrices generated by S and T . For the sake of simplicity, we sometimes write
a member of the pencil R(&) = &S−T, & ∈ R = R∪{'}. Associated to it is a pencil of quadrics
{QR(&,µ) | (&,µ)∈ P1}. Recall that the intersection of two distinct quadrics of a pencil is independent
of the choice of the two quadrics. We call the binary form

D(&,µ) = detR(&,µ)

the determinantal equation of the pencil.

3 Levin’s pencil method

Since our solution to quadric surface intersection builds upon the pencil method of J. Levin, we start
by recalling the main steps of the algorithm described in [13, 14] for computing a parameterized rep-
resentation of the intersection of two distinct implicit quadrics QS and QT of R3. Starting from this
short description, we then identify where this algorithm introduces high-degree algebraic numbers
and why this is a problem.

The high-level idea behind Levin’s algorithm is this: if (say) QS is of some “good” type, then QS

admits a parameterization which is linear in one of its parameters and plugging this parameterization
in the implicit equation ofQT yields a degree 2 equation in one of the parameters (instead of a degree
4 equation) which can be easily solved to get a parametric representation of QS∩QT . When neither
QS nor QT has a “good” type, then one can find a quadric QR of “good” type in the pencil generated
by QS and QT , and we are back to the previous case replacing QS by QR.

The definition of a “good” type is embodied in Levin’s notion of simple ruled quadric2 and the
existence of such a quadric QR is Levin’s key result:

Theorem 3.1 ([13]). The pencil generated by any two distinct quadrics contains at least one simple

ruled quadric, i.e., one of the quadrics listed in Table 2, or the empty set.

In more details, Levin’s method is as follows:

1. Find a simple ruled quadric in the pencil {QR(&)=&S−T | & ∈ R} generated by QS and QT , or
report an empty intersection. Since simple ruled quadrics have a vanishing principal subdeter-
minant, this is achieved by searching for a &0 ∈ R such that det(Ru(&0)) = 0 and QR =QR(&0)

is simple ruled; by Theorem 3.1, such a quadric exists or the pencil contains the empty set.
Assume, for the sake of simplicity, that the intersection is not empty and that QR and QS are
distinct. Then QS∩QT = QS∩QR.

2In [13, 14], Levin refers to these quadrics as to nonelliptic paras.

INRIA
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quadric
canonical

equation (a,b> 0)
parameterization X= [x,y,z], u,v ∈ R

simple plane x= 0 X(u,v) = [0,u,v]
double plane x2 = 0 X(u,v) = [0,u,v]
parallel planes ax2 = 1 X(u,v) = [ 1√

a
,u,v], X(u,v) = [− 1√

a
,u,v]

intersecting planes ax2−by2 = 0 X(u,v) = [ u√
a
, u√

b
,v], X(u,v) = [ u√

a
,− u√

b
,v]

hyperbolic paraboloid ax2−by2− z= 0 X(u,v) = [ u+v2
√
a
, u−v
2
√
b
,uv]

parabolic cylinder ax2− y= 0 X(u,v) = [u,au2,v]
hyperbolic cylinder ax2−by2 = 1 X(u,v) = [ 1

2
√
a
(u+ 1

u
), 1
2
√
b
(u+ 1

u
),v]

Table 2: Parameterizations of canonical simple ruled quadrics.

2. Determine the orthonormal transformation matrix Pu which sends Ru in diagonal form by
computing the eigenvalues and the normalized eigenvectors of Ru. Deduce the transforma-
tion matrix P which sends QR into canonical form. In the orthonormal frame in which it is
canonical, QR admits one of the parameterizations X of Table 2.

3. Compute the matrix S′ = PTSP of the quadric QS in the canonical frame of QR and consider
the equation

XT S′X= a(u)v2+b(u)v+ c(u) = 0, (1)

whereX has been augmented by a fourth coordinate set to 1. (The parameterizations of Table 2
are such that a(u),b(u) and c(u) are polynomials of degree two in u.)

Solve (1) for v in terms of u and determine the corresponding domain of validity of u on which
the solutions are defined, i.e., the set of u such that "(u) = b2(u)−4a(u)c(u) ! 0. Substituting
v by its expression in terms of u in X, we have a parameterization of QS ∩QT = QS ∩QR in
the orthonormal coordinate system in which QR is canonical.

4. Output PX(u), the parameterized equation of QS∩QT in the global coordinate frame, and the
domain of u ∈ R on which it is valid.

This method is very nice and powerful since it gives an explicit representation of the intersection
of two general quadrics. However, it is far from being ideal from the point of view of precision and
robustness since it introduces non-rational numbers at several different places. Thus, if a floating
point representation of numbers is used, the result may be wrong (geometrically and topologically)
or, worse, the program may crash (especially in Step 1 when the type of the quadrics QR(&0) are
incorrectly computed). In theory, exact arithmetic would do, except that it would highly slow down
the computations. In practice, however, a correct implementation using exact arithmetic seems out
of reach because of the high degree of the algebraic numbers involved.

Let us examine more closely the potential sources of numerical instability in Levin’s algorithm.

RR n° 5667



10 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

inertia
of S

canonical equation
(a,b,c,d > 0)

parameterization X= [x,y,z,w]

(4,0) ax2+by2+ cz2+dw2 = 0 QS = /0

(3,0) ax2+by2+ cz2 = 0 QS is point (0,0,0,1)
(2,2) ax2+by2− cz2−dw2 = 0 X= [ ut+avs

a
, us−bvt

b
, ut−avs√

ac
, us+bvt√

bd
], (u,v),(s, t) ∈ P1

(2,1) ax2+by2− cz2 = 0 X= [uv, u
2−abv2
2b , u

2+abv2

2
√
bc

,s], (u,v,s) ∈ P!2

(2,0) ax2+by2 = 0 X= [0,0,u,v], (u,v) ∈ P1

(1,1) ax2−by2 = 0 X1 = [u,
√
ab
b
u,v,s], X2 = [u,−

√
ab
b
u,v,s], (u,v,s) ∈ P2

(1,0) ax2 = 0 X= [0,u,v,s], (u,v,s) ∈ P2

Table 3: Parameterization of projective quadrics of inertia different from (3,1). In the parameteriza-
tion of projective cones, P!2 stands for the 2-dimensional real quasi-projective space defined as the
quotient of R3 \{0,0,0} by the equivalence relation ∼ where (x,y,z) ∼ (y1,y2,y3) iff ∃& ∈ R\{0}
such that (x,y,z) = (&y1,&y2,&2y3).

• Step 1: &0 is the root of a third degree polynomial with rational coefficients. In the worst case,
it is thus expressed with nested radicals of depth two. Since determining if QR(&0) is simple
ruled involves computing its Euclidean type (not an easy task considering that QR(&0−() and
QR(&0+() may be and often are of different types), this is probably the biggest source of non-
robustness.

• Step 2: Since QR is simple ruled, the characteristic polynomial of Ru is a degree three poly-
nomial having zero as a root and whose coefficients are in the field extension Q(&0). Thus,
the nonzero eigenvalues of Ru may involve nested radicals of depth three. Since the corre-
sponding eigenvectors have to be normalized, the coefficients of the transformation matrix P
are expressed with radicals of nesting depth four in the worst case.

Since the coefficients of the parameterization X of QR are expressed as square roots of the
coefficients of the canonical equation QPTRP (as in Table 2), the coefficients of the parameter-
ization of QS∩QT can involve nested radicals of depth five in the worst case.

• Step 3: Computing the domain of X amounts to solving the fourth degree equation "(u) = 0
whose coefficients are nested radicals of worst-case depth five in Q.

Note that this worst-case picture is the generic case. Indeed, given two arbitrary quadrics with
rational coefficients, the polynomial det(Ru(&))will generically have no rational root (a consequence
of Hilbert’s Irreducibility Theorem).

4 Generic algorithm

We now present a first but major improvement to Levin’s pencil method for computing parametric
representations of the intersection of quadrics.

INRIA
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This so-called “generic algorithm” removes most of the sources of radicals in Levin’s algorithm.
We prove in Section 7 that it is near-optimal in the generic, smooth quartic case. It is however not
optimal for all the possible types of intersection and will need later refinements (see the comments
in Section 9, and Parts II and III). But it is sufficiently simple, robust and efficient to be of interest
to many.

We start by introducing the projective framework underlying our approach and stating the main
theorem on which the generic approach rests. We then outline our algorithm and detail particular
steps in ensuing sections.

From now on, all the input quadrics considered have their coefficients (i.e., the entries of the
corresponding matrices) in Q.

4.1 Key ingredients

The first ingredient of our approach is to work not just over R3 but over the real projective space P3.
Recall that, in projective space, quadrics are entirely characterized by their inertia (i.e., two quadrics
with the same inertia are projectively equivalent), while in Euclidean space they are characterized
by their inertia and the inertia of their principal submatrix.

In our algorithm, quadrics of inertia different from (3,1) (i.e., ruled quadrics) play the role of
simple ruled quadrics in Levin’s method. In Table 3, we present a new set of parameterizations of
ruled projective quadrics that are both linear in one of their parameters and involve, in the worst
case, a minimal number of square roots3, which we prove in Section 6. That these parameterizations
are faithful parameterizations of the projective quadrics (i.e., there is a one-to-one correspondence
between the points of the quadric and the parameters) is proved in the appendix.

Another key ingredient of our approach is encapsulated in the following theorem, which mirrors,
in the projective setting, Levin’s theorem on the existence of ruled quadrics in a pencil.

Theorem 4.1. In a pencil generated by any two distinct quadrics, the set S of quadrics of inertia

different from (3,1) is not empty. Furthermore, if no quadric in S has rational coefficients, then the

intersection of the two initial quadrics is reduced to two distinct points.

This theorem, which is proved in Section 5.2, generalizes Theorem 3.1. Indeed, it ensures that the
two quadrics we end up intersecting have rational coefficients, except in one very specific situation.
This is how we remove the main source of nested radicals in Levin’s algorithm.

The last basic ingredient of our approach is the use of Gauss reduction of quadratic forms for
diagonalizing a symmetric matrix and computing the canonical form of the associated projective
quadric, instead of the traditional eigenvalues/eigenvectors approach used by Levin. Since Gauss
transformation is rational (the elements of the matrix P which sends S into canonical form are ratio-
nal), this removes some layers of nested radicals from Levin’s algorithm. Note, also, that there is no
difficulty parameterizing the reduced quadric S′ = PTSP since, by Sylvester’s Inertia Law, S and S′

have the same inertia.
3Note that there is necessarily a trade-off between the minimal degree of a parameterization in one of its parameters and

the degree of its coefficient field. For instance, Wang, Joe and Goldman [33] give parameterizations of quadrics that have
rational coefficients but are quadratic in all of their parameters.
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4.2 Algorithm outline

Armed with these ingredients, we are now in a position to outline our generic algorithm.
Let R(&) = &S− T be the pencil generated by the quadrics QS and QT of P3 and D(&) =

det(R(&)) be the determinantal equation of the pencil. Recall that, although working in all cases,
our generic algorithm is best designed when D(&) is not identically zero and does not have any
multiple root. In the other case, a better algorithm is described in parts II and III. The outline of our
intersection algorithm is as follows (details follow in ensuing sections):

1. Find a quadric QR with rational coefficients in the pencil, such that detR > 0 if possible or
detR = 0 otherwise. (If no such R exists, the intersection is reduced to two points, which we
output.) If the inertia of R is (4,0), output empty intersection. Otherwise, proceed.

Assume for the sake of simplicity that QS *= QR, in such a way that QS∩QR = QS∩QT .

2. If the inertia of R is not (2,2), apply Gauss reduction to R and compute a frame in which PTRP
is diagonal.

If the inertia of R is (2,2), find a rational point close enough toQR that the quadricQR′ through
this point has the same inertia as QR. Replace QR by this quadric. Use that rational point to
compute a frame in which PTRP is the diagonal matrix diag(1,1,−1,−)), with ) ∈ Q.

In the local frame,QR can be described by one of the parameterizationsX of Table 3. Compute
the parameterization PX of QR in the global frame.

3. Consider the equation
* : (PX)T S(PX) = 0. (2)

Equation* is of degree at most 2 in (at least) one of the parameters. Solve it for this parameter
in terms of the other(s) and compute the domain of the solution.

4. Substitute this parameter in PX, giving a parameterization of the intersection of QS and QT .

4.3 Details of Step 1

The detailed description of Step 1 is as follows. Recall that D(&) = det(R(&)) is the determinantal
equation of the pencil.

1. a. If D(&) ≡ 0, set R= S and proceed.

b. Otherwise, compute isolating intervals for the real roots of D(&) (using for instance a
variant of Uspensky’s algorithm [23]). Compute a rational number &0 in between each
of the separating intervals and, for each &0 such that D(&0) > 0, compute the inertia
of the corresponding quadrics using Gauss reduction. If one of the inertias is (4,0),
output QS ∩QT = /0. Otherwise, one of these inertias is (2,2) and we proceed with the
corresponding quadric.
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c. Otherwise (i.e. D(&) *≡ 0 and D(&) " 0 for all &), compute the greatest common divisor
gcd(&) of D(&) and its derivative with respect to &. If gcd(&) has a rational root &0,
proceed with the corresponding quadric QR(&0).

d. Otherwise (i.e. D(&) has two non-rational double real roots), QS ∩QT is reduced to
two points. The quadric corresponding to one of these two roots is of inertia (2,0) (an
imaginary pair of planes). The singular line of this pair of planes is real and can be
parameterized easily, even though it is not rational. Intersecting that line with any of the
input quadrics gives the two points.

To assert the correctness of this algorithm, we have several things to prove. First, we make clear
why, when looking for a quadric in the pencil (S,T ) with inertia different from those of S and T , the
right polynomial to consider is D(&):

Lemma 4.2. The inertia of R(&) is invariant on any interval of & not containing a root of D(&).

Proof. It suffices to realize that the eigenvalues of R(&) are continuous functions of & and that the
characteristic polynomial of R(&)

det(R(&)− lI)

is a polynomial in l whose constant coefficient isD(&), where I is the identity matrix of size 4. Thus
the eigenvalues of R(&) may change of sign only at a zero of det(R(&)).

Let us now show that Step 1 of our algorithm always outputs empty intersection whenQS∩QT =
/0. This, in fact, is a direct consequence of Lemma 4.2 and of the following theorem proved in
1936/1937 by the German mathematician Paul Finsler.

Theorem 4.3 ([7]). Assume n! 3 and let S,T be real symmetric matrices of size n. Then QS∩QT = /0

if and only if the pencil of matrices generated by S and T contains a definite matrix.

In Step 1.d, QS and QT intersect in two points by Theorem 4.1. Furthermore, the quadric corre-
sponding to one of two roots of D(&) is a real line by the proof of Theorem 4.1.

Finally, note that we can further refine Step 1.b by computing the inertia of the quadrics QR(&0)

with positive determinant only when the determinantal equation has four real roots counted with
multiplicities. Indeed, in view of the following proposition, testing for the presence of a definite
matrix in the pencil needs to be done only in that case.

Proposition 4.4. Assume n! 3 and let S,T be real symmetric matrices of size n. Then QS∩QT = /0

implies that det(&S+µT ) does not identically vanish and that all its roots are real.

Proof. We use the equivalence provided by Theorem 4.3 of the emptiness of the intersection and the
existence of a definite matrix in the pencil. LetU be a definite matrix of the pencil which we choose
positive (a similar proof goes for negative definite).

SinceU is positive definite, we can apply to it a Cholesky factorization: U =HHT , where H is a
lower triangular matrix. Consider the matrix C = (H−1)S(H−1)T . Since C is real symmetric, it has
n pairs of real eigenvalues and eigenvectors (+i,xi). Let yi = (H−1)Txi. Then we have

H(Cxi) = H(+ixi) =⇒ Syi = +iUyi.
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Hence all the roots of the characteristic polynomial ofU−1S are real, which implies that all the roots
of det(&S+µU) = 0 are real. It follows that all the roots of det(&S+µT ) = 0 are also real.

4.4 Details of Step 2

There are two cases, according to the inertia of R.

4.4.1 The inertia of R is not (2,2)

When the inertia of R is different from (2,2), we use Gauss reduction of quadratic forms and pa-
rameterize the resulting quadric, whose associated matrix PTRP is diagonal. In view of Sylvester’s
Inertia Law, the reduced quadric QPTRP has the same inertia as QR. Thus it can be parameterized
with at most one square root by one of the parameterizations X of Table 3. Since Gauss reduction
is rational (i.e. P is a matrix with rational coefficients), the parameterization PX of QR contains at
most one square root.

4.4.2 The inertia of R is (2,2)

When the inertia of R is (2,2), the coefficients of the parameterization of QR can live, in the worst
case, in an extension Q(

√
m,

√
n) of degree 4 of Q (see Table 3). We show here that there exists, in

the neighborhood of QR, a quadric QR′ with rational coefficients such that

QS∩QR′ = QS∩QR = QS∩QT

and the coefficients of the parameterization of QR′ are in Q(
√
detR′).

First, apply Gauss reduction to QR. If any of
√
ac or

√
bd is rational in the parameterization of

QR (as in Table 3), we are done. Otherwise, compute an arbitrary point p ∈ P3(R) on QR by taking
any value of the parameters like, say, (u,v) = (0,1) and (s, t) = (0,1). Approximate p by a point
p′ ∈ P3(Q) not on QS∩QT . Then compute &′0 ∈ Q such that p′ belongs to the quadric QR(&′0)

of the
pencil. This is easy to achieve in view of the following lemma.

Lemma 4.5. In a pencil generated by two quadrics QS,QT with rational coefficients, there is exactly

one quadric going through a given point p′ that is not on QS ∩QT . If p
′ is rational, this quadric is

rational.

Proof. In the pencil generated by QS and QT , a quadric QR(&,µ) contains p
′ if and only if p′T (&S+

µT )p′ = 0, that is if and only if &(p′T Sp′)+µ(p′TTp′) = 0. If p′ is not on QS∩QT , this equation is
linear in (&,µ) ∈ P1 and thus admits a unique solution. Moreover, if p′ is rational, the equation has
rational coefficients and thus the quadric of the pencil containing p′ is rational.

Note that &′0 and the &0 such that R = R(&0) get arbitrarily close to one another as p′ gets close
to p. Thus if p′ is close enough to p, R′ = R(&′0) has the same inertia (2,2) as R, by Lemma 4.2. We
refine the approximation p′ of p until R′ has inertia (2,2).

We now have a quadric QR′ of inertia (2,2) and a rational point on QR′ . Consider any rational
line through p′ that is not in the plane tangent to QR′ at p

′. This line further intersects QR′ in another
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point p′′. Point p′′ is rational because otherwise p′ and p′′ would be conjugate in the field extension
of p′′ (since QR′ and the line are both rational) and thus p

′ would not be rational. Compute the
rational transformation P sending p′,p′′ onto (1,±1,0,0). Apply this transformation to R′ and then
apply Gauss reduction of quadratic forms. In the local frame, QR′ has equation (up to a constant
factor)

x2− y2+$z2+,w2 = 0, (3)

with $,< 0. Now consider the linear transformation whose matrix is P′

P′ =
1
2









1+$ 0 1−$ 0
1−$ 0 1+$ 0
0 2 0 0
0 0 0 2$









.

Applying P′ to the already reduced quadric of Eq. (3) gives the equation

x2+ y2− z2−)w2 = 0, (4)

where )= −$,> 0. The quadric of Eq. (4) can be parameterized by

X((u,v),(s, t)) =
(

ut+ vs,us− vt,ut− vs,
us+ vt√

)

)

,

with (u,v),(s, t) ∈ P1 (see Table 3).
The three consecutive transformation matrices have rational coefficients thus Q(

√
)) =

Q(
√
detR′) and the product of these transformation matrices with X is a polynomial parameteri-

zation of QR′ with coefficients in Q(
√
)), ) ∈ Q.

4.5 Details of Step 3

Solving Equation (2) can be done as follows. Recall that the content in the variable x of a multivariate
polynomial is the gcd of the coefficients of the xi.

Equation (2) may be seen as a quadratic equation in one of the parameters. For instance, if R has
inertia (2,2), Eq. (2) is a homogeneous biquadratic equation in the variables != (u,v) and -= (s, t).
Using only gcd computations, we can factor it in its content in ! (which is a polynomial in - or
a constant), its content in -, and a remaining factor. If the content in ! (or in -) is not constant,
solve it in - (in !); substituting the obtained real values in X, we have a parameterization of some
components of QS∩QT = QS∩QR in the frame in which QR is canonical. If the remaining factor is
not constant, solve it in a parameter in which it is linear, if any, or in -. Substituting the result in X,
we have a parameterization of the last component of the intersection. If the equation which is solved
is not linear, the domain of the parameterization is the set of ! such that the degree 4 polynomial
"(!) = b2(!)−4a(!)c(!) is positive, where a(!),b(!) and c(!) are the coefficients of -2,- and 1 in
(2), respectively.
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5 Canonical forms and proof of Theorem 4.1

We now prove Theorem 4.1, the key result stated in the previous section. We start by recalling some
preliminary results.

5.1 Canonical form for a nonsingular pair of symmetric matrices

We state results, proved by Uhlig [30, 31], we need for computing the canonical form of a pair of
real symmetric matrices. Though only part of this theory is required for the proof of Theorem 4.1
(Section 5.2), we will need its full power in Part II of this paper for characterizing real pencils of
quadrics, so we explicit it entirely.

Let us start by defining the notion of Jordan blocks.

Definition 5.1. Let M be a square matrix of the form

(") or









" e 0

e

0 "









.

If l ∈ R and e= 1, M is called a real Jordan block associated with ". If

" =

(

a −b
b a

)

, a,b ∈ R, b *= 0, e=

(

1 0
0 1

)

,

M is called a complex Jordan block associated with a+ ib.

Now we can state the real Jordan normal form theorem for real square matrices.

Theorem 5.2 (Real Jordan normal form). Every real square matrix A is similar over the reals to

a block diagonal matrix diag(A1, . . . ,Ak), called real Jordan normal form of A, in which each Aj is

a (real or complex) Jordan block associated with an eigenvalue of A.

The Canonical Pair Form Theorem then goes as follows:

Theorem 5.3 (Canonical Pair Form). Let S and T be two real symmetric matrices of size n, with S

nonsingular. Let S−1T have real Jordan normal form diag(J1, . . . ,Jr,Jr+1, . . . ,Jm), where J1, . . . ,Jr
are real Jordan blocks corresponding to real eigenvalues of S−1T and Jr+1, . . . ,Jm are complex

Jordan blocks corresponding to pairs of complex conjugate eigenvalues of S−1T . Then:
(a) The characteristic polynomial of S−1T and det(&S−T ) have the same roots & j with the same

(algebraic) multiplicities mj.

(b) S and T are simultaneously congruent by a real congruence transformation to

diag((1E1, . . . ,(rEr,Er+1, . . . ,Em)

and

diag((1E1J1, . . . ,(rErJr,Er+1Jr+1, . . . ,EmJm),
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respectively, where (i = ±1 and Ei denotes the square matrix




0 1

1 0





of the same size as Ji for i = 1, . . . ,m. The signs (i are unique (up to permutations) for each set of
indices i that are associated with a set of identical real Jordan blocks Ji.

(c) The sum of the sizes of the blocks corresponding to one of the & j is the multiplicity mj if

& j is real or twice this multiplicity if & j is complex. The number of the corresponding blocks (the
geometric multiplicity of & j) is t j = n− rank(& jS−T ), and 1" t j " mj.

Note that the canonical pair form of Theorem 5.3 can be considered the finest simultaneous
block diagonal structure that can be obtained by real congruence for a given pair of real symmetric
matrices, in the sense that it maximizes the number of blocks in the diagonalization of S and T .

5.2 Proof of Theorem 4.1

To prove Theorem 4.1, we consider a pencil of real symmetric 4× 4 matrices generated by two
symmetric matrices S and T of inertia (3,1). We may suppose that they have the block diagonal
form of the above theorem.

If all the blocks had an even size, the determinant of S would be positive, contradicting our
hypothesis. Thus, there is a block of odd size in the canonical form of S. It follows that det(&S−T )
has at least one real root and the matrix of the pencil corresponding to this root has an inertia different
from (3,1). This proves the first part.

If det(&S−T ) has a simple real root, there is an interval of values for & for which det(&S−T ) >
0, and we are done with any rational value of & in this interval. If det(&S−T ) has either a double
real root and two complex roots, two rational double real roots or a quadruple real root, the quadrics
corresponding to the real root(s) have rational coefficients and have inertia different from (3,1).

Thus we are left with the case where det(&S−T ) has two non rational double real roots, which
are algebraically conjugate. In other words,

det(&S−T ) = c(&−&1)
2(&−&2)

2,

with &1,&2 ∈ R \ Q and &2 = &1 its (real algebraic) conjugate. Following the notations of
Theorem 5.3, we have m1 = m2 = 2 and 1 " ti " 2, for i = 1,2. In other words, (t1, t2) ∈
{(1,1),(1,2),(2,1),(2,2)}.

We can quickly get rid of the case (t1, t2) = (1,1). Indeed, in this case the blocks have an even
size and S is not of inertia (3,1). We can also eliminate the cases (t1, t2) ∈ {(1,2),(2,1)}, because
the matrices &1S−T and &2S−T are algebraically conjugate, and so must have the same rank and
the same number of blocks.

We are thus left with the case (t1, t2) = (2,2). In this situation, S and T have four blocks, i.e.,
they are diagonal:

{

S= diag((1,(2,(3,(4),
T = diag((1&1,(2&1,(3&2,(4&2).
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The pencil &S−T is generated by the two quadrics of rank 2
{

S′ = &1S−T = diag(0,0,(3(&1−&2),(4(&1−&2)),
T ′ = &2S−T = diag((1(&2−&1),(2(&2−&1),0,0).

We have that
det(S′ +T ′) = (1(2(3(4(&1−&2)

4

is negative since all the quadrics of the pencil have negative determinant except QS′ and QT ′ . Thus
(1(2 and (3(4 have opposite signs. It follows that one of S′ and T ′ has inertia (2,0) (say S′) and the
other has inertia (1,1). Thus QS′ is a straight line, which intersects the real pair of planes QT ′ . Since
QS′ ∩QT ′ is contained in all the quadrics of the pencil and since the pencil has quadrics of inertia
(3,1) (which are not ruled), the line QS′ is not included in QT ′ and the intersection is reduced to two
real points. Since the equations of QS′ and QT ′ are z2+w2 = 0 and x2− y2 = 0 respectively, the two
points have coordinates (1,1,0,0) and (−1,1,0,0). They are thus distinct. #

Remark 5.4. Pencils generated by two quadrics of inertia (3,1) and having no quadric with rational
coefficients of inertia different from (3,1) do exist. Consider for instance

QS : 2x2−2xz−2yw+ z2+w2 = 0,
QT : 4x2+2y2−2yw+ z2−6xz+3w2 = 0.

Then, det(&S−T ) = −(&2−5)2.

6 Optimality of the parameterizations

We now prove that, among the parameterizations of projective quadrics linear in one of the parame-
ters, the ones of Table 3 have, in the worst case, an optimal number of radicals. In other words, for
each type of projective quadric, there are examples of surfaces for which the number of square roots
of the parameterizations of Table 3 is required.

More precisely, we prove the following theorem, which will be crucial in asserting the near-
optimality of our algorithm for parameterizing quadrics intersection.

Theorem 6.1. In the set of parameterizations linear in one of the parameters, the parameterizations

of Table 3 are worst-case optimal in the degree of the extension of Q on which they are defined.

For a quadric Q of equation ax2 + by2− cz2− dw2 = 0 (a,b,c,d > 0), the parameterization
of Table 3 is optimal if Q has no rational point, which is the case for some quadrics. Knowing a

rational point on Q (if any), we can compute a rational congruent transformation sending Q into the

quadric of equation x2+y2−z2−abcd w2 = 0, for which the parameterization of Table 3 is optimal.
For a quadric Q of equation ax2+by2− cz2 = 0 (a,b,c> 0), the parameterization of Table 3 is

optimal if Q has no rational point other than its singular point (0,0,0,1), which is the case for some
quadrics. Knowing such a rational point on Q (if any), we can compute a rational congruent trans-

formation sending Q into the quadric of equation x2+ y2− z2 = 0, for which the parameterization
of Table 3 is rational (and thus optimal).
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For the other types of projective quadrics, the parameterizations of Table 3 are optimal in all

cases.

We prove this theorem by splitting it into four more detailed propositions: Proposition 6.2 for
inertia (1,1), Proposition 6.3 for inertia (2,1) and Propositions 6.4 and 6.6 for inertia (2,2).

Proposition 6.2. A projective quadric Q of equation ax2 − by2 = 0 (a,b > 0) admits a rational
parameterization in Q if and only if it has a rational point outside the singular line x = y = 0, or
equivalently iff ab is a square in Q. If ab is a square in Q, then the parameterization of Table 3 is

rational.

Proof. A point (x,y,z,w) on Q not on its singular line x = y = 0 is rational if and only if y/x, z/x,
and w/x are rational. Since (y/x)2 = ab

b2
and z and w are not constrained, there exists such a rational

point if and only if ab is a square.
If there exists a parameterization which is rational over Q, then there exists some rational point

outside the line x= y= 0, showing a contrario that there is no rational parameterization if ab is not
a square.

Finally, if ab is the square of a rational number, then the parameterization of Table 3 is rational.

Proposition 6.3. A projective quadric Q of equation ax2 + by2 − cz2 = 0 (a,b,c > 0) admits a
rational parameterization in Q if and only it contains a rational point other than the singular point

(0,0,0,1). Knowing such a rational point, we can compute a rational congruent transformation P
sending Q into the quadric of equation x2+ y2− z2 = 0 for which the parameterization of Table 3
is rational; lifting this parameterization to the original space by multiplying by matrix P, we have a

rational parameterization of Q.

On the other hand, there are such quadrics without rational point and thus without rational

parameterization, for example the quadric of equation x2+ y2−3z2 = 0.

Proof. IfQ has a rational point other than (x= y= z= 0), any rational line passing through this point
and not included in Q cuts Q in another rational point. Compute the rational congruent transforma-
tion sending these points onto (±1,1,0,0). Applying this transformation to Q gives a quadric of
equation x2−y2+ r, where r is a polynomial of degree at most one in x and y. Thus Gauss reduction
algorithm leads to the form x2− y2+dz2 = (X2+Y 2−Z2)/d where X = (1+d)x/2+(1−d)y/2,
Y = dz and Z = (1− d)x/2+ (1+ d)y/2. The parameterization of Table 3 applied to equation
X2+Y 2−Z2 is clearly rational. Lifting this parameterization back to the original space, we obtain
a rational parameterization of Q.

Reciprocally, if Q has no rational point, then Q does not admit a rational parameterization.
Now, suppose for a contradiction that the quadric with equation x2+ y2−3z2 = 0 has a rational

point (x,y,z,w) different from (0,0,0,1). By multiplying x,y, and z by a common denominator and
dividing them by their gcd, we obtain another rational point on the quadric for which x,y and z are
integers that are not all even. Note that x2 is equal, modulo 4, to 0 if x is even and 1 otherwise
(indeed, modulo 4, 02 = 0, 12 = 1, 22 = 0 and 32 = 1). Thus, x2+ y2−3z2 ≡ x2+ y2+ z2 (mod 4)
is equal to the number of odd numbers in x,y,z, i.e. 1,2 or 3. Thus x2+ y2−3z2 *= 0, contradicting
the hypothesis that (x,y,z,w) is a point on the quadric.
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Proposition 6.4. Let Q be the quadric of equation ax2+ by2− cz2− dw2 = 0 (a,b,c,d > 0). Any
field K in which Q admits a rational parameterization, linear in one of its parameters, contains√
abcd.

Proof. LetK be a field in whichQ admits a rational parameterization, linear in the parameter (u,v)∈
P(R). Fixing the value of the other parameter (s, t) ∈ P(K) defines a rational line L (inK) contained
in Q. L cuts any plane (in possibly infinitely many points) in projective space. In particular, L cuts
the plane of equation z= 0. Since L⊆ Q, L cuts the conic of equation ax2+by2−dw2 = z= 0 in a
point p= (x0,y0,0,1). Moreover, p is rational in K (i.e., x0,y0 ∈ K) because it is the intersection of
a rational line and the plane z= 0.

The plane tangent toQ at p has equation ax0x+by0y−dw= 0. We now compute the intersection
ofQwith this plane. Since ax20+by20 = d and a,b,d > 0, x0 or y0 is nonzero; assume for instance that
x0 *= 0. Squaring the equation of the tangent plane yields (ax0x)2 = (by0y−dw)2. By eliminating x2

between this equation and the equation of Q, we get

(by0y−dw)2+ax20(by
2− cz2−dw2) = 0

or
dw2(d−ax20)+by2(ax20+by20)−2bdy0yw−acx20z

2 = 0.

It follows from ax20+by20 = d that bd(y− y0w)2−acx20z
2 = 0 or also

b2d2(y− y0w)2−abcd x20z
2 = 0. (5)

The intersection of Q and its tangent plane at p contains the line L which is rational in K. Thus,
Equation (5) can be factored over K into two linear terms. Hence,

√
abcd belongs to K.

Remark 6.5. abcd is the discriminant of the quadric, i.e., the determinant of the associated matrix,
so it is invariant by a change of coordinates (up to a square factor). Thus, if R and R′ are two matrices
representing the same quadric in different frames, the fields Q(

√
detR) and Q(

√
detR′) are equal.

Proposition 6.6. A projective quadric Q of equation ax2+by2−cz2−dw2 = 0 (a,b,c,d > 0) admits
a rational parameterization in Q(

√
abcd) if and only it contains a rational point. Knowing such a

rational point, we can compute a rational congruent transformation P sending Q into the quadric

of equation x2 + y2− z2− abcdw2 = 0 for which the parameterization of Table 3 is rational over
Q(

√
abcd); lifting this parameterization to the original space by multiplying by matrix P, we have

a rational parameterization of Q over Q(
√
abcd).

On the other hand, there are such quadrics with no rational point and thus without rational

parameterization in Q(
√
abcd), for example the quadric of equation x2+ y2−3z2−11w2 = 0.

Proof. If Q admits a rational parameterization in Q(
√
abcd), then it has infinitely many rational

points over this field. If Q has a point (x,y,z,w) that is rational overQ(
√
abcd), but not rational over

Q, we may suppose without loss of generality that x= 1, by permuting the variables in order that x *=
0 and then by dividing all coordinates by x. The conjugate point (1,y′,z′,w′) overQ(

√
abcd) belongs

also toQ. The line passing through these points is rational (overQ), as is the point (1,(y+y′)/2,(z+
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z′)/2,(w+w′)/2). Choose a rational frame transformation such that this line becomes the line
z=w= 0 and this point becomes (1,0,0,0). In this new frame the coordinates of the conjugate points
are (1,±e

√
abcd,0,0) for some rational number e, and the equation of Q is abcd e2x2− y2+ r = 0

where r is a polynomial of degree at most 1 in x and y. Gauss reduction thus provides an equation of
the form abcd e2x2− y2+ f z2−gw2 = 0, and the invariance of the determinant (Remark 6.5) shows
that f g is the square of a rational number h. Thus (0,0,g,h) is a rational point of Q over Q.

Now, if Q has a rational point over Q, one may get another rational point as the intersection of
the quadric and any line passing through the point and not tangent to the quadric. One can compute a
rational congruent transformation such that these points become (1,±1,0,0). In this new frame the
equation of Q has the form x2−y2− r where r is a polynomial of degree at most 1 in x and y. Gauss
reduction provides thus an equation of the form x2− y2 + ez2− f w2 = (X2 +Y 2− Z2− e fw2)/e,
with X = (1+ e)x/2+(1− e)y/2, Y = ez and Z = (1− e)x/2+(1+ e)y/2. By the invariance of
the determinant, e f = g2abcd for some rational number g. Putting W = gw, we get the equation
X2+Y 2−Z2−abcdW 2 = 0 for Q, and the parameterization of Table 3 is rational over Q(

√
abcd).

It follows from this proof that, if a quadric of inertia (2,2) has a rational point, it has a parame-
terization in Q(

√
abcd), which is linear in one of the parameters. Conversely, for proving that such

a parameterization does not always exist, it suffices to prove that there are quadrics of inertia (2,2)
having no rational point overQ. Let us consider the quadric of equation x2+y2−3z2−11w2 = 0. If
it has a rational point (x,y,z,w), then by multiplying x, y, z and w by some common denominator and
by dividing them by their gcd, we may suppose that x, y, z and w are integers which are not all even.
As in the proof of Proposition 6.3, x2 + y2− 3z2− 11w2 is equal modulo 4 to the number of odd
numbers in x,y,z,w. Thus all of them are odd. It is straightforward that the square of an odd number
is equal to 1 modulo 8. It follows that x2+ y2−3z2−11w2 is equal to 4 modulo 8, a contradiction
with x2+ y2−3z2−11w2 = 0.

7 Near-optimality in the smooth quartic case

In this section, we prove that the algorithm given in Section 4 outputs, in the generic (smooth quar-
tic) case, a parameterization of the intersection that is optimal in the number of radicals up to one
possibly unnecessary square root. We also show that deciding whether this extra square root can be
avoided or not is hard. Moreover, we give examples where the extra square root cannot be elimi-
nated, for the three possible morphologies of a real smooth quartic.

7.1 Algebraic preliminaries

First recall that, as is well known from the classification of quadric pencils by invariant factors
(see [2] and Part II for more), the intersection of two quadrics is a nonsingular quartic exactly when
D(&,µ) = detR(&,µ) has no multiple root. Otherwise the intersection is singular. Note that the
intersection is nonsingular exactly when gcd( .D

.&
, .D
.µ

) = 1.
Moreover, when the intersection is nonsingular, the rank of any quadric in the pencil is at least

three; indeed, all the roots of D(&,µ) are simple and thus, in Theorem 5.3(c), mj = 1, thus t j = 1,
hence the quadrics associated with the roots of D(&,µ) have rank 3.
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Whether the intersection of two quadrics admits a parameterization with rational functions di-
rectly follows from classical results:

Proposition 7.1. The intersection of two quadrics admits a parameterization with rational functions

if and only if the intersection is singular.

Proof. First recall that a curve admits a parameterization with rational functions if and only if it has
zero genus [20].

Assume first that the intersection of the two quadrics is irreducible. In P3(C), if two algebraic
surfaces of degree d1 and d2 intersect in an irreducible curve, its genus is

1
2
d1d2(d1+d2−4)+1−

k

/
i=1

qi(qi−1)
2

,

where k is the number of singular points and qi,i=1,...,k their respective multiplicity [19]. The inter-
section curve has thus genus 1 when it is smooth, 0 otherwise. The result follows.

Assume now that the intersection of the two quadrics is reducible. If the intersection contains
only points, lines and conics, which are classically rational, we are done. For the remaining case
(cubic and line), we use the following result. In P3(C), if two algebraic surfaces of degree d1 and d2
intersect in two irreducible curves of degree d and d′ and of genus g and g′, then [20]

g′ −g=

(

1
2
(d1+d2)−2

)

(d′ −d).

For quadrics, d1+d2 = 4, so we get g= g′. So the genus of the cubic is that of the line, i.e. 0.

Finally consider the equation * : XT S′X = 0, obtained in Step 3 of our algorithm, where X is
the parameterization of QR and S′ is the matrix of QS in the canonical frame of QR. Let C* be the
curve zero-set of*. Depending on the projective type of QR,C* is a bidegree (2,2) curve in P1×P1

(inertia (2,2) or (2,0)), a quartic curve in P!2 (inertia (2,1)) or a quartic curve in P2 (inertia (1,1)
or (1,0)). Let C denote the curve of intersection of the two given quadrics QS and QT . We have the
following classical result.

Fact 7.2. The parameterization of QR defines an isomorphism between C and C*. In particular, C

and C* have the same genus, irreducibility, and factorization.

7.2 Optimality

Assume the intersection is a real nonsingular quartic. Then D(&,µ) has no multiple root, and thus
QR is necessarily a quadric of inertia (2,2). After Step 2 of our algorithm, QR has a parameterization
in Q(

√
)) that is bilinear in ! = (u,v) and - = (s, t). After resolution of * and substitution in QR,

we get a parameterization in Q(
√
))[!,

√
"] with " ∈ Q(

√
))[!] of degree 4.

Proposition 7.1 implies that it cannot be parameterized by rational functions, so
√
" cannot be

avoided. The question now is: can
√
) be avoided? The answer is twofold:
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1. deciding whether
√
) can be avoided amounts, in the general case, to finding a rational point

on a surface of degree 8,

2. there are cases in which
√
) cannot be avoided.

We prove these results in the following two sections.

7.2.1 Optimality test

We first prove two preliminary lemmas.

Lemma 7.3. If the intersection of two given quadrics has a parameterization involving only one

square root, there exists a quadric with rational coefficients in the pencil that contains a rational

line.

Proof. In what follows, call degree of a point the degree of the smallest field extension of Q con-
taining the coordinates of this point.

If the parameterization of the intersection involves only one square root, the intersection contains
infinitely many points of degree at most 2, one for any rational value of the parameters. Now we
have several cases according to the type of points contained in the intersection.

If the intersection contains a point p of degree 2, it contains also its algebraic conjugate p. The
line passing through p and p is invariant by conjugation, so is rational. Let q be a rational point on
this line. The quadric of the pencil passing through q is rational (Lemma 4.5). Since it also contains
p and p (the intersection is contained in any quadric of the pencil), this quadric cuts the line in at
least 3 points and thus contains it.

If the intersection contains a regular rational point (i.e. a rational point which is not a singular
point of the intersection), then the line tangent to the intersection at this point is rational, and is
tangent to any quadric of the pencil. The quadric of the pencil passing through a rational point of
this tangent line contains the contact point; thus it contains the tangent line.

If the intersection contains a singular rational point p, then all the quadrics of the pencil which
are not singular at p have the same tangent plane at p. Let us consider the quadric of the pencil
passing through a rational point q of this tangent plane (or through any rational point, if none of the
quadrics is regular at p). Similarly as above, this quadric contains the rational line pq.

Lemma 7.4. If a quadric contains a rational line, its discriminant is a square in Q.

Proof. If the quadric has rank less than 4, its discriminant is zero. We may thus suppose that the
discriminant is not 0 and that the equation of the quadric is ax2+ by2− cz2− dw2 = 0. Since this
quadric contains a rational line L, and thus a rational point, there is a rational change of frames such
that the quadric has equation x2+ y2− z2−abcdw2 = 0, by Proposition 6.6. Cut the quadric by the
plane z = 0. Since the intersection of the plane z= 0 and the rational L is a rational point, the cone
x2+ y2−abcdw2 = 0 contains a rational point outside it singular locus. By Proposition 6.3, there is
a rational congruent transformation P sending this cone into the cone of equation x2+ y2−w2 = 0.
These two cones can be seen as conics in P2(Q) and P can be seen as a rational transformation in
P2(Q). The discriminant −abcd of the conic x2+ y2− abcdw2 = 0 is thus equal to (detP)2 times
−1, the discriminant of the conic x2+ y2−w2 = 0. Hence abcd is a square in Q.
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From these two technical results and the results of Section 6, we obtain the following equiva-
lence.

Proposition 7.5. When the intersection is a nonsingular quartic, it can be parameterized inQ[!,
√
"]

with " ∈ Q[!] if and only if there exists a quadric of the pencil with rational coefficients having a
nonsingular rational point and whose discriminant is a square in Q.

Proof. If
√
) can be avoided, there exists, by Lemma 7.3, a quadric of the pencil with rational

coefficients containing a rational line. By Lemma 7.4, the discriminant of this quadric is thus a
square in Q. Moreover, since the quadrics of the pencil have rank at least three, the rational line is
not the singular line of some quadric (see Table 1) and thus contains a nonsingular point.

Conversely, if there exists a quadric of the pencil with rational coefficients having a rational
nonsingular point and whose discriminant is a square, then it has a rational parameterization by
Theorem 6.1 and thus

√
) can be avoided.

Mirroring Proposition 7.5, we can devise a general test for deciding, in the smooth quartic case,
whether the square root

√
) can be avoided or not. Consider the equation

%2 = det((xTTx)S− (xT Sx)T ), x= (x,y,z,c)T , (6)

where c ∈ Q is some constant such that plane w = c ∈ Q contains the vertex of no cone (inertia
(2,1)) of the pencil. Note that (6) has degree 8 in the worst case.

Theorem 7.6. When the intersection is a nonsingular quartic, it can be parameterized in Q[!,
√
"]

with " ∈ Q[!] if and only Equation (6) has a rational solution.

Proof. Suppose first that (6) has a rational solution (x0,y0,z0,%0) and let x0 = (x0,y0,z0,c)T and
(&0,µ0) = (xT0 Tx0,−xT0 Sx0). The quadric Q = &0QS +µ0QT of the pencil has rational coefficients,
contains the rational point x0 = (x0,y0,z0,c)T and its discriminant is a square, equal to %20. Moreover,
if Q has inertia (2,1), then x0 is not its apex because, by assumption, the plane w = c contains the
vertex of no cone of the pencil. It then follows from Theorem 6.1 that our algorithm produces a
rational parameterization of Q, and thus a parameterization of the curve of intersection with rational
coefficients.

Conversely, if the curve of intersection can be parameterized in Q[!,
√
"] (with " ∈ Q[!]) there

exists a quadric Q of the pencil with rational coefficients containing a rational line and whose dis-
criminant is a square inQ, by Lemmas 7.3 and 7.4. The quadric Q contains a line and thus intersects
any plane. Consider any plane w = c ∈ Q. Since the intersection of a rational line with a rational
plane is (or contains) a rational point, the intersection of Q with plane w = c contains a rational
point x = (x,y,z,c)T . The quadric (Q) of the pencil containing that point has associated matrix
(xTTx)S− (xT Sx)T and its determinant is a square. Hence Equation (6) admits a rational solu-
tion.

Unfortunately, the question underlying the above optimality test is not within the range of prob-
lems that can currently been answered by algebraic number theory. Indeed, it is not known whether
the general problem of determining if an algebraic set contains rational points (known, over Z, as
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Hilbert’s 10th problem) is decidable [21]. It is known that this problem is decidable for genus zero
curves and, under certain conditions, for genus one curves [21], but, for varieties of dimension two
or more, very little has been proved on the problem of computing rational points.

The above theorem thus implies that computing parameterizations of the intersections of two
arbitrary quadrics that are always optimal in the number of radicals is currently out of reach.

However, in some particular cases, we can use the following corollary to Theorem 7.6 to prove
that

√
) cannot be avoided.

Corollary 7.7. If the intersection C of QS and QT is a nonsingular quartic and the rational hy-

perelliptic quartic curve %2 = det(S+&T ) has no rational point, then the parameterization of C in

Q(
√
))[!,

√
"] with " ∈ Q(

√
))[!] is optimal in the number of radicals.

We use this corollary in the next section.

7.3 Worst case examples

We prove here that there are pairs of quadrics, intersecting in the different types of real smooth
quartic, such that (6) has no rational solution.

Recall that a set of points L of P3 is called affinely finite if there exists a projective plane P such
that P∩L = /0. L is called affinely infinite otherwise. In [29], Tu, Wang and Wang prove that a real
smooth quartic can be of three different morphologies according to the number of real roots of the
determinantal equation. This result, completed with the distinction between the two possible cases
when the four roots of the determinantal equation are real, is embodied in the following theorem.

Theorem 7.8. Let QS and QT be two quadrics intersecting in C in a smooth quartic C. C can be

classified as follows:

• If D(&,µ) has four real roots, then C has either two real affinely finite connected components

or is empty.

• If D(&,µ) has two real roots and two complex roots, then C has one real affinely finite con-

nected component.

• If D(&,µ) has four complex roots, then C has two real affinely infinite connected components.

7.3.1 Two real affinely finite components

We first look at the case where the quartic has two real affinely finite components and start with a
preliminary lemma.

Lemma 7.9. The equation

y2 = ax4+bx2+ c+d(x3+ x) (7)

has no rational solution if a,c≡ 3 (mod 8), b≡ 7 (mod 8) and d ≡ 4 (mod 8).
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Proof. Assume for a contradiction that (x,y) is a rational solution to (7). We can write x= X/Z and
y= Y/Z2, where X ,Y,Z are integers, Z *= 0 and X ,Z are mutually prime (so are not both even).

Consider first the reduction of Equation (7) modulo 8:

Y 2 ≡ 3X4+7X2Z2+3Z4+4XZ(X2+Z2) (mod 8).

If both X and Z are odd, X2 and Z2 are equal to 1 (mod 8). Thus 4(X2 + Z2) ≡ 0 (mod 8) and
Y 2 ≡ 3+7+3≡ 5 (mod 8), contradicting the fact that Y 2 ≡ 0,1 or 4 (mod 8), for all integers Y .

If X and Z are not both odd, one of X2 and Z2 is equal to 0 (mod 4) and the other is equal to
1 (mod 4). The reduction of Equation (7) modulo 4 thus gives Y 2 ≡ 3 (mod 4), contradicting the
fact that Y 2 ≡ 0 or 1 (mod 4), for all integers Y .

Proposition 7.10. Consider the following pair of quadrics intersecting in a smooth quartic with two

real affinely finite components:

QS : 5y
2+6xy+2z2−w2+6zw= 0,

QT : 3x
2+ y2− z2−w2 = 0.

Then the square root
√
) is necessary to parameterize the curve of intersection.

Proof. The determinantal equation has four simple real roots and we find a quadric of inertia (2,2)
in each of the intervals on which it is positive (in fact QS and QT are representative quadrics in these
intervals). Thus, by Theorem 7.8, the intersection of QS and QT is a real smooth quartic with two
affinely finite components.

We now apply Corollary 7.7 and show that the square root
√
) is necessary to parameterize the

curve of intersection. We have:

%2 = det(S+&T ),

= 3&4+12&3−57&2−156&+99,

≡ 3&4+7&2+3+4(&3+&) (mod 8),

which has no rational solution by Lemma 7.9, so
√
) cannot be avoided.

7.3.2 One real affinely finite component

As above, we prove a preliminary lemma.

Lemma 7.11. The equation

y2 = ax4+bx3+ cx2+dx+ e (8)

has no rational solution if a,e≡ 2 (mod 4), b,d ≡ 0 (mod 4) and c≡ 3 (mod 4).
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Proof. As before, we assume for a contradiction that (8) has a rational solution (x,y) and write
x = X/Z and y = Y/Z2, where X ,Y,Z are integers, Z *= 0 and X ,Z are mutually prime (so are not
both even). We consider the reduction of Equation (8) modulo 4:

Y 2 = 2X4+3X2Z2+2Z4.

If X and Z are not both odd, then Y 2 ≡ 2 (mod 4). If both X and Z are odd, then Y 2 ≡ 3 (mod 4). In
both cases, we have a contradiction since Y 2 ≡ 0 or 1 (mod 4), for all integers Y .

We can now prove the following.

Proposition 7.12. Consider the following pair of quadrics intersecting in a smooth quartic with one

real affinely finite component:

QS : 2x
2−2xy+2xz−2xw+ y2+4yz−4yw+2z2−4zw= 0,

QT : x
2−2xy+4xz+4xw− y2+2yz+4yw+4zw−2w2 = 0.

Then the square root
√
) is necessary to parameterize the curve of intersection.

Proof. The determinantal equation has two simple real roots so it is immediate that the intersection
of QS and QT is a real smooth quartic with one affinely finite component, by Theorem 7.8.

We again apply Corollary 7.7 and show that the square root
√
) is necessary to parameterize the

curve of intersection. We have:

%2 = det(S+&T ),

= 22&4+48&3−9&2+60&+30,

≡ 2&4+3&2+2 (mod 4),

which has no rational solution by Lemma 7.11, so
√
) cannot be avoided.

7.3.3 Two real affinely infinite components

We again prove a preliminary result.

Lemma 7.13. The equation

y2 = a(x4+ x+1)+bx3+ cx2 (9)

has no rational solution if a≡ 2 (mod 4), b≡ 0 (mod 4) and c≡ 1 (mod 4).

Proof. We proceed as in Lemmas 7.9 and 7.11, and consider the reduction of Equation (9) modulo
4:

Y 2 = 2X4+X2Z2+2XZ3+2Z4.

If X is even and Z is odd, the equation reduces to Y 2 = 2XZ+2 ≡ 2 (mod 4). If X is odd and Z is
even, we also have Y 2 ≡ 2 (mod 4). Finally, if both X and Z are odd, (9) reduces to Y 2 = 1+2XZ ≡
3 (mod 4). In all cases, we have a contradiction since Y 2 ≡ 0 or 1 (mod 4), for all integers Y .
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This is enough to prove the following.

Proposition 7.14. Consider the following pair of quadrics intersecting in a smooth quartic with two

real affinely infinite components:

QS : x
2−2y2+4zw= 0,

QT : xy+ z2+2zw−w2 = 0.

Then the square root
√
) is necessary to parameterize the curve of intersection.

Proof. The determinantal equation has four simple complex roots so it is immediate that the inter-
section ofQS andQT is a real smooth quartic with two affinely infinite components, by Theorem 7.8.

We again apply Corollary 7.7. We have:

%2 = det(S+&T ),

= 2&4+4&3+5&2+2&+2,

≡ 2&4+&2+2&+2 (mod 4),

which has no rational solution by Lemma 7.13, so
√
) cannot be avoided.

8 Examples

We now give several examples of computing a parameterization of the intersection in case the inter-
section of two quadrics is a smooth quartic. The examples presented cover the range of morphologies
discussed in the previous section and illustrate all aspects of optimality and near-optimality. For more
examples, see Part IV [12]. All parameterizations have been computed with a C++ implementation
of our intersection software (see Part IV).

8.1 Example 1

Our first example consists of the quadrics given in Output 1. The gcd of the partial derivatives of
the determinantal equation is 1, so the intersection consists of a (possibly complex) smooth quartic.
Since the determinantal equation is found to have four real roots, the intersection, over the reals, is
either empty or made of two real affinely finite components (Theorem 7.8). We find a sample quadric
in each of the intervals on which D(&,µ) is positive and compute its inertia. In the first interval, we
find a quadric of inertia (2,2) so we proceed. In the second interval, we find a quadric of inertia
(4,0). By Theorem 4.3, we conclude the intersection is empty of real points.

8.2 Example 2

Our second example is as in Output 2. The gcd of the two partial derivatives of the determinantal
equation is 1, so the intersection (over C) is a smooth quartic. The fact that the determinantal
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Output 1 Execution trace for Example 1.
>> quadric 1: 6*x*y + 5*y^2 + 2*z^2 + 6*z*w - w^2

>> quadric 2: 3*x^2 + y^2 - z^2 + 11*w^2

>> launching intersection

>> determinantal equation: 33*l^4 - 124*l^3*m + 137*l^2*m^2 - 32*l*m^3 - 11*m^4

>> gcd of derivatives of determinantal equation: 1

>> number of real roots: 4

>> intervals: ]-4, 0[, ]0, 1[, ]2/2^1, 3/2^1[, ]3/2^1, 4/2^1[

>> picked test point 1 at [ -4 1 ], sign > 0 -- inertia [ 2 2 ] found

>> picked test point 2 at [ 1 1 ], sign > 0 -- inertia [ 4 0 ] found

>> complex intersection: smooth quartic

>> real intersection: empty

>> end of intersection

>> time spent: 10 ms

Output 2 Execution trace for Example 2.
>> quadric 1: x^2 - x*y - y^2 - y*w + z^2 + w^2

>> quadric 2: 2*x^2 - x*y + y^2 - y*z + y*w + z^2

>> launching intersection

>> determinantal equation: - 6*l^4 - 12*l^3*m + 3*l^2*m^2 + 6*l*m^3 - 2*m^4

>> gcd of derivatives of determinantal equation: 1

>> complex intersection: smooth quartic

>> real intersection: smooth quartic, one real affinely finite component

>> number of real roots: 2

>> intervals: ]-2, -1[, ]-1, 0[

>> picked test point 1 at [ -1 1 ], sign > 0 -- inertia [ 2 2 ] found

>> quadric (2,2) found: x^2 + 2*y^2 - y*z + 2*y*w - w^2

>> decomposition of its determinant [a,b] (det = a^2*b): [ 2 1 ]

>> a point on the quadric: [ 0 0 1 0 ]

>> param of quadric (2,2): [- s*u + t*v, - 2*s*v, (2*s + 2*t)*u + (- 4*s + 2*t)*v, s*u + t*v]

>> status of smooth quartic param: optimal

>> end of intersection

>> parameterization of smooth quartic, branch 1:

[- 4*u^3 + u^2*v + 6*u*v^2 + 2*v^3 - u*sqrt(Delta), - 6*u^3 - 8*u^2*v - 4*u*v^2, - 4*u^3

+ 2*u^2*v + (2*u + 2*v)*sqrt(Delta), 4*u^3 + 5*u^2*v + 2*u*v^2 + 2*v^3 + u*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:

[- 4*u^3 + u^2*v + 6*u*v^2 + 2*v^3 + u*sqrt(Delta), - 6*u^3 - 8*u^2*v - 4*u*v^2, - 4*u^3

+ 2*u^2*v + (- 2*u - 2*v)*sqrt(Delta), 4*u^3 + 5*u^2*v + 2*u*v^2 + 2*v^3 - u*sqrt(Delta)]

Delta = - 2*u^4 + 10*u^3*v - 9*u^2*v^2 - 8*u*v^3 - 2*v^4

>> time spent: 10 ms

equation has two real roots implies that the smooth quartic is real and that it consists of one affinely
finite component (Theorem 7.8). Here, the two input quadrics have inertia (3,1) and a first quadric
QR of inertia (2,2) is found in the pencil between the two roots ofD . A point is taken onQR and then
approximated by a point with integer coordinates. It turns out that the approximation, i.e. (0,0,1,0),
also lies on QR. We thus use this quadric to parameterize the intersection. Since the determinant of
QR is a square, it can be rationally parameterized (Proposition 6.6). The end of the calculation is as
in Section 4.
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Output 3 Execution trace for Example 3.
>> quadric 1: 19*x^2 + 22*y^2 + 21*z^2 - 20*w^2

>> quadric 2: x^2 + y^2 + z^2 - w^2

>> launching intersection

>> determinantal equation: - 175560*l^4 - 34358*l^3*m - 2519*l^2*m^2 - 82*l*m^3 - m^4

>> gcd of derivatives of determinantal equation: 1

>> number of real roots: 4

>> intervals: ]-14/2^8, -13/2^8[, ]-26/2^9, -25/2^9[, ]-25/2^9, -24/2^9[, ]-3/2^6, -2/2^6[

>> picked test point 1 at [ -13 256 ], sign > 0 -- inertia [ 2 2 ] found

>> picked test point 2 at [ -3 64 ], sign > 0 -- inertia [ 2 2 ] found

>> complex intersection: smooth quartic

>> real intersection: smooth quartic, two real affinely finite components

>> quadric (2,2) found: - 16*x^2 + 5*y^2 - 2*z^2 + 9*w^2

>> decomposition of its determinant [a,b] (det = a^2*b): [ 12 10 ]

>> a point on the quadric: [ 3 0 0 4 ]

>> param of quadric (2,2): [0, - 24*s*u - 24*t*v, 0, 0] + sqrt(10)*[3*t*u + 6*s*v, 0,

12*s*u - 12*t*v, - 4*t*u + 8*s*v]

>> status of smooth quartic param: near-optimal

>> end of intersection

>> parameterization of smooth quartic, branch 1:

[(72*u^3 + 4*u*v^2)*sqrt(10) + 3*v*sqrt(10)*sqrt(Delta), - 340*u^2*v + 10*v^3

- 24*u*sqrt(Delta), (- 118*u^2*v + 5*v^3)*sqrt(10) + 12*u*sqrt(10)*sqrt(Delta),

(96*u^3 - 12*u*v^2)*sqrt(10) - 4*v*sqrt(10)*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:

[(72*u^3 + 4*u*v^2)*sqrt(10) - 3*v*sqrt(10)*sqrt(Delta), - 340*u^2*v + 10*v^3

+ 24*u*sqrt(Delta), (- 118*u^2*v + 5*v^3)*sqrt(10) - 12*u*sqrt(10)*sqrt(Delta),

(96*u^3 - 12*u*v^2)*sqrt(10) + 4*v*sqrt(10)*sqrt(Delta)]

Delta = 20*u^4 - 140*u^2*v^2 + 5*v^4

>> time spent: 10 ms

8.3 Example 3

Our third example is Example 5 from [34]. It is the intersection of a sphere and an ellipsoid that are
very close to one another. The output of our implementation on that example is shown in Output 3.
Since the determinantal equation has four simple real roots, the intersection is either empty or made
of two real affinely finite components (Theorem 7.8). Picking a sample quadric in each of the
intervals on which detR(&,µ) is positive shows that the pencil contains no quadric of inertia (4,0),
so the quartic is real. Here, the determinant of the quadric of inertia (2,2) used to parameterize the
intersection is not a square, so the parameterization of the quartic contains the square root of some
integer. It is thus only near-optimal in the sense that this square root can possibly be avoided.

It turns out that in this particular example it can be avoided. Consider the cone QR corresponding
to the rational root (&0,µ0) = (−1,21) of the determinantal equation:

QR :−QS+21QT = 2x2− y2−w2.

QR contains the obvious rational point (1,1,0,1), which is not its singular point. It implies that it
can be rationally parameterized by Proposition 6.3. Plugging this parameterization in the equation
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Output 4 Execution trace for Example 4.
>> quadric 1: x^2 - 2*y^2 + 4*z*w

>> quadric 2: x*y + z^2 + 2*z*w - w^2

>> launching intersection

>> determinantal equation: 2*l^4 + 4*l^3*m + 5*l^2*m^2 + 2*l*m^3 + 2*m^4

>> gcd of derivatives of determinantal equation: 1

>> number of real roots: 0

>> complex intersection: smooth quartic

>> real intersection: smooth quartic, two real affinely infinite components

>> quadric (2,2) found: x*y + z^2 + 2*z*w - w^2

>> decomposition of its determinant [a,b] (det = a^2*b): [ 2 2 ]

>> a point on the quadric: [ 1 0 0 0 ]

>> param of quadric (2,2): [4*t*u, - 2*s*v, s*u + t*v, s*u + t*v]

+ sqrt(2)*[0, 0, 0, - s*u + t*v]

>> status of smooth quartic param: near-optimal

>> end of intersection

>> parameterization of smooth quartic, branch 1:

[- 4*u*v^2 + 4*v*sqrt(Delta), - 2*u^3 - 8*u*v^2 + 2*u^3*sqrt(2), 4*v^3 - u^2*v*sqrt(2)

+ u*sqrt(Delta), - 2*u^2*v + 4*v^3 + (u^2*v + 4*v^3)*sqrt(2) + (u - u*sqrt(2))*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:

[- 4*u*v^2 - 4*v*sqrt(Delta), - 2*u^3 - 8*u*v^2 + 2*u^3*sqrt(2), 4*v^3 - u^2*v*sqrt(2)

- u*sqrt(Delta), - 2*u^2*v + 4*v^3 + (u^2*v + 4*v^3)*sqrt(2) - (u - u*sqrt(2))*sqrt(Delta)]

Delta = 2*u^4 + 10*u^2*v^2 - 4*v^4 + (- 2*u^4 - 4*v^4)*sqrt(2)

>> time spent: 10 ms

of QS or QT gives a simple parameterization for the smooth quartic:

X(u,v) =









u2+2v2

2uv
u2−2v2

0









±









0
0
0
1









√

2u4+4u2v2+8v4.

8.4 Example 4

Our last example is the one of Proposition 7.14. The result in shown in Output 4. Here, again, the
gcd of the partial derivatives of the determinantal equation is 1, so the intersection curve is, over C, a
smooth quartic. But since D(&,µ) has in fact no real root, we know by Theorem 7.8 that the smooth
quartic is real and has two affinely infinite components. Here, the intermediate quadric QR of inertia
(2,2) found (which is in fact QT ) is such that its determinant is not a square. So the parameterization
of the quartic contains a square root. Our implementation cannot decide whether this square root is
needed or not, so outputs that the parameterization is near-optimal. In this particular example, we
know in fact that the parameterization is optimal, by Proposition 7.14.

9 Conclusion

The generic algorithm introduced in Section 4 already represents a substantial improvement over
Levin’s pencil method and its subsequent refinements. Indeed, we proved that, when the intersection
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is a smooth quartic (the generic case) our algorithm computes a parameterization which is optimal
in the number of radicals involved up to one possibly unnecessary square root. We also showed
that deciding (in all cases) whether this extra square root can be avoided is out of reach, and that
the parameterization is optimal in some cases. Moreover, for the first time, our algorithms enable
to compute in practice an exact form of the parameterization of two arbitrary quadrics with rational
coefficients.

Even though this first part of our paper has focused on the generic, smooth quartic case, this
algorithm can also be used when the intersection is singular. Assume the intermediate quadric QR

has inertia (2,2). When the curve of intersection consists of a cubic and a line, the equation * in
the parameters has a cubic factor of bidegree (2,1) and a linear factor of bidegree (0,1), in view of
Fact 7.2. Similarly, when the curve of intersection consists of a conic and two lines, * factors in a
quadratic factor of bidegree (1,1) and two linear factors of bidegree (1,0) and (0,1). Thus, assuming
we know how to factor *, we have a way to parameterize each component of the intersection.

Unfortunately, this does not always lead to a parameterization of the intersection that involves
only rational functions. When the intersection C is a singular quartic, * is irreducible since C itself
is, and solving * for s in terms of u (or the converse) introduces the square root of a polynomial,
while we know that there exists a parameterization of C with rational functions (the genus of the
curve is 0).

Always computing parameterizations with rational functions when such parameterizations are
known to exist will necessitate rethinking the basic philosophy of our algorithm. Essentially, while
the idea of the generic algorithm is to use the rational quadric with largest rank as intermediate
quadric for parameterizing the intersection, the refined method will instead use the rational quadric
with smallest rank as intermediate quadric.

Proceeding that way will have the double benefit of always computing the simplest possible
parameterizations and much better controlling the size of their coefficients. The price to pay is a
multiplication of the cases and the writing of a dedicated piece of software for each (real projective)
type of intersection. This is the subject of Parts II and III of this paper.

A The parameterizations of Table 3 are proper

We prove in this section that the parameterizations of Table 3 are not only proper parameterizations
of the projective quadrics (in the sense that they define one-to-one correspondences between a dense
open subset of the space of the parameters and a dense open subset of the quadric) but they are
bijections between the space of the parameters and the quadric. The following two lemmas deal
with the parameterizations of quadrics of inertia (2,2) and (2,1). For other types of quadrics, it is
straightforward to show that the parameterizations of Table 3 are bijections.

Lemma A.1. (u,v),(s, t) /→ ( ut+a1vs
a1

, us−a2vt
a2

, ut−a1vs√
a1a3

, us+a2vt√
a2a4

) is a bijection from P1×P1 onto the

surface {(x1,x2,x3,x4) ∈ P3 | a1x21+a2x
2
2−a3x

2
3−a4x

2
4 = 0}, where a1,a2,a3,a4 are positive.

Proof. To prove this lemma, we apply the change of coordinates in P3

X =
a1x1+

√
a1a3x3

2
, Y =

a1x1−
√
a1a3x3

2a1
, Z =

a2x2+
√
a2a4x4

2
, W =

−a2x2+
√
a2a4x4

2a2
,
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or equivalently

x1 =
X+a1Y

a1
, x3 =

X−a1Y√
a1a3

, x2 =
Z−a2W

a2
, x4 =

Z+a2W√
a2a4

.

In the new frame, the equation of the surface is XY −ZW = 0 and the map becomes

0 : (u,v),(s, t) /→ (X ,Y,Z,W ) = (ut,vs,us,vt).

The map 0 is clearly a map from P1 × P1 into P3 because 0((&u,&v),(µs,µt)) =
&µ0((u,v),(s, t)) and 0((u,v),(s, t)) = (0,0,0,0) if and only if (u,v) = (0,0) or (s, t) = (0,0).
Moreover, the image of0 is clearly included in the surface of equation XY −ZW = 0. Conversely, if
(X ,Y,Z,W ) is a point of this surface, at least one of its coordinates is non zero (we are in a projective
space), and by symmetry we may suppose that X *= 0. Considering (X ,Z,W ) = (ut,us,vt), we have
ut *= 0, Z

X
= s

t
, and W

X
= v

u
. Thus Z

X
uniquely defines (s, t) up to a constant factor and similarly for W

X

and (u,v), which shows the injectivity of0. Furthermore, XY−ZW = 0 impliesY = ZW
X

= us vt
ut

= vs

which shows that 0 is surjective.

Recall that P!2 denotes the quasi-projective space defined as the quotient of R3 \ {0,0,0} by
the equivalence relation ∼ where (x1,x2,x3) ∼ (y1,y2,y3) if and only if ∃& ∈ R \ {0} such that
(x1,x2,x3) = (&y1,&y2,&2y3).

Lemma A.2. (u,v,s) /→ (uv, u
2−a1a2v2
2a2

, u
2+a1a2v

2

2
√
a2a3

,s) is a bijection from P!2 onto the surface

{(x1,x2,x3,x4) ∈ P3 | a1x21+a2x
2
2−a3x

2
3 = 0}, where a1,a2,a3 are positive.

Proof. For this lemma, we consider the change of coordinates in P3

X = x1, Y =
√
a2a3x3+a2x2, Z =

√
a2a3x3−a2x2

a1a2
, W = x4,

or equivalently

x1 = X , x2 =
Y −a1a2Z

2a2
, x3 =

Y +a1a2Z

2
√
a2a3

, x4 =W.

In the new frame, the equation of the surface is X2−YZ = 0 and the map becomes

1 : (u,v,s) /→ (X ,Y,Z,W ) = (uv,u2,v2,s).

The map 1 is clearly a map from P!2 into P3 because 1(&u,&v,&2s) = &21(u,v,s) and
1(u,v,s) = (0,0,0,0) if and only if (u,v,s) = (0,0,0). Moreover, the image of 1 is clearly in-
cluded in the surface of equation X2−YZ = 0. Conversely, if (X ,Y,Z,W ) is a point of this surface,
then we have to prove that its preimage consists in exactly one point of P!2. If Y = Z = 0, we have
also X = 0 and a point of the preimage should satisfy u= v= 0; it is therefore unique (in P!2) an it
exists by 1(0,0,W ) = (0,0,0,W ).

IfY or Z is nonzero, we may suppose by symmetry thatY *= 0. Considering (X ,Y,W ) = (uv,u2,s)
we have u *= 0, X

Y
= v

u
and W

Y
= s

u2
. Thus X

Y
and W

Y
uniquely define (u,v,s)∈P!2 which implies that1

is injective. Furthermore,YZ=X2 implies Z= X2

Y
= (uv)2

u2
= v2 which shows that1 is surjective.
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Remark A.3. Although the statements and the proofs of Lemma A.1 and A.2 are very similar, there
is a big difference between the two bijections: the bijection is an isomorphism and a diffeomorpism
in Lemma A.1 but not in Lemma A.2 where the space of the parameters is smooth while the surface
is singular at (0,0,0,1).
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quartic, we now focus on singular intersections. To produce optimal or near-optimal parameteriza-
tions in all cases, we first determine the the real type of the intersection before computing the actual
parameterization.

In this second part, we present the first classification of pencils of quadrics based on the type of
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of the real intersection. The near-optimal parameterization algorithms in all singular cases will be
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Paramétrisation quasi-optimale de l’intersection de quadriques :

II. Classification des faisceaux

Résumé : Alors que la partie I [2] de cet article s’est principalement focalisée sur les paires de
quadriques dont l’intersection est une quartique lisse, nous nous concentrons maintenant sur les
intersections singulières. Pour parvenir à l’obtention de paramétrages optimaux ou quasi-optimaux
dans tous les cas, nous découplons la détermination du type réel de l’intersection du paramétrage
proprement dit.

Dans cette seconde partie de notre article, nous présentons la première classification des fais-
ceaux de quadriques basée sur le type de l’intersection réelle et nous montrons comment cette clas-
sification peut être utilisée pour calculer efficacement le type réel de l’intersection. Les algorithmes
quasi-optimaux de paramétrage dans tous les cas sont présentés dans la partie III [3].

Mots-clés : Intersection de surfaces, quadriques, faisceaux de quadriques, classification, paramé-
trisation.
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1 Introduction

At the end of Part I [2], we saw that the generic algorithm we introduced, while being simple and
giving optimal parameterizations in some cases, fails to achieve the stated goal of computing (near-
)optimal parameterizations (both in terms of functions and coefficients) of intersections of arbitrary
quadrics.

Unfortunately, it turns out that achieving this goal involves more than simple adaptations to the
generic algorithm. Reaching optimality implies looking carefully at each type of real intersection
and designing a dedicated algorithm to handle each situation. For this, we need to understand pre-
cisely which situations can happen over the reals and thus classify real pencils of quadrics of P3(R).

Classifying pencils of quadrics over the complexes was achieved by Segre in the nineteenth
century [6]. Its practical value is however limited since its proper interpretation lies in the complex
domain (i.e. points on the intersection might be real or complex), whereas our concern is with real
parts of the intersection.

Accordingly, we refine the Segre classification of pencils of P3(R) by examining the different
cases occurring over the reals. This refinement is, in itself, of partial assistance for the parameter-
ization problem: no more than the Segre classification can it be “reverse engineered” to construct
explicit representations of the various intersection components. It is however mandatory for the fol-
lowing two reasons: it allows us to obtain structural information on the intersection curve which we
use to drive the algorithm for computing a near-optimal parameterization of the intersection curve
(Part III); it is also a prerequisite for proving the (near-)optimality of our parameterization algorithm.

In this second part of our paper, we present a new classification of pencils of quadrics based on
the type of the real intersection. A summary of this classification is given in Tables 4 and 5. We
then show how to use this classification to compute efficiently the type of the real intersection. In
particular we show how computations with non-rational numbers can be avoided for detecting the
type of the intersection when the input quadrics have rational coefficients.

It should be stressed that, even though the classification of pencils of the reals is presented here
as an intermediate step in a more global process (i.e., parameterization of the intersection), this
classification has an interest on its own. It could be used for instance in a collision detection context
to predict at which time stamps a collision between two moving objects will happen.

The rest of this part is organized as follows. Section 2 reviews the classical Segre classification of
pencils of quadrics over the complexes. We then refine, in Sections 3 and 4, the Segre classification
over the reals with a repeated application of the Canonical Pair Form Theorem for pairs of real
symmetric matrices introduced in Part I. In Section 3, we consider regular pencils, i.e., pencils that
contain a non-singular quadric, and, in Section 4, singular pencils, i.e., pencils that contain only
singular quadrics, or, equivalently, pencils with identically vanishing determinantal equation. In
Section 5, we use the results of the classification of pencils over the reals to design an algorithm to
quickly and efficiently characterize the complex and real types of the intersection given two input
quadrics. Several examples are detailed in Section 6, before concluding.
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4 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

2 Classification of pencils of quadrics over the complexes

In this section, we review classical material on the classification of pencils of quadrics. It will serve
as the starting point for our classification of pencils over the reals in Sections 3 and 4.

In the rest of the paper all quadrics are considered in real projective space P3(R); their coeffi-
cients as well as the coefficients of the determinantal equations of pencils are thus real. However,
we consider the intersection of quadrics both in P3(R) and in P3(C). Accordingly, the classification
of pencils is considered both over the complexes and over the reals.

In the following, the parameters of the quadric parameterizations live in real projective spaces.
For simplicity, parameter spaces Pn(R) are denoted Pn.

We start in Section 2.1 with a proof that the existence of a singularity on the intersection curve
is equivalent either to the existence of a multiple root in the determinantal equation or to the fact
that the determinantal equation vanishes identically. Then Section 2.2 recalls the basic tenets of
the classification of pencils over the complexes. The well-known Segre characteristic is recalled in
Section 2.2.1 and its relation with the Canonical Pair Form Theorem for pairs of real symmetric
matrices (Part I and [8, 9]) is thoroughly explained in Section 2.2.2.

2.1 Singular intersections and multiple roots

In the ensuing sections, we use the following equivalence for classifying the singular intersections
through the multiplicities of the roots of the determinantal equation D(!,µ) and the rank of the
corresponding quadrics.

Proposition 2.1. If the intersection of two distinct quadrics QS and QT has a singular point p, then

• either D ≡ 0 and QS and QT are singular at p,

• or D ≡ 0 and there is a unique quadric QR of the pencil that is singular at p,

• or D #≡ 0, there is a unique quadric QR = !0QS +µ0QT that is singular at p and (!0,µ0) is a
multiple root of D .

In the last two cases, all the quadrics of the pencil except QR share a common tangent plane at p.

Proof. First recall that a curve C defined by implicit equations QS = QT = 0 is singular at p if and
only if p is on C and the rank of the Jacobian matrix J of C is strictly less than 2 when evaluated at
p. J is the matrix of partial derivatives:

J =

(

"QS
"x

"QS
"y

"QS
"z

"QS
"w

"QT
"x

"QT
"y

"QT
"z

"QT
"w

)

. (1)

Let JS and JT be the first and second rows of J.
If all the coefficients of J vanish at p, then p is a singular point of both QS and QT and thus of

all quadrics of the pencil, implying that D ≡ 0.
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Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils 5

Otherwise, J has rank one and there exists a linear relationship between the rows of J evaluated
at p:

!0JS|p+µ0JT |p = 0, (!0,µ0) ∈ P1.

Also, there is a v ∈ P3(R) such that J|pv is a non-zero multiple of v. This exactly means that the
tangent plane at p of all the quadrics of the pencil is the plane P of equation v ·

(

x y z w
)T

= 0,
except for the quadric !0QS + µ0QT . For this last quadric, all the partial derivatives at p vanish,
implying that it is singular at p and has rank at most 3.

Now, we may change the generators of the pencil by taking !0S+µ0T as first generator in place
of S. This has the effect of translating (!0,µ0) to (1,0). If we change of frame in order that the
coordinates of p become (0,0,0,1) and that the equation of P becomes x = 0, the matrices of the
generators of the pencil become

S′ =









∗ ∗ ∗ 0
∗
∗ A 0

0
0 0 0 0









and T ′ =









∗ ∗ ∗ 1
∗
∗ B 0

0
1 0 0 0









,

where A and B are 2×2 matrices and the stars denote any element. It follows immediately that

det(!S′ +µT ′) = −µ2 det(!A+µB).

The case det(!A+µB) ≡ 0 proves the second assertion. The case det(!A+µB) #≡ 0 proves the last
assertion.

2.2 Classification of pencils by elementary divisors

For the reader’s convenience, we review, in this section, the classical classification of pencils of
quadrics as originally done by the Italian mathematician Corrado Segre [6]. More recent and acces-
sible accounts can be found in [1, 5].

2.2.1 Segre characteristic

Assume we are given a pencil R(!,µ) = !S+µT of symmetric matrices of size n such thatD(!,µ) =
detR(!,µ) is not identically zero. In general, D has n complex roots to which correspond n complex
projective cones of the pencil. But there can be exceptions to this when a root (!0,µ0) of D appears
with multiplicity larger than 1. It can also happen that (!0,µ0) makes not only the determinant D

vanish but also all its subdeterminants of order n−t+1 say, t > 0. This means that the corresponding
quadric has as singular set a linear space of dimension t−1.

Let the (!i,µi), i= 1, . . . , p, be the roots of D and the mi their respective multiplicities. Indicate
by mj

i the minimum multiplicity with which the root (!i,µi) appears in the subdeterminants of order

n− j of D . Let ti ! 1 be the smallest integer such that mtii = 0. We see that mj
i ! m

j+1
i for all j.

Define a sequence of indices e ji as follows:

e
j
i = m

j−1
i −m

j
i , j = 1, . . . , ti,
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6 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

with m0i = mi. The multiplicity mi of (!i,µi) is the sum e1i + · · ·+ e
t j
i . We have therefore:

D(!,µ) = (!µi−µ!i)
miD∗(!,µ) = (!µi−µ!i)

e1i · · ·(!µi−µ!i)
e
ti
i D∗(!,µ),

where D∗(!i,µi) #= 0.

The factors (!µi−µ!i)e
j
i are called the elementary divisors and the exponents e ji the characteris-

tic numbers, associated with the root (!i,µi). Their study goes back to Karl Weierstrass [10]. Segre
introduced the following notation to denote the various characteristic numbers associated with the
degenerate quadrics that appear in a pencil:

#n = [(e11, . . . ,e
t1
1 ),(e12, . . . ,e

t2
2 ), . . . ,(e1p, . . . ,e

tp
p )],

with the convention that the parentheses enclosing the characteristic numbers of (!i,µi) are dropped
when ti = 1. This is known as the Segre characteristic or Segre symbol of the pencil.

The following theorem, essentially due to Weierstrass [10], proves that a pencil of quadrics and
the intersection it defines are uniquely and entirely characterized, over the complexes, by its Segre
symbol.

Theorem 2.2 (Characterization by Segre symbol). Consider two pencils of quadrics R(!1,µ1) =
!1S1 + µ1T1 and R(!2,µ2) = !2S2 + µ2T2 in Pn(R). Suppose that detR(!1,µ1) and detR(!2,µ2)
are not identically zero and let (!1,i,µ1,i) and (!2,i,µ2,i) be their respective roots. Then the two

pencils are projectively equivalent if and only if they have the same Segre symbol and there is an

automorphism of P1(C) taking (!1,i,µ1,i) to (!2,i,µ2,i).

With the above definition, we see that (!i,µi) is a root of all subdeterminants of R(!,µ) of order
n− ti+k,k> 0, but not of any subdeterminant of order n− ti. In other words, the rank ri of R(!i,µi)
is n− ti. In addition, since mi = e1i + · · ·+ e

ti
i , we have that n− 1 ! ri ! n−mi. Enumerating all

possible cases for the e ji subject to the constraints induced by its definition gives rise to all possible
types of (complex) intersection and accompanying Segre symbols. Tables 1, 2, and 3 list the possible
cases for pencils in P3(R). Incidentally, we can see that the pair (mi,ri) is sufficient to characterize
the pencil except in the case (mi,ri) = (4,2).

When the determinantal equation D(!,µ) vanishes identically, i.e., all the quadrics are singular
(see Tables 2 and 3), the above theory does not apply directly. There are two cases, according to
whether the quadrics of the pencil have singular points in common or not:

• When they do not, the pencil can be characterized by a different set of invariants the existence
of which was originally proved by Kronecker. We do not detail here how this set is computed
(but see [1, p. 55-60]). Suffice it to say that the cases n = 4 and n = 3 are characterized each
by a single set of such invariants, designated by the strings [1{3}] and [{3}] respectively. In
Section 4.1, we carry out the analysis of this situation when n = 4 without resorting to these
special invariants.

• When the quadrics do have (at least one) singular point in common, say p, we may suppose,
after a change of frame, that p has coordinates (0, . . . ,0,1). In the new frame, the matrices

INRIA



Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils 7

Segre
characteristic #4

roots of D(!,µ) and
rank of associated quadric

complex type of intersection

[1111] four simple roots smooth quartic
[112] one double root, rank 3 nodal quartic

[11(11)] one double root, rank 2 two secant conics
[13] triple root, rank 3 cuspidal quartic

[1(21)] triple root, rank 2 two tangent conics
[1(111)] triple root, rank 1 double conic

[4] quadruple root, rank 3 cubic and tangent line
[(31)] quadruple root, rank 2 conic and two lines crossing on the conic
[(22)] quadruple root, rank 2 two lines and a double line
[(211)] quadruple root, rank 1 two double lines
[(1111)] quadruple root, rank 0 any non-trivial quadric of the pencil

[22] two double roots, both rank 3 cubic and secant line
[2(11)] two double roots, ranks 3 and 2 conic and two lines not crossing on the conic

[(11)(11)] two double roots, both rank 2 four skew lines

Table 1: Classification of pencils by Segre symbol in the case where D(!,µ) does not identically
vanish. When the determinantal equation has multiple roots, the additional simple roots are not
indicated: they correspond to rank 3 quadrics.

Segre
characteristic #3

roots of D3(!,µ) and
rank of associated conic

complex type of intersection

[1{3}] no common singular point conic and double line

[111] three simple roots four concurrent lines
[12] double root, rank 2 two lines and a double line

[1(11)] double root, rank 1 two double lines
[3] triple root, rank 2 line and triple line

[(21)] triple root, rank 1 quadruple line
[(111)] triple root, rank 0 any non-trivial quadric of the pencil
[{3}] D3(!,µ) ≡ 0 line and plane

Table 2: Classification of pencils by Segre symbol in the case where D(!,µ) ≡ 0 and the quadrics
of the pencil have zero (top part) or one (bottom part) singular point p in common. D3(!,µ) is the
determinant of the 3×3 upper-left matrix of R(!,µ) after a congruence transformation sending p to
(0,0,0,1). The conic associated with a root of D3(!,µ) corresponds to the 3× 3 upper-left matrix
or R(!,µ).
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8 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

Segre
characteristic #2

roots of D2(!,µ) and
rank of associated matrix

complex type of intersection

[11] two simple roots quadruple line
[2] double root, rank 1 plane

[(11)] double root, rank 0 any non-trivial quadric of the pencil
D2(!,µ) ≡ 0 double plane

Table 3: Classification of pencils by Segre symbol in the case where the quadrics of the pencil have
(at least) two singular points p and q in common (i.e., D3(!,µ) ≡ 0). D2(!,µ) is the determinant of
the 2×2 upper-left matrix of R(!,µ) after a congruence transformation sending p and q to (0,0,0,1)
and (0,0,1,0). The matrix associated with a root of D2(!,µ) corresponds to the 2× 2 upper-left
matrix or R(!,µ).

have their last row and column filled with zeros. To sort out the different types of intersection,
we may identify the quadrics with their upper left (n−1)× (n−1) matrices and classify the
restricted pencils by looking at the Segre symbol #n−1 of their degree n− 1 determinantal
equation. This is what we have done in Table 2 for the case of quadrics in P3(R).

The above process can be repeated by recursing on dimension.

2.2.2 From the complexes to the reals

Theorem 2.2 can be used to find a canonical form for a pencil of quadrics when D(!,µ) is not
identically zero (see [5]). Consider the pencil R(!) = !S−T and its determinantal equation D(!),
with roots !i of multiplicity mi. Let

[(e11, . . . ,e
t1
1 ),(e12, . . . ,e

t2
2 ), . . . ,(e1p, . . . ,e

tp
p )]

be the Segre symbol of the pencil. Then there exists a change of coordinates in Pn(C) such that, in
the new frame, the pencil writes down as R′(!) = !S′ −T ′, where

S′ = diag(E11 , . . . ,E
t1
1 , . . . ,E1p, . . . ,E

tp
p ), T ′ = diag(E11J

1
1 , . . . ,E

t1
1 J

t1
1 , . . . ,E1pJ

1
p, . . . ,E

tp
p J

tp
p )

are block diagonal matrices with blocks:

Eki =







0 1

1 0






and Jki =











!i 1 0

1

0 !i











of size eki . The parentheses in the Segre symbol correspond one-to-one to the singular quadrics in
the pencil. The root of D corresponding to a singular quadric of symbol (e1i , . . . ,e

ti
i ) has multiplicity

mi = $
ti
k=1 e

k
i .
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Segre
string

roots of
D(!,µ)

rank or
inertia of
R(!1,µ1)

rank or
inertia of
R(!2,µ2)

type of
(!2,µ2)

s real type of intersection

[1111] 4 simple roots smooth quartic or /0; see Part I
[112] 1 double root (3,0) real point
[112] 1 double root (2,1) real − nodal quartic; isolated node
[112] 1 double root (2,1) real + nodal quartic; convex sing.
[112] 1 double root rank 3 complex nodal quartic; concave sing.

[11(11)] 1 double root (2,0) real + /0

[11(11)] 1 double root (2,0) real − two points
[11(11)] 1 double root (1,1) (2,1) real − two non-secant conics
[11(11)] 1 double root (1,1) (3,0) real − /0

[11(11)] 1 double root (1,1) real + two secant conics; convex sing.
[11(11)] 1 double root rank 2 complex − conic
[11(11)] 1 double root rank 2 complex + two secant conics; concave sing.

[13] triple root rank 3 cuspidal quartic
[1(21)] triple root (2,0) double point
[1(21)] triple root (1,1) two tangent conics
[1(111)] triple root rank 1 (2,1) double conic
[1(111)] triple root rank 1 (3,0) /0

[4] quadruple root rank 3 cubic and tangent line
[(31)] quadruple root (1,1) − conic

[(31)] quadruple root (1,1) +
conic and two lines crossing

on the conic
[(22)] quadruple root (2,0) double line
[(22)] quadruple root (1,1) + two single lines & a double line
[(211)] quadruple root rank 1 − point
[(211)] quadruple root rank 1 + two secant double lines
[(1111)] quadruple root rank 0 any smooth quadric of the pencil

[22] 2 double roots rank 3 rank 3 real cubic and secant line
[22] 2 double roots rank 3 rank 3 complex cubic and non-secant line

[2(11)] 2 double roots (3,0) rank 2 real point
[2(11)] 2 double roots (2,1) rank 2 real + conic and two intersecting lines
[2(11)] 2 double roots (2,1) rank 2 real − conic and point

[(11)(11)] 2 double roots (2,0) (2,0) real /0

[(11)(11)] 2 double roots (2,0) (1,1) real two points
[(11)(11)] 2 double roots (1,1) (2,0) real two points
[(11)(11)] 2 double roots (1,1) (1,1) real four skew lines
[(11)(11)] 2 double roots rank 2 rank 2 complex two secant lines

Table 4: Classification of pencils in the case where D(!,µ) does not identically vanish. (!1,µ1) de-
notes a multiple root ofD(!,µ) (if any) and (!2,µ2) another root (not necessarily simple). If (!1,µ1)

is a double root then s denotes the sign of det(!S+µT )
(µ1!−!1µ)2

at (!,µ) = (!1,µ1); if (!1,µ1) is a quadruple root

then s denotes the sign of det(!S+µT ) for any (!,µ) #= (!1,µ1). When the determinantal equation
has multiple roots, the additional simple roots are not indicated.
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Segre
string

roots of
D3(!,µ)

rank or
inertia of
R(!1,µ1)

inertia of
R(!2,µ2)

type of
(!2,µ2)

real type of intersection

[1{3}] no common
singular point

conic and double line

[111] 3 simple roots (1,1) (1,1) real four concurrent lines meeting at p
[111] 3 simple roots (2,0) real point p
[111] 3 simple roots (2,0) real point p
[111] 3 simple roots complex two lines intersecting at p
[12] double root (1,1) 2 lines and a double line meeting at p
[12] double root (2,0) double line

[1(11)] double root rank 1 (1,1) two double lines meeting at p
[1(11)] double root rank 1 (2,0) point p

[3] triple root rank 2 a line and a triple line meeting at p
[(21)] triple root rank 1 a quadruple line
[(111)] triple root rank 0 any non-trivial quadric of the pencil

[{3}] D3(!,µ) ≡ 0
the complex intersection is real;

see Tables 2 and 3

Table 5: Classification of pencils in the case where D(!,µ) identically vanishes. In the bottom
part, the quadrics of the pencil have a singular point p in common. D3(!,µ) is the determinant
of the 3× 3 upper-left matrix of R(!,µ) after a congruence transformation sending p to (0,0,0,1).
The conic associated with a root of D3(!,µ) corresponds to the 3× 3 upper-left matrix or R(!,µ).
(!1,µ1) denotes the multiple root of D3(!,µ) (if any) and (!2,µ2) another root. When D3(!,µ) has
a multiple root, the additional simple roots are not indicated.

The parallel between the Canonical Pair Form Theorem introduced in Section I.5.11 and the
decomposition by Segre symbol should now jump to mind: the first is in a sense a real version
of the second, i.e. it gives a canonical form that is projectively equivalent by a real congruence
transformation to the original pencil. In the real form, complex roots of the determinantal equation
are somehow combined in complex Jordan blocks so that quadric pencils are equivalent by a real
projective transformation.

When !i is real, the J
j
i are the real Jordan blocks associated with !i. The sum of the sizes of the

blocks corresponding to !i is $
ti
k=1 e

k
i = mi and the number of those blocks is ti = n− rankR(!i), as

in Theorem I.5.3.
When !i is complex, let ! j be its conjugate. It is intuitively clear that ti = t j in the complex

decomposition and that the associated Jordan blocks Jki and J
k
j have the same sizes, i.e. e

k
i = ekj.

When the complex roots and their blocks are combined, they give rise to complex Jordan blocks of

1When reference is made to a section or result in another part of the paper, it is prefixed by the part number.
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size 2eki . In the real canonical form, the number of these blocks is again ti but the sum of their sizes
is 2mi.

The Segre symbol can thus serve as a starting point for the study of real pencils using the Canoni-
cal Pair Form Theorem. We illustrate this with two examples concerning pencils in P3(R). Consider
first the Segre symbol [(211)]. The associated pencil has a quadruple root, which is necessarily real
(otherwise its conjugate would also be a root of the determinantal equation of the pencil). In view
of the above, the real decomposition of the pencil has three Jordan blocks, one of size 2 and two of
size 1. Now consider the Segre symbol [22]. The associated pencil has two double roots, which can
be either both real or both complex. If they are real, then each of the roots has one Jordan block of
size 2. If they are complex, then the two roots appear in the same Jordan block of size 4.

3 Classification of regular pencils of P3(R) over the reals

We now turn to the classification of pencils of quadrics of P3(R) over the reals. In what follows,
we make heavy use of the Canonical Pair Form Theorem for pairs of real symmetric matrices (Part I
and [8, 9]). For each possible Segre characteristic, we examine the different cases according to
whether the roots of the determinantal equation are real or not and then examine the conditions
leading to different types of intersection over the reals.

In each case, we start by computing the canonical form of the pair (S,T ) for a given Segre
characteristic and type (real or complex) of multiple root(s) of the determinantal equation. We
then deduce from this canonical form a normal form of the pencil over the reals by rescaling and
translating the roots to particularly simple values. Recall that the congruence transformation in the
Canonical Pair Form Theorem preserves the roots (values and multiplicities) of the determinantal
equation of the pencil. This normal form is in a sense the “simplest pair” of quadrics having a given
real intersection type. The normal pencil is equivalent by a real projective transformation to any
pencil of quadrics with the same real and complex intersection type.

A word of caution: the projective transformations involved in the classification of real pencils, if
they preserve the real type of the intersection, may well involve irrational numbers. This fact should
be kept to mind when interpreting the results.

We treat the first case (nodal quartic) in some detail so that the reader gets accustomed to the
techniques we use. For the other cases, we move directly to the normal form without first expliciting
the canonical form.

Note that the case where the Segre characteristic is [1111], which corresponds to a smooth quar-
tic, has been extensively treated in Part I. Also, the [(1111)] case does not necessitate any fur-
ther treatment: save for the quadric corresponding to the quadruple root (which is P3(R)), all the
quadrics of the pencil are equal and the intersection is thus any of those non-trivial quadrics. The
case detR(!,µ) ≡ 0 is treated separately in Section 4.

Here and in the ensuing sections, a singularity of the intersection will be called convex if the
branches of the curve are on the same side of the common tangent plane to the branches at the
singularity, concave otherwise.
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An additional benefit of the classification of pencils over the reals is the ability to draw pictures
of all possible situations. Such a gallery of intersection cases is given in Figure 1. The pictures were
made with the surf visualization tool [7].

3.1 Nodal quartic in P3(C), #4 = [112]

The determinantal equation has a double root !1, which is necessarily real (otherwise its conjugate
would also be a double root of detR(!)). Let !2 and !3 be the other roots. The Segre characteristic
implies that the three quadrics R(!i) have rank 3 (equal to n− ti; see Section 2.2.1). The Canonical
Pair Form Theorem thus implies that to !1 corresponds one real Jordan block of size 2.

There are two cases.

!2 and !3 are real. R(!2) and R(!3) are projective cones. The Canonical Pair Form Theorem
gives that S and T are simultaneously congruent to the quadrics of equations

{

2%1xy+ %2z
2+ %3w

2 = 0,
2%1!1xy+ %1y

2+ %2!2z
2+ %3!3w

2 = 0,
%i = ±1, i= 1,2,3.

!1S−T and !2S−T are thus simultaneously congruent to the quadrics of equations
{

−%1y2+ %2(!1−!2)z2+ %3(!1−!3)w2 = 0,
−%1y2+2%1(!2−!1)xy+ %3(!2−!3)w2 = 0.

Let % = sign !2−!3
!1−!3

(recall that !1 #= !3 and !2 #= !3). By multiplying the above two equations by

−%1
∣

∣

∣

!2−!3
!1−!3

∣

∣

∣
and −%1, respectively, we can rewrite them as











∣

∣

∣

!2−!3
!1−!3

∣

∣

∣
y2− %%1%2

(!1−!2)(!2−!3)
!1−!3

z2− %%1%3(!2−!3)w2 = 0,
√

∣

∣

∣

!2−!3
!1−!3

∣

∣

∣
y

(
√

∣

∣

∣

!1−!3
!2−!3

∣

∣

∣
y−2(!2−!1)

√

∣

∣

∣

!1−!3
!2−!3

∣

∣

∣
x

)

− %1%3(!2−!3)w2 = 0.

Now, we apply the following projective transformation:

√

∣

∣

∣

!1−!3
!2−!3

∣

∣

∣
y−2(!2−!1)

√

∣

∣

∣

!1−!3
!2−!3

∣

∣

∣
x (→ x,

√

∣

∣

∣

!2−!3
!1−!3

∣

∣

∣
y (→ y,

√

∣

∣

∣

(!1−!2)(!2−!3)
!1−!3

∣

∣

∣
z (→ z,

√

|!2−!3|w (→ w.

We obtain that R(!1) = !1S−T and R(!2) = !2S−T are simultaneously congruent, by a real pro-
jective transformation P, to the quadrics of equations

{

PTR(!1)P : y2+az2+bw2 = 0,
PTR(!2)P : xy+ cw2 = 0,

(2)
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

Figure 1: A gallery of intersections. a. Nodal quartic. b. Nodal quartic with isolated singular point.
c. Cubic and secant line. d. Cubic and tangent line. e. Two secant conics. f. Two double lines. g.
Four skew lines. h. Two lines and a double line. i. Conic and two lines not crossing on the conic,
the two lines being imaginary. j. Four concurrent lines, only two of which are real. k. Two lines and
a double line, the three being concurrent. l. Conic and double line.
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with a,b,c ∈ {−1,1}. One can further assume that c= 1 by changing x by −x.
From now on we forget about the transformation P and identify R(!i) with PTR(!i)P, but it

should be kept to mind that things happen in the local frame induced by P.
If a or b is −1, the cone R(!1) has inertia (2,1) and thus is real. Otherwise (a = b = 1), the

cone R(!1) is imaginary but for its real apex p= (1,0,0,0). The other cone R(!2) is always real and
contains the apex p of R(!1). We distinguish the three following cases.

• a= b= 1. The real part of the nodal quartic is reduced to its node, the apex p of R(!1).

• Only one of a and b is 1. Assume for instance that a= 1,b=−1 (the other case is obtained by
exchanging z and w). By substituting the parameterization of the cone y2+ z2−w2 = 0 (see
Table I.3)

(

s,uv,
u2− v2

2
,
u2+ v2

2

)

, (u,v,s) ∈ P!2,

into the other cone xy+w2 = 0, and solving in s, we get the parameterization of the nodal
quartic

X(u,v) =
(

(u2+ v2)2,−4u2v2,2uv(u2− v2),2uv(u2+ v2)
)T

, (u,v) ∈ P1.

The nodal quartic is thus real and its node, corresponding to the parameters (1,0) and (0,1), is
at p. The plane tangent to the quadricQR(!2) at the quartic’s node p is y= 0. In a neighborhood
of this node, x = (u2+ v2)2 > 0 and y = −4u2v2 " 0 (recall that X(u,v) is projective, so its
coordinates are defined up to a non-zero scalar). We conclude that the two branches lie on the
same side of the tangent plane and that the singularity is convex.

• a= −1,b= −1. Parameterizing the nodal quartic as above, we get the parameterization

X(u,v) =
(

−4u2v2,(u2+ v2)2,(u2+ v2)(u2− v2),2uv(u2+ v2)
)T

, (u,v) ∈ P1.

It can be checked that the point p = (1,0,0,0) which is on the intersection is not attained by
any real value of the parameter (u,v) (it is only attained with the complex parameters (1, i)
and (i,1)). The nodal quartic is thus real with an isolated singular point.

We now argue that we can easily distinguish between these three cases. For this, we first prove
the following lemma.

Lemma 3.1. Given any pencil of quadrics generated by S and T whose determinantal equation

det(!S+µT ) = 0 has a double root (!1,µ1), the sign of
det(!S+µT ))
(µ1!−!1µ)2

at (!1,µ1) is invariant by a real

projective transformation of the pencil and does not depend on the choice of S and T in the pencil.

Proof. We suppose that D(!,µ) = det(!S+µT ) has a double root (!1,µ1). The lemma claims that
for any real projective transformation P and any a1, . . . ,a4 ∈ R such that a1a4−a2a3 #= 0,

D ′(!′,µ′) = det(!′PT (a1S+a2T )P+µ′PT (a3S+a4T )P)
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Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils 15

has a double root (!′1,µ
′
1) such that

D(!,µ)
(µ1!−!1µ)2

at (!1,µ1) has same sign as
D ′(!′,µ′)

(µ′1!
′−!′1µ′)2

at (!′1,µ
′
1). We

have
D ′(!′,µ′) = (detP)2D(a1!

′ +a3µ
′,a2!

′ +a4µ
′).

Thus D ′(!′,µ′) = 0 has a double root (!′1,µ
′
1) defined by

{

a1!
′
1+a3µ

′
1 = !1

a2!
′
1+a4µ

′
1 = µ1

⇔

{

!′1 = a4!1−a3µ1
a1a4−a2a3

µ′1 = −a2!1+a1µ1
a1a4−a2a3 .

It follows that

D ′(!′,µ′)

(µ′1!
′ −!′1µ

′)2
= (detP)2

D(a1!′ +a3µ
′,a2!′ +a4µ

′)

(µ1(a1!′ +a3µ′)−!1(a2!′ +a4µ′))2
(a1a4−a2a3)

2.

Hence D ′(!′,µ′)
(µ′1!

′−!′1µ′)2
at (!′1,µ

′
1) has same sign as

D(!,µ)
(µ1!−!1µ)2

at (!1,µ1).

Proposition 3.2. If the determinantal equation det(!S+µT ) = 0 has two simple real roots and one
double root (!1,µ1) whose associated matrix !1S+µ1T has rank three, then the intersection of S

and T in C3 is a nodal quartic whose node is the apex of !1S+µ1T .

Moreover, if the inertia of !1S+µ1T is (3,0) then the real part of the nodal quartic is reduced

to its node. Otherwise the nodal quartic is real; furthermore, if
det(!S+µT )
(µ1!−!1µ)2

is negative for (!,µ) =

(!1,µ1), the node is isolated and, otherwise, the singularity is convex.

Proof. The first part of the proposition follows directly from the Segre characteristic (see Sec-
tion 2.2.1 and Table 1).

If the inertia of !1S+µ1T is (3,0), then a = b = 1 in (2) and the result follows as discussed
above. Otherwise, considering S′ = PT (!1S−T )P and T ′ = PT (!2S−T )P, (2) gives that det(!S′ +

µT ′) = −a!(b!+µ)µ2/4. Evaluating det(!S′+µT ′)
µ2

at (!,µ) = (1,0), gives by Lemma 3.1 that −ab

has same sign as det(!S+µT )
(µ1!−!1µ)2

at (!1,µ1). The result then follows from the discussion above depending

on whether a= b= −1 or ab= −1.

!2 and !3 are complex conjugate. The reduction to normal pencil form is slightly more involved
in this case. Let !2 = &+ i',!3 = !2,' #= 0. The Canonical Pair Form Theorem gives that S and T
are simultaneously congruent to the quadrics of equations

{

2%xy+2zw= 0,
2%!1xy+ %y2+2&zw+'z2−'w2 = 0,

%= ±1

Through this congruence, S′ = !1S−T has equation

0= −%y2+'(w2− z2)+2(!1−&)zw,

= −%y2+'(w+(z)

(

w−
1
(
z

)

,

= −%y2+'z′w′,
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16 L. Dupont & D. Lazard & S. Lazard & S. Petitjean

where ( is real and positive. Through the congruence and with the above transformation (z,w) (→
(z′,w′), S has equation

0= 2%xy+2zw

= 2%xy+
2

((+ 1
(
)2

(

1
(
z′
2−(w′2+

(

(−
1
(

)

z′w′
)

.

Through the above congruence transformations, the quadric of the pencil T ′ = 'S−2
(− 1

(

((+ 1
(
)2

(!1S−

T ) has equation

2%y

(

'x+
(− 1

(

((+ 1
(
)2
y

)

+
2'

((+ 1
(
)2

(

1
(
z′
2−(w′2

)

= 0.

Finally, by making a shift on x, rescaling on the four axes, and changing the signs of x and z, we
get that the two quadrics of the pencil S′ and T ′ are simultaneously congruent to the quadrics of
equations

{

y2+ zw= 0,
xy+ z2−w2 = 0.

(3)

As before, we now drop reference to the accumulated congruence transformation and work in
the local frame. By substituting the parameterization of the cone y2+ zw= 0 (see Table I.3)

(

s,uv,u2,−v2
)

, (u,v,s) ∈ P!2,

into the other quadric xy+ z2−w2 = 0, and solving in s, we get the parameterization of the nodal
quartic

X(u,v) =
(

v4−u4,u2v2,u3v,−uv3
)T

, (u,v) ∈ P1.

The nodal quartic is thus real and its node, corresponding to the parameters (1,0) and (0,1), is at
p= (1,0,0,0), the apex of S′. The plane tangent to the quadric xy+ z2−w2 = 0 at the quartic’s node
p is y = 0. In a neighborhood of the quartic’s node on the branch corresponding to the parameter
(0,1), x= v4−u4 > 0 and y= u2v2 ! 0. On the other branch corresponding to the parameter (1,0),
x = v4− u4 < 0 and y = u2v2 ! 0. Hence, the two branches of the quartic are on opposite sides of
the tangent plane y= 0 in a neighborhood of the node, i.e., the singularity is concave.

We thus have the following result.

Proposition 3.3. If the determinantal equation det(!S+µT ) = 0 has two simple complex conjugate
roots and one double root (!1,µ1) whose associated matrix !1S+ µ1T has rank three, then the

intersection of S and T is a real nodal quartic with a concave singularity at its node, the apex of

!1S+µ1T .

3.2 Two secant conics in P3(C), #4 = [11(11)]

The determinantal equation has a double root !1 and the rank of R(!1) is 2. !1 is necessarily real
and there are two Jordan blocks of size 1 associated with it in the canonical form. Let !2 and !3 be
the other (simple) roots, associated with quadrics of rank 3. We have two cases.
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Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils 17

!2 and !3 are real. !2 and !3 appear in real Jordan blocks of size 1. The normal form of R(!1)
and R(!2) is:

{

z2+aw2 = 0,
x2+by2+ cw2 = 0,

with a,b,c ∈ {−1,1}.
The two planes of R(!1) are real if the matrix has inertia (1,1), i.e. if a = −1. The cone R(!2)

is real if its inertia is (2,1), i.e. if b = −1 or c = −1. The two conics of the intersection are secant
over the reals if the singular line z= w= 0 of the pair of planes meets the cone in real points, i.e. if
b= −1. We have the following cases:

• a= ±1,b= 1,c= 1: The planes are real or imaginary and the cone is imaginary. The apex of
the cone is not on the planes, so intersection is empty.

• a = 1,b = 1,c = −1: The planes are imaginary and the cone is real. Their real intersection
is the intersection of the singular line z = w = 0 of the pair of planes with the cone. The real
intersection is thus empty.

• a = 1,b = −1,c = ±1: The planes are imaginary and the cone is real. The line z = w = 0
intersects the cone in two points of coordinates (1,1,0,0) and (−1,1,0,0). The intersection
is reduced to these two points.

• a=−1,b= 1,c=−1: The planes and the cone are real. The line z= w= 0 does not intersect
the cone, so intersection consists of two non-secant conics.

• a = −1,b = −1,c = ±1: The planes and the cone are real. The line z = w = 0 intersects
the conics. Intersection consists of two conics intersecting in two points p± of coordinates
(±1,1,0,0). All the quadrics of the pencil have the same tangent plane P± : x∓ y = 0 at p±.
The two conics of the intersection are on the same side of P±.

Computing the inertia of R(!1) gives a. Also, in normal form, the determinantal equation
det(!R(!1)+µR(!2)) is equal to bµ2!(a!+ cµ). Thus, by Lemma 3.1, ab is equal to the sign

of det(!S+µT )
(µ1!−!1µ)2

at (!1,µ1). Hence we can easily compute a and b. Finally, we need to compute c but

only in the case where a = −1 and b = 1. Then c = 1 if the inertia of R(!2) (or R(!3)) is (3,0);
otherwise c= −1 and the inertia of R(!2) (or R(!3)) is (2,1).

!2 and !3 are complex conjugate. There are two complex Jordan blocks of size 2 associated with
the two roots. The pencil normal form is obtained as in Section 3.1. The end result is:

{

zw= 0,
x2+ay2+ z2−w2 = 0,

with a ∈ {−1,1}.
The pair of planes R(!1) is always real. The intersection consists of the two conics z = x2 +

ay2−w2 = 0 and w= x2+ay2+ z2 = 0. We have two cases:
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• a= 1: One conic is real, the other is imaginary.

• a = −1: The two conics are real. They intersect at the points p± of coordinates (1,±1,0,0).
All the quadrics of the pencil have the same tangent plane P± : x∓y= 0 at p±. The two conics
of the intersection are on opposite sides of P±.

Note finally that, in normal form, the determinantal equation det(!R(!1)+µR(!2)) is equal to

−aµ2(µ2+!2/4). Hence a is opposite to the sign of det(!S+µT )
(µ1!−!1µ)2

at (!1,µ1) (by Lemma 3.1).

3.3 Cuspidal quartic in P3(C), #4 = [13]

The determinantal equation has a triple root !1, which is necessarily real. To it corresponds a real
Jordan block of size 3. R(!1) has rank 3. Let !2 be the other root, necessarily real, and R(!2) the
associated cone. The normal form of R(!1) and R(!2) is:

{

w2+ yz= 0,
y2+ xz= 0.

The intersection consists of a cuspidal quartic which can be parameterized (in the local frame of the
normal form) by

X(u,v) = (v4,u2v2,−u4,u3v), (u,v) ∈ P1.

The quartic has a cusp at p= (1,0,0,0) (the vertex of the first cone), which corresponds to (u,v) =
(0,1). The intersection of R(!1) with the plane tangent to R(!2) at p gives the (double) line tangent
to the quartic at p, i.e. z= w2 = 0.

3.4 Two tangent conics in P3(C), #4 = [1(21)]

The determinantal equation has a triple root !1 and the rank of R(!1) is 2. !1 is necessarily real.
Attached to !1 are two real Jordan blocks, one of size 2, the other of size 1. Let !2 be the other
simple real root, with R(!2) of rank 3. The normal forms of R(!1) and R(!2) are:

{

x2+aw2 = 0,
xy+ z2 = 0,

where a ∈ {−1,1}.
The pair of planes R(!1) is real when the matrix has inertia (1,1), i.e. when a = −1. The cone

R(!2) is real since its inertia is (2,1). So we have two cases:

• a = 1: The pair of planes is imaginary. Its real part is restricted to the line x = w = 0, which
intersects the cone in the real double point (0,1,0,0). The intersection is reduced to that point.

• a=−1: The planes are real. The intersection consists of two conics intersecting in the double
point (0,1,0,0) and sharing a common tangent at that point.
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3.5 Double conic in P3(C), #4 = [1(111)]

The determinantal equation has a real triple root !1 and the rank of R(!1) is 1. The Jordan normal
form of S−1T contains three blocks of size 1 for !1. Let !2 be the other real root, with R(!2) of rank
3. The normal forms of R(!1) and R(!2) are:

{

w2 = 0,
x2+ay2+ z2 = 0,

where a ∈ {−1,1}.
The cone R(!2) is real if its inertia is (2,1), i.e. if a= −1. We have two cases:

• a=−1: The cone is real. The intersection consists of a double conic lying in the plane w= 0.

• a= 1: The cone is imaginary. Its real apex does not lie on the plane w= 0, so the intersection
is empty.

3.6 Cubic and tangent line in P3(C), #4 = [4]

The determinantal equation has a quadruple root !1 and the rank of R(!1) is 3. !1 is necessarily real.
Associated with it is a unique real Jordan block of size 4. The normal form of R(!1) and S is:

{

z2+ yw= 0,
xw+ yz= 0.

The intersection contains the line z= w= 0. The cubic is parameterized by

X(u,v) =
(

u3,−u2v,uv2,v3
)

, (u,v) ∈ P1.

The cubic intersects the line in the point of coordinate (1,0,0,0), corresponding to the parameter
(1,0). The cubic and the line are tangent at that point.

3.7 Conic and two lines crossing on the conic in P3(C), #4 = [(31)]

The determinantal equation has a quadruple root !1, with R(!1) of rank 2. !1 is necessarily real. To
it correspond two real Jordan blocks of size 3 and 1. The normal forms of R(!1) and S are:

{

yz= 0,
y2+ xz+aw2,

with a ∈ {−1,1}. z = 0 gives two real or imaginary lines. y = 0 gives a real conic. The lines cross
on the conic at the point p= (1,0,0,0).

Both the pair of planes and the nonsingular quadric are real. We have two cases:

• a= 1: The lines are imaginary. The intersection is reduced to the conic.
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• a= −1: The lines are real. The intersection consists of a conic and two lines crossing on the
conic at p.

The determinantal equation in normal form det(!R(!1)+µS) = −aµ4/4 has a quadruple root and
thus is always non-negative or non-positive. In this case, it is straightforward to show, similarly as
in the proof of Lemma 3.1, that the sign ! 0 or " 0 of det(!S+µT ) is invariant by real projective
transformation and independent of the choice of S and T in the pencil. Hence a is opposite to the
sign of det(!S+µT ) for any (!,µ) that is not the quadruple root.

3.8 Two lines and a double line in P3(C), #4 = [(22)]

The determinantal equation has a quadruple root !1, with R(!1) of rank 2. !1 is necessarily real and
there are two real Jordan blocks associated with it, both of size 2. The normal forms of R(!1) and S
are:

{

y2+aw2 = 0,
xy+azw= 0,

with a ∈ {−1,1}. The intersection consists of the double line y = w = 0 and two single lines y±√
−aw= x±

√
−az= 0 cutting the double line in the points (∓

√
−a,0,1,0).

The pair of planes is real if its inertia is (1,1), i.e. if a= −1. We have two cases:

• a = 1: The two single lines are imaginary. The intersection is reduced to the double line
y= w= 0.

• a=−1: The intersection consists of the two single lines y±w= x± z= 0 and the double line
y= w= 0.

Note that the determinantal equation det(!R(!1) +µS) is equal in normal form to a2µ4

16 . Thus
D(!,µ) is positive for any (!,µ) distinct from the quadruple root.

3.9 Two double lines in P3(C), #4 = [(211)]

The determinantal equation has a quadruple root !1, with R(!1) of rank 1. !1 is real and there are
three real Jordan blocks associated with it, two having size 1 and the last size 2. The normal forms
of R(!1) and S are:

{

w2 = 0,
x2+ay2+ zw= 0,

with a ∈ {−1,1}. The intersection consists of two double lines w2 = x2+ay2 = 0.
There are two cases:

• a= 1: The two double lines are imaginary. The intersection is reduced to their real intersection
point, i.e. (0,0,1,0).

• a = −1: The two double lines w2 = x− y = 0 and w2 = x+ y = 0 are real so the intersection
consists of these two lines, meeting at (0,0,1,0).

INRIA



Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils 21

The determinantal equation (in normal form) is equal to det(!R(!1)+µS) = −a!4/4 thus a is
opposite to the sign of det(!S+µT ) for any (!,µ) that is not a root.

3.10 Cubic and secant line in P3(C), #4 = [22]

The determinantal equation has two double roots !1 and !2. The associated quadrics both have rank
3. !1 and !2 are either both real or complex conjugate.

!1 and !2 are real. There is a real Jordan block of size 2 associated with each root. The normal
form of R(!1) and R(!2) is:

{

y2+ zw= 0,
xy+w2 = 0.

The intersection consists of the line y= w= 0 and a cubic. The cubic is parameterized by

X(u,v) =
(

u3,−uv2,−v3,u2v
)

, (u,v) ∈ P1.

The line intersects the cubic in the two points of coordinates (1,0,0,0) and (0,0,1,0), corresponding
to the parameters (1,0) and (0,1).

!1 and !2 are complex conjugate. Let !1 =&+ i',!2 = !1,' #= 0. There is complex Jordan block
of size 4 associated with the two roots. The normal form of S and R(&) is:

{

xw+ yz= 0,
xz− yw+ zw= 0.

The intersection contains the line z= w= 0. The cubic is parameterized by

X(u,v) =
(

−u2v,uv2,u3+uv2,u2v+ v3
)

, (u,v) ∈ P1.

The cubic intersects the line in the points of coordinates (1, i,0,0) and (1,−i,0,0). Thus, over the
reals, the cubic and the line do not intersect.

3.11 Conic and two lines not crossing on the conic, #4 = [2(11)]

The determinantal equation has two double roots !1 and !2, with associated ranks 3 (a projective
cone) and 2 (a pair of planes) respectively. The two roots are necessarily real, otherwise the ranks
of the quadrics R(!1) and R(!2) would be the same. Associated with !1 and !2 are respectively a
unique real Jordan block of size 2 and two real Jordan blocks of size 1. The pencil normal form is:

{

y2+az2+bw2 = 0,
xy= 0,

where a,b ∈ {−1,1}. The plane x = 0 contains a conic which is real when a = −1 or b = −1 and
imaginary otherwise. The plane y = 0 contains two lines which are real if ab < 0 and imaginary
otherwise. The lines cross at the point (1,0,0,0), the apex of R(!1), which is not on the conic.
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The pair of planes R(!2) is always real. The cone R(!1) is real when its inertia is (2,1), i.e.
when a= −1 or b= −1. We have three cases:

• a = 1,b = 1: The lines and the conic are imaginary. The intersection is reduced to the real
point of intersection of the two lines, i.e. (1,0,0,0).

• a = −b: The lines and the conic are real. The intersection consists of a conic and two inter-
secting lines, each cutting the conic in a point (at (0,0,1,1) and (0,0,−1,1)).

• a=−1,b=−1: The lines are imaginary, the conic is real. The intersection consists of a conic
and the point (1,0,0,0), intersection of the two lines.

To determine in which of the three situations we are, first compute the inertia of R(!1). If the
inertia is (3,0), this implies that a = b = 1. Otherwise, we consider as before the determinantal
equation in normal form det(!R(!1)+µR(!2)) = −ab!2µ2/4. By Lemma 3.1, −ab is equal to the
sign of det(!S+µT )

(µ1!−!1µ)2
at (!1,µ1). If ab> 0 then a= b= −1, otherwise a= −b.

3.12 Four skew lines in P3(C), #4 = [(11)(11)]

The determinantal equation has two double roots !1 and !2, with associated quadrics of rank 2. !1
and !2 can be either both real or both complex conjugate.

!1 and !2 are real. Each root appears in two real Jordan blocks of size 1. The normal forms of
R(!1) and R(!2) are:

{

z2+aw2,
x2+by2,

where a,b ∈ {−1,1}.
The first pair of planes is imaginary if a = 1. The second pair of planes is imaginary if b = 1.

There are three cases:

• a= 1,b= 1: The four lines are imaginary and the intersection is empty.

• a = −b: One pair of planes is real, the other is imaginary. If a = 1, the intersection consists
of the points of intersection of the line z = w = 0 with the pair of planes x2− y2 = 0, i.e. the
points (1,1,0,0) and (−1,1,0,0). Similarly, if b = 1 the intersection is reduced to the two
points (0,0,1,1) and (0,0,−1,1).

• a= −1,b= −1: The four lines are real. The intersection consists of four skew lines.

The values of a and b follow from the inertia of R(!1) and R(!2). Note also that b directly follows
from a because, the determinantal equation (in normal form) det(!R(!1)+µR(!2)) = ab!2µ2 and it
is straightforward to show that ab is equal to the sign of det(!S+µT ) for any (!,µ) that is not a root.
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!1 and !2 are complex conjugate. Let !1 = a+ ib,!2 = !1,b #= 0. The roots appear in two
complex Jordan blocks of size 2. The normal forms of S and aS−T are:

{

xy+ zw= 0,
x2− y2+ z2−w2 = 0.

The intersection consists of two real lines of equations x±w= y∓ z= 0 and two imaginary lines of
equations x± iz= y∓ iw= 0.

4 Classification of singular pencils of P3(R) over the reals

We now examine the singular pencils of P3(R), i.e. those whose determinantal equation vanishes
identically.

There are two cases according to whether two arbitrary quadrics of the pencil have a singular
point in common or not.

4.1 QS and QT have no singular point in common, #4 = [1{3}]
We first prove the following lemma.

Lemma 4.1. If detR(!,µ)≡ 0 and QS and QT have no singular point in common, then every quadric

of the pencil has a singular point such that all the other quadrics of the pencil contains this point

and share a common tangent plane at this point.

Proof. Let QR be any quadric of the pencil. First note that R has rank at most 3, otherwise the
determinantal equation would not identically vanish.

If R has rank 1, it is a double plane in P3(C) containing only singular points. Since there is no
quadric of inertia (4,0) in the pencil, the intersection of the double plane with every other quadric
of the pencil is not empty in P3(R) (by Theorem I.4.3). Hence QR contains a singular point that
belongs to all the quadrics of the pencil.

If R has rank 2, it is a pair of planes in P3(C) with a real singular line. By the Segre classification
(see Table 2) we know that the intersection in P3(C) contains a conic and a double line. Furthermore,
the line is necessarily real because otherwise its conjugate would also be in the intersection. This
line lies in one of the two planes of QR and thus cuts any other line in that plane and in particular the
singular line of the pair of planes. Hence QR contains a singular point that belongs to all the quadrics
of the pencil.

If R has rank 3, we apply a congruence transformation so that QR has the diagonal form ax2+
by2+ cz2 = 0, with abc #= 0. We may also change the generators of the pencil, replacing S by R.
After these transformations, the determinantD(!,µ) becomes the sum of )abc!3µand of other terms
of degree at least 2 in µ, where ) is the coefficient of w2 in the equation of QT . The hypothesis that
D(!,µ) ≡ 0 thus implies that ) = 0. Hence the singular point (0,0,0,1) of QR belongs to QT and
thus to all the quadrics of the pencil.

Thus, in all cases, every quadric of the pencil has a singular point that belongs to all the quadrics
of the pencil. Any such point p lies on the intersection of QS and QT and is a singular point of the
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intersection: since p is a singular point of a quadric of the pencil, the rank of the Jacobian matrix (1)
is less than two. We conclude on the common tangent plane by applying Proposition 2.1 under the
assumption that p is not a singular point of both QS and QT .

By Lemma 4.1, there exist a singular point s of QS and a singular point t of QT that belong to
all the quadrics Q!S+µT of the pencil. Quadrics QS, QT , and QS+T have rank at most 3 since the
determinantal equation identically vanishes, and they are not of inertia (3,0) (see Table I.1) since
they contain s and t that are distinct by assumption. Hence QS, QT , and QS+T are cones or pairs of
(possibly complex) planes. Thus, since s and t are singular points of QS and QT , respectively, the
line st is entirely contained in QS and QT , and thus is also contained in QS+T . Moreover, s and t
are not singular points of QS+T because otherwise all the quadrics of the pencil would be singular at
these points, contradicting the hypothesis. It now follows from the fact that QS+T is a cone or a pair
of planes that its tangent planes at s and t coincide. Therefore, by Lemma 4.1, the tangent plane of
QS at t is the same as the tangent plane of QT at s.

Now we change of frames in such a way that s and t have coordinates (0,0,0,1) and (0,0,1,0)
and that the common tangent plane has equation x= 0. Then the equations ofQS andQT become xz+
q1(x,y) = 0 and xw+ q2(x,y) = 0, where q1 and q2 are binary quadratic forms. The two equations
can thus be expressed in the form ay2+x(by+cx+ z) = 0 and a′y2+x(b′y+c′x+w) = 0. By a new
change of frame, we get equations of the form ay2+xz= 0 and a′y2+xw= 0. Replacing the second
quadric by a linear combination of the two and applying the change of coordinates a′z−aw→w and
a scaling on y, gives as normal form for the pencil:

{

xw= 0,
xz+ay2 = 0,

with a ∈ {−1,1}. Furthermore, we can set a= 1 by changing z in −z.
Therefore, the intersection consists of the double line x= y2 = 0 and the conic w= xz− y2 = 0.

The line and the conic meet at (0,0,1,0) in the local frame of the normal form.

4.2 QS and QT have a singular point in common

Let p be the common singular point. We proceed as already outlined in Section 2.2. After a rational
change of frame, we may suppose that p has coordinates (0,0,0,1). In the new frame, the equations
of the quadrics are homogeneous polynomials of degree 2 in three variables. To classify the different
types of intersection, we may identify the quadrics with their upper left 3×3 matrices and look at the
multiple roots of the cubic determinantal equation, which we refer to as the restricted determinantal
equation, and the ranks of the associated matrices. We thus apply the Canonical Pair Theorem to
pairs of conics.

The case [(111)] is trivial and left aside: in that situation, the cubic determinantal equation has a
(real) triple root, the associated quadric has rank 0 and all the other quadrics of the pencil are cones.
The intersection consists of any cone of the pencil, that is any quadric of the pencil distinct from
P3(R).
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4.2.1 Four concurrent lines in P3(C), #3 = [111]

The restricted determinantal equation has three simple roots. At least one is real: call it !1. Let !2
be another root. To these roots correspond quadrics of rank 2.

If !2 is real, then the three roots are real. The normal form of R(!1) and R(!2) is:

{

ay2+ z2 = 0,
bx2+ z2 = 0,

with a,b ∈ {−1,1}. Note that the equation of the third pair of planes of the pencil is obtained by
subtracting the two equations, giving ay2−bx2 = 0. We have two cases:

• a = b = −1: The intersection consists of four concurrent lines y− %1z = x− %2z = 0, with
%1,%2 ∈ {−1,1}, meeting at p.

• a = b = 1 or a = −b: When a = b = 1, both R(!1) and R(!2) represent imaginary pairs of
planes. When a= −b, the third pair of planes is imaginary, as well as one of the first two. In
both cases, the intersection is reduced to the point p.

Both a and b are equal to −1 if and only if R(!1) and R(!2) have inertia (1,1).
If !2 = &+ i' is complex, ' #= 0, we obtain the following normal form (proceeding as in Sec-

tion 3.1):
{

x2+ y2− z2 = 0,
yz= 0.

The intersection consists of two real lines y = x2− z2 = 0, intersecting at p, and two complex lines
z= x2+ y2 = 0.

4.2.2 Two lines and a double line in P3(C), #3 = [12]

The restricted determinantal equation has a double root !1, which is real. The Jordan normal form
of S−1T contains one real Jordan block of size 2. Let !2 be the other root, also real. The normal
forms of R(!1) and R(!2) are:

{

y2+az2 = 0,
xy= 0,

where a ∈ {−1,1}. There are two cases:

• a = −1: The intersection consists of the double line y = z2 = 0 and the two single lines
x= y− z= 0 and x= y+ z= 0. The three lines are concurrent at p.

• a = 1: The two single lines are imaginary. Their common point is on the double line, so the
intersection consists of this double line y= z2 = 0.

Note that the value of a follows from the inertia of R(!1).
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4.2.3 Two double lines in P3(C), #3 = [1(11)]

The restricted determinantal equation has a double root !1, which is real. The canonical pair form
has two real Jordan blocks of size 1 associated with !1. Let !2 be the other root, also real. The
normal forms of R(!1) and R(!2) are:

{

z2 = 0,
x2+ay2 = 0,

where a ∈ {−1,1}. The pair of planes R(!2) is real when its inertia is (1,1), i.e. when a= −1. We
have two cases:

• a= 1: The intersection is reduced to the point p.

• a = −1: The intersection consists of the two double lines x− y = z2 = 0 and x+ y = z2 = 0,
meeting at p.

Note that the value of a follows from the inertia of R(!2).

4.2.4 Line and triple line in P3(C), #3 = [3]

The restricted determinantal equation has a triple root !1, which is real. The Jordan normal form of
S−1T contains one real Jordan block of size 3. The normal forms of S and R(!1) are:

{

xz+ y2 = 0,
yz= 0.

The intersection consists of the triple line z = y3 = 0 and the simple line x = y = 0. The two lines
cut at p, the singular point of all the quadrics of the pencil.

4.2.5 Quadruple line in P3(C), #3 = [(21)]

The restricted determinantal equation has a real triple root !1. The canonical pair form has two real
Jordan blocks of size 2 and 1. The normal form of R(!1) and S is:

{

y2 = 0,
z2+ xy= 0.

The intersection consists of the quadruple line y2 = z2 = 0.

4.2.6 #3 = [{3}] and remaining cases

In this case, the restricted determinantal equation identically vanishes. One can easily prove that if
the two conics S and T have no singular point in common, the pencil can be put in the normal form
!xy+µxz. The intersection consists of the plane x= 0 and the line y= z= 0, which meets the plane
at p.
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If the two conics have a singular point in common (call it q), we can go from 3× 3 matrices
to 2×2 matrices pretty much as above by sending q to (0,0,1,0). Consider the new determinantal
equation, a quadratic equation. The cases are:

• Two simple real roots: The pencil can be put in the normal form !x2+µy2. The intersection
consists of the quadruple line x2 = y2 = 0 which goes through p and q.

• Two simple complex roots: A normal form for the pencil is !xy+ µ(x2 − y2), giving the
quadruple line x2 = y2 = 0 for the intersection.

• A double real root, with a real Jordan block of size 2: The normal form is !xy+µy2. The
intersection consists of the plane y= 0.

• Vanishing quadratic equation: The intersection consists of a double plane.

5 Classifying degenerate intersections

Our near-optimal algorithm for parameterizing intersections of quadrics works in two stages: first
it determines the real type of the intersection and, second, it computes a parameterization of this
intersection. The purpose of this section is to detail the first stage, called the type-detection phase.
The second stage, which consists of case-by-case algorithms for computing (near-)optimal parame-
terizations of the real part of the intersection, will be presented in Part III.

The splitting in two stages reflects a key design choice of our parameterization algorithm, which
sums up as: the sooner you know what is the type of the intersection, the less prone you are of
making errors in later stages. Information obtained in the type-detection phase is used to drive the
algorithm and make it efficiently compute precisely and uniquely what is needed.

Note however that presenting the type detection distinctly from the parameterization is quite an
oversimplification. In the actual implementation, there is no clear cut separation between the two
stages, which are largely intertwined. Sometimes detecting the type of the intersection is doing
a very small step towards parameterization. And sometimes almost everything takes place in the
type-detection phase.

We now turn to a high-level description of the detection phase, which relies heavily on the results
of Sections 3 and 4 on real pencils of quadrics. We start by presenting some global tools, and then
outline the type-detection algorithm for each of the possible root patterns (vanishing determinantal
equation, one double root, one triple root, one quadruple root, two double roots).

5.1 Preliminaries

In what follows, we assume that the two input quadricsQS andQT have rational coefficients. We now
briefly describe the basic operations needed for detecting the real type of the intersection QS ∩QT .
They essentially fall in two categories: linear algebra routines and elementary algebraic manipula-
tions. Most computations involve rational numbers. We give special attention to the limited number
of situations where this is not the case.
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Let R(!,µ) = !S+µT be the pencil generated by S and T . Computing the coefficients of the de-
terminantal equation D(!,µ) = detR(!,µ) involves nothing but computing determinants of rational
matrices, so there is nothing difficult here. Next, we need to compute the inertia and rank of a matrix
R0 = R(!0,µ0) of the pencil, where (!0,µ0) is a root of D or a real rational projective number.

Assume first that R0 has real and rational coefficients. Let p(*) = det(R0−*I), where I is the
identity matrix. Since R0 is symmetric, all its eigenvalues are real. We can thus compute the number
e+ of positive eigenvalues and the number e− of negative eigenvalues of R0 by applying Descartes’
Sign Rule to p(*) and p(−*) respectively. Then the inertia I0 of R0 is the pair (e+,e−) and its rank
r0 is e+ + e−.

When the coefficients of R0 are not rational or real, the worst situation that we have to deal
with is when D has two real or complex conjugate double roots. In both cases, the coefficients of
R0 involve one square root. When the roots are real conjugate, we could use Descartes’ Sign Rule
again, except that we have to evaluate the signs of coefficients that now involve a square root. In
these cases we however propose a more efficient approach based on the rank of R0 (see Algorithm 6)
which only deals with rational numbers. We show below how the rank of R0 can be computed using
only standard linear algebra operations on rational numbers.

Let (!0,µ0) = (a,b±
√
c), where (a,b,c) ∈ P2(Q), c is not a square and c is either > 0 (real

conjugate roots) or < 0 (complex conjugate roots). Form the 8×8 rational matrix

M0 =

(

aS+bT cT

T aS+bT

)

.

If the vector k1+
√
ck2 is in the kernel of R0, then the column vector (kT1 ,kT2 )T is in the kernel of

M0. But the vector (ckT2 ,kT1 ) also is in the kernel ofM0. It is not too difficult to realize that the kernel
ofM0 has twice the number of elements of the kernel of R0, i.e. dimkerR0 = 1

2 (dimkerM0−1).We
can thus conclude that

r0 = 3−dimkerR0 =
1
2
(7−dimkerM0).

Computing the singular space of a quadric with rational coefficients is another operation we
need. This only amounts to computing the kernel of the associated matrix. Also, intersecting the
singular spaces of two quadrics is like computing the intersection between two linear spaces: it is a
standard linear algebra operation.

In terms of algebraic computations, we need to be able to compute the gcd of polynomials of
degree at most 3 and to isolate the roots of a cubic polynomial (in the four concurrent lines case).
This last task can be done using Uspensky’s algorithm as in Part I or using special methods for
comparing the roots of low-degree polynomials (see [4]).

The top level type-detection loop is given in Algorithm 1. It does not necessitate much comment
save for the fact that when the gcd H of the two partial derivatives of D has degree 2, then either its
discriminant vanishes, in which case D has a triple root, or it does not vanish and D has two double
roots.
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Algorithm 1Main loop for degenerate intersection classification.
Require: a pencil of quadrics R(!,µ) = !S+µT

1: compute D(!,µ) := detR(!,µ)
2: if D ≡ 0 then // vanishing determinantal equation
3: execute Algorithm 2
4: else
5: compute H := gcd("D/"!,"D/"µ) and let d := degree(H ,{!,µ})
6: if d = 0 then // no multiple root
7: output: smooth quartic (C) – see Part I
8: else if d = 1 then // double real root
9: execute Algorithm 3
10: else if d = 2 then
11: if discriminant(H ) = 0 then // triple real root
12: execute Algorithm 4
13: else // two double roots
14: execute Algorithm 6
15: end if

16: else // d = 3: quadruple real root
17: execute Algorithm 5
18: end if

19: end if

5.2 D vanishes identically

The type-detection algorithm when D is identically zero, outlined in Algorithm 2, is little more than
a reprise of the information contained in Section 4. The general idea is: determine if two arbitrary
quadrics of the pencil have a singular point p in common. If they do, send p to infinity and work on
the pencil of conics living in the plane w = 0. To actually compute the restricted pencil R3(!,mu),
build the matrix of a real projective transformation P obtained by putting p as the last column and
completing P so that its columns form a basis of P3(R). R3(!,µ) is then the principal submatrix of
the matrix PT (!S+µT )P.

Two comments are in order. First, a multiple root of a cubic form – the determinantal equation of
the pencil of conics – is necessarily real (otherwise its complex conjugate would also be a multiple
root) and rational (otherwise its real conjugate would also be a multiple root).

So the only place where we might end up working with non-rational numbers is in the four
concurrent lines case. Indeed, in this situation the restricted determinantal equation D3 is a cubic
form with three generically non-rational simple roots. Computing the sign of the discriminant of D3

can help us distinguish between the cases when only two lines are real and when the four lines are
either all real or all imaginary. But this is not enough to give a complete characterization over the
reals. We have thus decided to apply Finsler’s Theorem (Theorem I.4.3), as in the smooth quartic
case, after isolating the roots of the cubic. If the restricted pencil contains a conic of inertia (3,0),
then the intersection of conics is empty in the plane w = 0 and the intersection of the two initial
quadrics is reduced to p.
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Algorithm 2 Classifying the intersection when the determinantal equation vanishes.
Require: R(!,µ) (from Algorithm 1)
1: let + := singular(QS)∩ singular(QT ),, := dim+
2: if ,= −1 then // conic and double line (C)
3: output: conic and double line

4: else // ,! 0: at least one common singular point +(1)
5: send +(1) to the point [0 0 0 1]
6: compute the restricted pencil R3(!,µ) of upper left 3×3 matrices and D3(!,µ) := detR3(!,µ)
7: if D3 ≡ 0 then // vanishing restricted determinantal equation
8: either #3 = [{3}] or repeat restriction
9: else // D3 #≡ 0
10: compute H3 := gcd("D3/"!,"D3/"µ) and let d3 := degree(H3,{!,µ})
11: if d3 = 0 then // no multiple root: four concurrent lines (C)
12: if D3 has only one real root then
13: output: two concurrent lines

14: else if R3(!,µ) contains a conic of inertia (3,0) then
15: output: point
16: else

17: output: four concurrent lines

18: end if

19: else // one multiple root
20: let (!0,µ0) be the multiple root of D3, I0 and r0 the inertia and rank (resp.) of R(!0,µ0)
21: if d3 = 1 then // D3 has one double root
22: if r0 = 2 then // two concurrent lines and a double line (C)
23: if I0 = (1,1) then // pair of planes R3(!0,µ0) is real
24: output: two concurrent lines and a double line

25: else // pair of planes R3(!0,µ0) is imaginary
26: output: double line

27: end if

28: else // r0 = 1: two double lines (C)
29: let (!1,µ1) be the other root of D3, I1 the inertia of R(!1,µ1)
30: if I1 = (1,1) then // pair of planes R3(!1,µ1) is real
31: output: two double lines

32: else // pair of planes R3(!1,µ1) is imaginary
33: output: point
34: end if

35: end if

36: else // d3 = 2: D3 has one triple root
37: if r0 = 2 then // line and triple line (C)
38: output: line and triple line

39: else if r0 = 1 then // quadruple line (C)
40: output: quadruple line

41: else // r0 = 0: projective cone (C)
42: if S or T (in restricted form) has inertia (2,1) then
43: output: cone
44: else

45: output: point
46: end if

47: end if

48: end if

49: end if

50: end if

51: end if
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5.3 D has a single multiple root

The type-detection algorithms whenD has a unique multiple root are given in Algorithms 3 (double
root), 4 (triple root) and 5 (quadruple root).

First note that when D has a single multiple root, it is necessarily real and rational, for the same
reasons as above. So the singular quadrics that we deal with all have rational coefficients and their
singular set can be parameterized rationally.

In the double real root case, we use the result of Lemma 3.1 and classify the intersections ac-
cording (among others) the sign

s := signE(!0,µ0), with E(!,µ) := D(!,µ)/(µ0!−!0µ)
2,(!0,µ0) double root of D.

The other slight difficulty occurs in the two secant conics case, when the pair of planes R(!0,µ0) is
real and s=−1. To separate the two subcases (two non-secant conics or empty set), we can compute
the inertia of R(!1,µ1), where (!1,µ1) is a simple root of D , when this root is rational. But in the
general case, we use again Finsler’s theorem, looking for a quadric of inertia (4,0) between and
outside the two simple roots of D . If such a quadric is found, the intersection is empty.

The triple real root case does not necessitate further comment except for noticing that the addi-
tional simple root (!1,µ1) of D is necessarily real and rational, so the associated quadric R(!1,µ1)
has rational coefficients.

The type detection in the quadruple real root case is pretty straightforward. The only subtlety
is that the case of a quadruple real root (!0,µ0) with associated quadric of rank 2 corresponds to
two different Jordan decompositions, with Segre symbols [(22)] and [(31)], as already mentioned in
Section 2.2. To distinguish between the two, we simply note that in the first situation, the singular
line of the pair of planes R(!0,µ0) is entirely contained in all the quadrics of the pencil.

5.4 D has two double roots

WhenD has two double roots, we have distinguished between two situations: the roots are either real
and rational, or they are not. In the first case, computing the inertia of singular quadrics is easy since
computations take place over the rationals. Also, note that if one of the singular quadrics has rank
2 and the other has rank 3, then the associated roots of the determinantal equation are necessarily
rational.

So assume that the roots are not real or not rational. The ranks of the non-rational singular
quadrics are necessarily the same, so we need only compute one of them, in the way indicated
above. When this rank is 2 and the roots are real conjugate, we distinguish between the remaining
subcases (four real skew lines or empty set) by testing whether any quadric of the pencil between
the two roots has inertia (4,0) or not.

6 Examples

We now give several examples for which the type of the real part of the intersection is determined
using the type-detection algorithms of the previous section.
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Algorithm 3 Classifying the intersection: the double real root case, d = 1.
Require: R(!,µ),D (from Algorithm 1)
Require: double real root (!0,µ0), inertia I0 and rank r0 of R(!0,µ0)
1: let s := signE(!0,µ0) and ) := sign(discriminant(E)), where E(!,µ) := D(!,µ)/(µ0!−!0µ)

2

2: if r0 = 3 then // nodal quartic (C)
3: if )= −1 then // other roots are complex
4: output: nodal quartic, concave singularity

5: else // other roots are real
6: if s= +1 then
7: output: nodal quartic, convex singularity

8: else if I0 = (2,1) then // cone R(!0,µ0) is real
9: output: nodal quartic with isolated singular point

10: else // cone R(!0,µ0) is imaginary
11: output: point
12: end if

13: end if

14: else // r0 = 2: two secant conics (C)
15: if )= −1 then // other roots are complex
16: if s= +1 then
17: output: two secant conics, concave singularities

18: else

19: output: one conic

20: end if

21: else // other roots are real
22: if I0 = (1,1) then // pair of planes R(!0,µ0) is real
23: if s= +1 then
24: output: two secant conics, convex singularities

25: else

26: if R(!,µ) contains a quadric of inertia (4,0) then
27: output: /0
28: else

29: output: two non-secant conics

30: end if

31: end if

32: else // pair of planes R(!0,µ0) is imaginary
33: if s= +1 then
34: output: /0
35: else

36: output: two points

37: end if

38: end if

39: end if

40: end if
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Algorithm 4 Classifying the intersection: the triple real root case, d = 2 and discriminant(H ) = 0
Require: R(!,µ),D (from Algorithm 1)
Require: triple real root (!0,µ0), inertia I0 and rank r0 of R(!0,µ0)
1: if r0 = 3 then // cuspidal quartic (C)
2: output: cuspidal quartic

3: else if r0 = 2 then // two tangent conics (C)
4: if I0 = (1,1) then // pair of planes R(!0,µ0) is real
5: output: two tangent conics

6: else // pair of planes R(!0,µ0) is imaginary
7: output: point
8: end if

9: else // r0 = 1: double conic (C)
10: let I1 be the inertia of R(!1,µ1), (!1,µ1) the second root of D

11: if I1 = (2,1) then // cone R(!1,µ1) is real
12: output: double conic

13: else // cone R(!1,µ1) is imaginary
14: output: /0
15: end if

16: end if

6.1 Example 1

Consider the following pair of quadrics:
{

QS :−x2−4xy+4xz−6y2+2yz−4yw+2zw−2w2 = 0,
QT :−x2−6xy+4xz−2xw−6y2−8yw−6w2 = 0.

The determinantal equation is

D(!,µ) = det(!S+µT ) = −16(2!4−10!3µ−19!2µ2−16!µ3−5µ4).

The gcd of the partial derivatives is equal to 32(!+µ). So, by Algorithm 1, D has a double real root
at (!0,µ0) = (1,−1).

We then follow Algorithm 3. Let R0 = !0S+µ0T . We have:

det(R0− xI) = x4−4x3−8x2.

Descartes’ Sign Rule gives that the inertia of R0 is I0 = (1,1) and the rank is r0 = 2. The intersection
thus consists of two secant conics over the complexes. We compute

E(!,µ) =
D(!,µ)

(µ0!−!0µ)2
= −16(2!2+6!µ+5µ2).

So )= sign(discriminant(E)) =−1 and s= signE(!0,µ0) =−1. We conclude that the intersection
consists, over the reals, of a single conic.

This conic can be parameterized by (see Part III)

X(u,v) = (2u2−12uv+18v2,−u2+2uv+3v2,8v2,u2−2uv−3v2), (u,v) ∈ P1(R).
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Algorithm 5 Classifying the intersection: the quadruple real root case, d = 3.
Require: R(!,µ),D (from Algorithm 1)
Require: quadruple real root (!0,µ0), inertia I0 and rank r0 of R(!0,µ0)
1: if r0 = 3 then // cubic and tangent line (C)
2: output: cubic and tangent line

3: else if r0 = 2 then // conic and two lines crossing or two skew lines and a double line (C)
4: if I0 = (2,0) then // pair of planes R(!0,µ0) is imaginary
5: output: double line

6: else // pair of planes R(!0,µ0) is real
7: if s= +1 then
8: let l0 be the singular line of R(!0,µ0)
9: if l0 is contained in QS and QT then
10: output: two skew lines and a double line

11: else

12: output: conic and two lines crossing on conic

13: end if

14: else // s= −1
15: output: conic
16: end if

17: end if

18: else if r0 = 1 then // two double lines (C)
19: if s= +1 then
20: output: two secant double lines

21: else // s= −1
22: output: point
23: end if

24: else // r0 = 0: smooth quadric (C)
25: if S or T has inertia (2,2) then
26: output: smooth quadric

27: else

28: output: /0
29: end if

30: end if

6.2 Example 2

Consider the following pair of quadrics:
{

QS :−5x2−2xy−4y2−12yz−6yw−8z2−4zw+w2 = 0,
QT :−2x2−2xy+3y2+6yz+4z2+2zw+w2 = 0.

The determinantal equation is

D(!,µ) = det(!S+µT ) = −3(16!4−8!2µ2+µ4).
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Algorithm 6Classifying the intersection: the two double roots case, d= 2 and discriminant(H ) #= 0.
Require: R(!,µ),D,H (from Algorithm 1)
Require: double roots (!0,µ0) and (!1,µ1)
1: let ) := discriminant(H ) and s be the sign of D outside the roots
2: if )> 0 and ) is a square then // double roots are real and rational
3: let r0 and r1 (r0 " r1) be the ranks of R(!0,µ0) and R(!1,µ1), I1 the inertia of the second
4: if r0 = 3 and r1 = 3 then // cubic and secant line (C)
5: output: cubic and secant line

6: else // r0 = 2
7: if r1 = 3 then // conic and two lines not crossing on conic (C)
8: if I1 = (3,0) then // cone R(!1,µ1) is imaginary
9: output: point
10: else // cone R(!1,µ1) is real
11: if s= +1 then
12: output: conic and two lines

13: else

14: output: conic and point

15: end if

16: end if

17: else // r1 = 2: four skew lines (C)
18: if s= −1 then
19: output: two points

20: else if R(!,µ) contains a quadric of inertia (4,0) then
21: output: /0
22: else

23: output: four skew lines

24: end if

25: end if

26: end if

27: else // double roots are complex or real non-rational
28: let r0 := 3−dim(singular(QR(!0,µ0)))
29: if r0 = 2 then // R(!0,µ0) and R(!1,µ1) are pairs of planes
30: if )< 0 then // roots are complex conjugate
31: output: two skew lines

32: else // )> 0: roots are real conjugate
33: if s= −1 then
34: output: two points

35: else if R(!,µ) contains a quadric of inertia (4,0) then
36: output: /0
37: else

38: output: four skew lines

39: end if

40: end if

41: else // r0 = 3: R(!0,µ0) and R(!1,µ1) are cones
42: if )< 0 then // roots are complex conjugate
43: output: cubic and non-secant line

44: else

45: output: cubic and secant line

46: end if

47: end if

48: end if
RR n° 5668
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The gcd of the partial derivatives is equal to H = 12(µ2−4!2). Since the discriminant ) of H is not
zero, D has two double roots, according to Algorithm 1. Further, ) is positive and is a square, so D

has two real rational double roots. These roots are (!0,µ0) = (−1,−2) and (!1,µ1) = (−1,2).
We now follow Algorithm 6. Let R0 = !0S+µ0T and R1 = !1S+µ1T . Applying Descartes’

Sign Rule, we find that r0 = r1 = 2. So the intersection, over the complexes, consists of four skew
lines. Since D(1,0) < 0, the determinantal equation is negative outside the roots, and s = −1. So
the intersection, over the reals, consists of two points.

The two points can be computed with the algorithms of Part III:

(−3,−3,3+
√
3,−3−4

√
3) and (−3,−3,3−

√
3,−3+4

√
3).

6.3 Example 3

Consider the following pair of quadrics:
{

QS :−2xy+2xw− y2− z2+w2,
QT : 4xy−4xw+2y2+ z2−2w2.

The determinantal equation vanishes identically. We then follow Algorithm 2. QS has rank 3, and its
singular point p has coordinates (−1,1,0,1). QT has rank 3, and its singular point is again p. So the
dimension , of the intersection of the singular sets of QS and QT is 0. Let P be the transformation
matrix sending p to (0,0,0,1), completed as follows:

P=









1 0 0 −1
0 1 0 1
0 0 1 0
0 0 0 1









.

Let S′ = PTSP and T ′ = PTTP, and remove the last line and column of the two matrices. This gives:
{

QS′ :−2xy− y2− z2,
QT ′ : 4xy+2y2+ z2.

The restricted determinantal equation is then

D3(!,µ) = !3−5!2µ+8!µ2−4µ3.

It has a double root at (!0,µ0) = (2,1). The associated conic R′0 = !0S
′ +µ0T

′ has rank 1. So the
intersection consists, over the complexes, of two double lines. D3 has a second root at (!1,µ1) =
(1,1). The associated conic has inertia (1,1), from which we conclude that the intersection consists,
over the reals, of two double lines.

The two lines can easily be parameterized as follows:

X1(u,v) = (v,−u− v,0,u− v) and X2(u,v) = (u,v,0,v), (u,v) ∈ P1(R).

The two lines meet at point p.
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7 Conclusion

In this second part of our paper, we have shown how the real type of the intersection of two quadrics
can be determined by extracting simple information from the pencil of the two quadrics, and in
particular its determinantal equation. Our type-detection algorithm relies on a classification of real
pencils of quadrics of P3(R), itself derived from the Canonical Pair Form Theorem for pairs of real
symmetric matrices ([8, 9]).

In Part III [3], we will use the structural information gathered in the type-detection phase to
drive the parameterization process. In each case, we will show that the parameterization computed
is near-optimal.
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Paramétrisation quasi-optimale de l’intersection de quadriques :
III. Paramétrisation des courbes d’intersection singulières

Résumé : Dans la partie II [3] de cet article, nous avons montré, en se basant sur une classification
des faisceaux de quadriques de P3(R) sur les réels, comment déterminer rapidement et efficacement
le type réel de l’intersection de deux quadriques données.

Dans cette troisième partie, nous utilisons l’information collectée pendant la phase de détection
du type pour diriger le paramétrage de l’intersection. Dans chaque cas possible, nous donnons la
trame d’un algorithme quasi-optimal pour paramétrer la partie réelle de l’intersection et donnons des
exemples couvrant toutes les situations possibles en terme de nombre et de profondeur de radicaux
impliqués.

Mots-clés : Intersection de surfaces, quadriques, faisceaux de quadriques, paramétrisation, inter-
sections singulières.
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1 Introduction
Building on the classification of pencils of quadrics of P3(R) over the reals achieved in Part II [3] and
the type-detection algorithm that we deduced from this classification, we now are ready to present
near-optimal parameterization algorithms for all the possible types of real intersection.

Since the smooth quartic case has already been thoroughly studied in Part I [2], we focus here on
the singular cases. For each case, we prove the near-optimality of the parameterization and, when
there is possibly an extra square root, we describe the test needed to assert the full optimality which
always boils down to finding a rational point on a (possibly non-rational) conic.

In what follows, QS,QT refer to the initial quadrics and QR (assumed to be distinct from QS) to
the intermediate quadric used to parameterize the intersection C of QS and QT . As in Section I.7.1,
denote by Ω the equation in the parameters:

Ω : XTSX= 0,

where X is the parameterization of QR. Denote also by CΩ the curve zero-set of Ω. Recall that
the parameterization of QR defines an isomorphism between C and the plane curve CΩ. When C is
singular, its genus is 0 so it can be parameterized by rational functions (i.e.

√
Δ can be avoided).

Our general philosophy is to use for QR the rational quadric of the pencil of smallest rank. This
will lead us to use repeatedly the results of Section I.6 on the optimality of parameterizations of
projective quadrics and to parameterize cones without a rational point, cones with a rational point,
pairs of planes, etc. As will be seen, this philosophy has the double advantage of (i) avoiding

√
Δ in

all singular cases, and (ii) minimizing the number of radicals. As an additional benefit, it helps keep
the size of the numbers involved in intermediate computations and in the final parameterizations to
a minimum (see Part IV [4]).

For every type of real intersection, we give a set of worst-case examples where the maximum
number of square roots is reached, both in the optimal and near-optimal situations (the best-case
examples are those given by the canonical forms of Section II.3). Examples covering all possible
situations are gathered in Appendix C.

A summary of the results of this part is given in Table 1.
The rest of this third part is as follows. Section 2 gives near-optimal parameterization algorithms

for all types of real intersection when the pencil is regular. Section 3 does the same for singular
pencils (i.e., when the determinantal equation vanishes identically). Several examples are detailed
in Section 4 and it is shown how our implementation fares on these examples. Finally, we conclude
in Section 5 and give a few perspectives.

2 Parameterizing degenerate intersections: regular pencils
In this section, we outline parameterization algorithms for all cases of regular pencils, i.e. when the
determinantal equation does not identically vanish. Information gathered in the type-detection phase
(Part II) is used as input; see in particular Table II.4 but also the details of the classification of pencils
over the reals. In each case, we study optimality issues and give worst-case examples.
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Segre string real type of intersection worst case format
of parameterization

worst-case optimality
of parameterization

[1111] nonsingular quartic (see part I) Q(
√
δ)[ξ,

√
Δ],

Δ ∈ Q(
√
δ)[ξ]

rational point on
degree-8 surface

[112] point Q optimal
nodal quartic Q(

√
δ)[ξ] rational point on conic

[13] cuspidal quartic Q[ξ] optimal
[22] cubic and non-tangent line Q[ξ] optimal
[4] cubic and tangent line Q[ξ] optimal

[11(11)]

two points Q(
√
δ) optimal

conic Q(
√
δ,
√µ)[ξ],

µ∈ Q(
√
δ)

optimal if
√
δ $∈ Q

rational point
on conic if

√
δ ∈ Q

two non-tangent conics Q(
√
δ,
√
δ′)[ξ]

Q(
√
δ′)-rational point

on Q(
√
δ′)-conic

[1(21)] point Q optimal
two tangent conics Q(

√
δ)[ξ] optimal

[1(111)] double conic Q(
√
δ)[ξ] rational point on conic

[2(11)]

point Q optimal
conic and point Q(

√
δ)[ξ] rational point on conic

conic and two lines
not crossing on the conic Q(

√
δ)[ξ] rational point on conic

[(31)]
conic Q[ξ] optimal

conic and two lines
crossing on the conic Q(

√
δ)[ξ] optimal

[(11)(11)]
two points K[ξ],degree(K) = 4 optimal

two skew lines K[ξ],degree(K) = 4 optimal
four skew lines K[ξ],degree(K) = 4 optimal

[(22)]
double line Q[ξ] optimal

two simple skew lines
cutting a double line Q(

√
δ)[ξ] optimal

[(211)] point Q optimal
two double concurrent lines Q(

√
δ)[ξ] optimal

[1{3}] conic and double line Q[ξ] optimal

[111]
point Q optimal

two concurrent lines K[ξ],degree(K) = 4 optimal
four concurrent lines K[ξ],degree(K) = 4 optimal

[12]
double line Q[ξ] optimal

two simple and a double
concurrent lines Q(

√
δ)[ξ] optimal

[3] concurrent simple
and triple lines Q[ξ] optimal

[1(11)] point Q optimal
two concurrent double lines Q(

√
δ)[ξ] optimal

[(21)] quadruple line Q[ξ] optimal
[11] quadruple line Q[ξ] optimal

Table 1: Ring of definition of the projective coordinates of the parameterization of each component
of the intersection and optimality, in all cases where the real part of the intersection is 0- or 1-
dimensional. δ,δ′ ∈ Q. INRIA
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In the following, we often need to compute the parameterization of the intermediate quadric
QR and this is achieved using the normal form of QR. Recall that a rational congruence sending
a quadric with rational coefficients into normal form can be computed using Gauss reduction of
quadratic forms into sums of squares (see Part I).

Recall also that the discriminant of a quadric is the determinant of the associated matrix. In the
following, we also call discriminant of a pair of planes QR the product ab where ax2−by2 = 0 is the
canonical equation of a pair of planes obtained fromQR by a real rational congruence transformation;
the discriminant is defined up to a rational square factor.

2.1 Nodal quartic in P3(C), σ4 = [112]
If we parameterize C using the generic algorithm (see Part I), we will not be able to avoid the
appearance of

√
Δ becauseCΩ (asC) is irreducible. However, since the intersection curve is singular,

we we know that
√
Δ is avoidable by Proposition I.7.1. We thus proceed differently.

2.1.1 Algorithms

Let λ1 be the real and rational double root of the determinantal equation. Let QR be the rational cone
associated with λ1. As we have found in Section II.3, there are essentially two cases depending on
the real type of the intersection.

Point. QR is an imaginary cone. The intersection is reduced to a point, which is the apex of QR.
Since λ1 is rational, this apex is rational (otherwise its algebraic conjugate would also be a singular
point of the cone). Thus the intersection in this case is defined in Q.

Real nodal quartic (with or without isolated singularity). Let P be a real rational congru-
ence transformation sending the apex of QR to (0,0,0,1). The parameterization X(u,v,s) =
P(x1(u,v),x2(u,v),x3(u,v),s)T ,(u,v,s) ∈ P!2 of the cone (see Table I.3) introduces a square root√
δ. Equation Ω in the parameters is

as2+b(u,v)s+ c(u,v) = 0,

with a and the coefficients of b,c defined in Q(
√
δ). The nodal quartic passes through the vertex of

QR and this point corresponds to the value u= v= 0 of the parameters. At this point s $= 0 because
(u,v,s) ∈ P!2. Thus a = 0, Ω is linear in s and it can be solved rationally for s. This leads to the
parameterization of the quartic

X(u,v) = P(b(u,v)x1(u,v),b(u,v)x2(u,v),b(u,v)x3(u,v),−c(u,v))T .

The coefficients of X(u,v) clearly live in Q(
√
δ)[ξ], where ξ= (u,v).

When the node of the quartic is not isolated, the singularity is now reached by two different
values of (u,v) ∈ P1(R) which are precisely those values such that b(u,v) = 0. When the node of
the quartic is isolated, the singularity is not reached by (u,v) ∈ P1(R), i.e. b(u,v) = 0 has no real
solution. In that situation, the node has to be added to the output. Since this point is the vertex of the
cone QR, it is rational.

RR n° 5669
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2.1.2 Optimality

By Proposition I.6.3, if the cone QR contains a rational point other than its vertex, it can be pa-
rameterized with rational coefficients and thus the parameterization of the nodal quartic is defined
over Q[ξ]. Otherwise, if QR contains no rational point other than its vertex, then the nodal quar-
tic also contains no rational point other than its singular point. Hence the nodal quartic admits no
parameterization over Q[ξ]. Therefore, testing whether

√
δ can be avoided in the parameterization

of real nodal quartics is akin to deciding whether QR has a rational point outside its singular locus;
furthermore, finding a parameterization in Q[ξ] amounts to finding a rational point on QR outside its
singular locus.

There are cases where
√
δ cannot be avoided. Example of these are

{

x2+ y2−3z2 = 0,
xw+ z2 = 0

when the singularity is not isolated and
{

x2+ y2−3z2 = 0,
zw+ x2 = 0

when the singularity is isolated. In both cases, the projective cone corresponding to the double root
of the determinantal equation is the first equation. By Proposition I.6.3, this cone has no rational
point except its singular point and

√
δ cannot be avoided in the parameterization of the intersection.

2.2 Cuspidal quartic in P3(C), σ4 = [13]
The intersection in this case is always a real cuspidal quartic. As above, using the generic algorithm
is not good idea: it would introduce an unnecessary and unwanted

√
Δ.

We consider instead the cone QR associated with the real and rational triple root of the deter-
minantal equation. The singular point of the quartic is the vertex p of QR. The intersection of QR
with the tangent plane of QS at p consists of the double line tangent to C at the cusp. Since it is
double, this line is necessarily rational. So we have a rational cone containing a rational line. By
Theorem I.6.1, this cone admits a rational parameterization.

So we are left with an equation Ω : as2+b(u,v)s+ c(u,v) = 0 whose coefficients are defined on
Q. As above, the singularity is reached at (u,v) = (0,0) and at this point s $= 0, so a = 0. Thus Ω
can be solved rationally for s and the intersection is in Q[ξ],ξ= (u,v). This is optimal.

2.3 Cubic and secant line in P3(C), σ4 = [22]
The real intersection consists of a cubic and a line. The cubic and the line are either secant or skew.
Note that the line of the intersection is necessarily rational, otherwise its algebraic conjugate would
also belong to the intersection.

When the double roots of the determinantal equation are real and rational, the pencil contains
two rational conesQR1 andQR2 . The line ofC is the rational line joining the vertices ofQR1 andQR2 .

INRIA
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Also, the vertex of QR2 is a rational point on QR1 , and vice versa, so the two cones can be rationally
parameterized (see Theorem I.6.1). Setting upΩ, we have again that it is linear in s, because the line
and the cubic intersect at the vertex of the cone, corresponding to (u,v) = (0,0). But here the content
of Ω in s is linear in (u,v) and it corresponds to the line of C. The cubic is found after dividing by
this content and rationally solving for s. The parameterization of the cubic is defined in Q[ξ].

When the double roots of the determinantal equation are either complex conjugate (the cubic and
the line are not secant) or real algebraic conjugate (the cubic and the line are secant), there exists
quadrics of inertia (2,2) in the pencil (by Theorems I.4.1 and I.4.3). We use the generic algorithm
of Part I: first find a quadric QR of inertia (2,2) of the pencil through a rational point. Since C
contains a rational line, the discriminant of this quadric is a square by Lemma I.7.4 and QR can be
rationally parameterized by Theorem I.6.1. Now compute the bidegree (2,2) equationΩ. The line of
C corresponds to a fixed value of one of the parameters and the contents provide factors of bidegree
(1,0) and (1,2) (or (0,1) and (2,1)), which are linear in one of the parameters and thus easy to solve
rationally for getting a parameterization of the intersection. The parameterization of C is defined in
Q[ξ].

2.4 Cubic and tangent line in P3(C), σ4 = [4]
The real intersection consists of a cubic and a tangent line. The line is necessarily rational, by the
same argument as above. The determinantal equation has a real and rational quadruple root. To
it corresponds a real rational projective cone. Since this cone contains a rational line, it can be
rationally parameterized (by Theorem I.6.1). The rest is as in the cubic and secant line case when
the two roots are rational. The parameterization of the cubic is defined in Q[ξ].

2.5 Two secant conics in P3(C), σ4 = [11(11)]
In this case, the determinantal equation has a double root corresponding to a rational pair of planes
QR. There are several cases depending on the real type of the intersection.

2.5.1 Two points

The pair of planesQR is imaginary. Its rational singular line intersects any other quadric of the pencil
in two points. So parameterize the line and intersect it with any quadric of the pencil having rational
coefficients. A square root is needed to parameterize the two points if and only if the equation in the
parameters of the line has irrational roots.

This situation can happen as the following example shows:
{

z2+w2 = 0,
x2−2y2+w2 = 0.

Clearly, the two points are defined by z= w= 0 and x2−2y2 = 0 so they live in Q[
√
2].

RR n° 5669
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2.5.2 One conic

In this case, the pair of planes is real, the pencil has no quadric of inertia (2,2) and only one of the
planes of QR intersects the other quadrics of the pencil.

The algorithm is as follows. First parameterize the pair of planes and separate the two individual
planes. Plugging the parameterization of each plane into the equation of QS gives two equations
of conics in parameter space, with coefficients in Q(

√
δ) where δ is the discriminant of the pair of

planes. The conics in parameter space correspond to the components of the intersection, thus one
of these conics is real and the other is imaginary. Determine the real conic, that is the one with
inertia (2,1), and parameterize it. Substituting this parameterization into the parameterization of the
corresponding plane gives a parameterization of the conic of intersection. The parameterization is
inQ(

√
δ,
√µ), where δ is the discriminant of the pair of planes QR and

√µ is the square root needed
to parameterize the conic in parameter space, µ∈ Q(

√
δ).

If δ is not a square, the parameterization is optimal. Indeed, if the intersection had a realQ(
√
δ)-

rational point, the conjugate of that point would be on the conjugate conic which is not real. So such
a point does not exist and the parameterization is optimal. If δ is a square, the parameterization is
defined in Q(

√µ)[ξ] with µ∈ Q. By Proposition I.6.3, the parameterization is optimal if and only
if the (rational) conic contains no rational point; moreover, testing if the parameterization is non-
optimal and, if so, finding an optimal parameterization is equivalent to finding a rational point on
this rational conic.

The situation where δ is a square but the conic has no rational point (the field of the coefficients
is of degree two) can be attained for instance with the following pair of quadrics:

{

(x−w)(x−3w) = 0,
x2+ y2+ z2−4w2 = 0.

The two planes of the first quadric are rational. The plane x−w = 0 cuts the second quadric in the
conic x−w= y2+ z2−3w2 = 0. By Proposition I.6.3, this conic has no rational point, so

√
δ cannot

be avoided and the parameterization of the conic is in Q(
√
3).

A field extension of degree 4 is obtained with the following quadrics:
{

x2−4xw−3w2 = 0,
x2+ y2+ z2−w2 = 0.

The pair of planes is defined on Q(
√
7), so, by the above argument, a field extension of degree 4 is

unavoidable.

2.5.3 Two (secant or non-secant) conics

By contrast to the one conic case, the pencil now contains quadrics of inertia (2,2). But going
through the generic algorithm and factoring CΩ directly in two curves of bidegree (1,1) can induce
nested radicals. So we proceed as follows. First, find a rational quadric QR of inertia (2,2) through
a rational point. This introduces one square root, say

√
δ. Independently, factor the pair of planes,

which introduces another square root
√
δ′. Now plug the parameterization of QR in each of the
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planes. This gives linear equations in the parameters of QR which can be solved without introducing
nested radicals. The two conics have a parameterization defined in Q(

√
δ,
√
δ′).

Note that when the two simple roots of the determinantal equation are rational, an alternate
approach is to parameterize one of the two rational cones of the pencil instead of a quadric of inertia
(2,2), and then proceed as above.

In terms of optimality,
√
δ′ cannot be avoided if the planes are irrational. As for the other

square root, it can be avoided if and only if the conics contain a point that is rational in Q(
√
δ′)

(by Proposition I.6.3 in which the field Q can be replaced by Q(
√
δ′)); moreover, testing if this

square root can be avoided and, if so, finding a parameterization avoiding it is equivalent to finding
a Q(

√
δ′)-rational point on this conic whose coefficients are in Q(

√
δ′).

All cases can happen. We illustrate this in the non-secant case. An extension of Q of degree 4 is
needed to parameterize the intersection of the following pair:

{

x2−33w2 = 0,
y2+ z2−3w2 = 0.

Indeed,
√
δ′ =

√
33 cannot be avoided. In addition, by Proposition I.6.6, y2+z2−3w2−11x2 = 0 has

no rational point on Q(
√
33), thus its intersection with the plane x= 0, the conic y2+ z2−3w2 = 0,

also has no rational point on Q(
√
33); hence the cone y2 + z2− 3w2 = 0 has no rational point on

Q(
√
33) except for its singular locus.
An extension field of degree 2 can be obtained by having conics without rational point, but living

in rational planes, as in this example:
{

x2−w2 = 0,
y2+ z2−3w2 = 0.

It can also be attained by having conics living in non-rational planes but having rational points in the
extension of Q defined by the planes:

{

x2−3w2 = 0,
y2+ z2−3w2 = 0.

As can be seen, the points of coordinates (
√
3,0,±

√
3,1) belong to the intersection. So the conic

has a parameterization in Q(
√
3)[ξ].

2.6 Two tangent conics in P3(C), σ4 = [1(21)]
Here, the determinantal equation has a real and rational triple root, corresponding to a pair of planes
QR. The other (real and rational) root corresponds to a real projective cone. There are two types of
intersection over the reals.

Point. The pair of planes is imaginary and its rational singular line intersects the cone in a double
point, which is the only component of the intersection. This point is necessarily rational, otherwise
its conjugate would also be in the intersection. One way to compute it is to parameterize the singular
line, plug the parameterization in the rational equation of the cone and solve the resulting equation
in the parameters.
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Two real tangent conics. The pair of planes is real and each of the planes intersects the cone.
The singular line of QR is tangent to the cone. As above, the point of tangency of the two conics
is rational. So, by Proposition I.6.3, the conics have a rational parameterization in the extension of
Q defined by the planes. In other words, the conics have a parameterization defined in Q(

√
δ)[ξ],

where δ is the discriminant of the pair of planes QR, if and only if δ is not a square.
One situation where

√
δ cannot be avoided is the following:

{

x2−2w2 = 0,
xy+ z2 = 0.

2.7 Double conic in P3(C), σ4 = [1(111)]
The determinantal equation has a real rational triple root, corresponding to a double plane. The other
root gives a rational cone. Assume this cone is real (otherwise the intersection is empty).

To obtain the parameterization of the double conic, first parameterize the double plane. Then
plug this parameterization in the equation of the cone. This gives the rational equation of the conic (in
the parameters of the plane). If the conic has a rational point, then it can be rationally parameterized.
Otherwise, one square root is needed.

One worst-case situation where a square root is always needed is the following:
{

x2 = 0,
y2+ z2−3w2 = 0.

By Proposition I.6.3, the second quadric (a cone) has no rational point outside its vertex. Thus the
conic cannot be parameterized rationally.

2.8 Conic and two lines not crossing on the conic in P3(C), σ4 = [2(11)]
The determinantal equation has two double roots, corresponding to a cone and a pair of planes which
is always real. The two roots are necessarily real and rational, otherwise the quadrics associated
with them in the pencil would have the same rank. So both the cone and the pair of planes are
rational. Also, the vertex of the cone falls on the pair of planes outside its singular line. Thus, by
Proposition I.6.2, the discriminant of the pair of planes is a square and each individual plane has a
rational parameterization.

Over the reals, there are three cases.

Point. The projective cone is imaginary. The intersection is limited to its real vertex. Since the
cone is rational, its vertex is rational.

Point and conic. The cone is now real. One of the planes cuts the cone in a conic living in a
rational plane, the other plane cuts the cone in its vertex. The point of the intersection is this vertex
and it is rational. To parameterize the conic of the intersection, plug the parameterization of the
plane that does not go through the vertex of the cone. This gives a rational conic in the parameters
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of the plane. One square root is possibly needed to parameterize this conic. It can be avoided if and
only if the conic has a rational point.

One example where the square root cannot be avoided is the following:
{

xw= 0,
y2+ z2−3w2 = 0.

By Proposition I.6.3, the projective cone has no rational point other than its vertex (1,0,0,0). So the
conic x= y2+ z2−3w2 = 0 has no rational point.

Two lines and conic. Again, the cone is real and one plane cuts it in a rational nonsingular conic.
But now the second plane, going through the vertex of the cone, further cuts the cone in two lines.
The parameterization of the conic goes as above. To represent the lines, we plug the second plane in
the equation of the cone and parameterize.

Note that if the lines are rational, then the cone contains a rational line and can be rationally
parameterized. Since the conic is the intersection of this cone with a rational plane, it has a rational
parameterization. So in that case all three components have parameterizations inQ[ξ]. If the lines are
irrational, it can still happen that the conic has a rational point and thus a rational parameterization.

We give examples for the three situations we just outlined. First, the pair
{

xy= 0,
y2+ z2−w2 = 0

gives birth to the rational lines y= z±w= 0 and the rational conic x= y2+ z2−w2 = 0 which con-
tains the rational point (0,0,1,1) and can be rationally parameterized. Second, the pair of quadrics

{

xy= 0,
2y2+ z2−3w2 = 0

has as intersection the two irrational lines y = z±
√
3w = 0 and the conic x = 2y2+ z2− 3w2 = 0

which contains the rational point (0,1,1,1) so can be rationally parameterized. Finally, the lines and
the conic making the intersection of the quadrics

{

xy= 0,
y2+ z2−3w2 = 0

cannot be rationally parameterized. Indeed, by Proposition I.6.3, the cone has no rational point
outside the vertex (1,0,0,0), so the conic x= y2+ z2−3w2 = 0 has no rational point.

2.9 Conic and two lines crossing on the conic in P3(C), σ4 = [(31)]
The determinantal equation has a real pair of planes QR corresponding to a real and rational quadru-
ple root. The asymmetry in the sizes of the Jordan blocks associated with this root (the two blocks
have size 1 and 3) implies that the individual planes of this pair are rational. The conic of the
intersection is always real and the two lines (real or imaginary) cross on the conic.

There are two types of intersection over the reals.
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Conic. The point at which the two lines cross is the double point that is the intersection of the
singular line of QR with any other quadric of the pencil. This point is necessarily rational. So the
conic can be rationally parameterized by Proposition I.6.3.

Conic and two lines. To parameterize the intersection, first compute the parameterization of the
two planes of QR. Plugging these parameterizations in the equation of any other quadric of the
pencil yields a conic on one side and a pair of lines on the other side. As above, the conic can be
rationally parameterized. As for the two lines, they have a rational parameterization if and only if
the discriminant of the pair of lines is a square.

One situation where this discriminant is not a square is as follows:
{

yz= 0,
y2+ xz−2w2 = 0.

The conic is given by y = xz− 2w2 = 0 which contains the rational point (1,0,0,0) and can be
rationally parameterized. The lines are defined by z= y2−2w2 = 0. But the pair of planes y2−2w2 =
0 has no rational point outside its singular locus so the lines are defined in Q(

√
2).

2.10 Two skew lines and a double line in P3(C), σ4 = [(22)]
The determinantal equation has a real and rational quadruple root, which corresponds to a pair of
planes. The singular line of the pair of planes is contained in all the quadrics of the pencil. There are
two cases.

Double line. The pair of planes is imaginary. The intersection is reduced to the rational singular
line of the pair of planes. So C is defined in Q[ξ].

Two simple lines and a double line. The pair of planes is real. We can factor it into simple
planes, parameterize these planes and plug them in any other quadric of the pencil. The two resulting
equations in the parameters of the planes are pairs of lines, each pair containing the double line of the
intersection and one of the simple lines. The simple lines are rational if and only if the discriminant
of the pair of planes is a square.

A situation where the two simple lines are irrational is the following:
{

y2−2w2 = 0,
xy− zw= 0.

2.11 Two double lines in P3(C), σ4 = [(211)]
The determinantal equation has a real rational quadruple root, which corresponds to a double plane.
The double plane cuts any other quadric of the pencil in two double lines in P3(C). There are two
cases.
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Point. Except for the double plane, the pencil consists of quadrics of inertia (3,1). The two lines
are imaginary. The intersection is reduced to their rational intersection point, i.e. the point at which
the double plane is tangent to the other quadrics of the pencil.

Two real double lines. Except for the double plane, the pencil consists of quadrics of inertia (2,2).
The two lines are real. To parameterize them, first compute a parameterization of the double plane
and then plug it in any quadric of inertia (2,2) of the pencil. The resulting pair of lines can easily be
parameterized. The intersection is thus parameterized with one square root if and only if the lines
are irrational.

One case where the square root cannot be avoided is as follows:
{

w2 = 0,
x2−2y2+ zw= 0.

The lines w = x2−2y2 = 0 have no rational point except for their singular point (0,0,1,0) so their
parameterization is in Q(

√
2)[ξ].

2.12 Four skew lines in P3(C), σ4 = [(11)(11)]
We start by describing the algorithms we use in this case. We then prove the optimality of the
parameterizations and conclude the section by giving examples of pairs of rational quadrics for all
possible types of real intersections and extension fields.

2.12.1 Algorithms

In this case the determinantal equation has two double roots that correspond to (possibly imaginary)
pairs of planes. It can be written in the form

D (λ,µ) = γ
(

aλ2+bλµ+ cµ2
)2

= 0, (1)

with γ,a,b, and c in Q.
In order to minimize the number and depth of square roots in the coefficients of the parameteri-

zation of the intersection, we proceed differently depending on the type of the real intersection and
the values of γ and δ= b2−4ac.

Note that the roots of the determinantal equation are defined in Q(
√
δ) and thus the coefficients

of the pairs of planes in the pencil also live in Q(
√
δ). Let d+,d− ∈ Q(

√
δ) be the discriminants

of the two pairs of planes, with d+ > d−. When d+ > 0 (resp. d− > 0), the corresponding pair of
planes is real and can be factored into two planes that are defined over Q(

√
d+) (resp. Q(

√
d−)).

The algorithms in the different cases are as follows.

Two points. In this case one pair of planes of the pencil is real (the one with discriminant d+)
and the other is imaginary. We factor the two real planes and substitute in each a parameterization
of the (real) singular line of the imaginary pair of planes. The singular line is defined in Q(

√
δ)
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and each of the real planes are defined in Q(
√
d+). We thus obtain the two points of intersection

with coordinates in Q(
√
δ,
√
d+). The two points are thus defined over Q(

√
d+), d+ ∈ Q(

√
δ), an

extension field of degree 4 (in the worst case) with one nested square root.

Two or four lines. Since the intersection is contained in every quadric of the pencil, there are no
quadric of inertia (3,1) in the pencil in this case (such quadrics contain no line) and thus γ > 0.
Furthermore all the non-singular quadrics of the pencil have inertia (2,2) (by Theorem I.4.3) and
their discriminant is equal to γ, up to a square factor (by Eq. (1)). Hence we can parameterize a
quadric QR of inertia (2,2) in the pencil using the parameterization of Table I.3 with coefficients in
Q(

√
γ) (see Part I).
There are three subcases.

√
δ ∈ Q. The roots of the determinantal equation are real (since δ > 0), thus the intersection

consists of four real lines and the two pairs of planes of the pencil are real (see Table II.4). We factor
the two pairs of planes into four planes with coefficients in Q(

√
d±) and intersect them pairwise.

We thus obtain a parameterization of the four lines over Q(
√
d+,

√
d−) with d± ∈ Q (since δ is a

square), an extension field of degree 4 (in the worst case) with no nested square root.

√
δ $∈ Q and

√

γδ ∈ Q. Here again δ > 0 thus the intersection consists of four real lines and
the two pairs of planes of the pencil are real. We factor one of these pairs of planes (say the one
with discriminant d+) in two planes with coefficients in Q(

√
d+); if the discriminant of one of the

pair of planes is a square, we choose this pair of planes for the factorization. We then substitute
the parameterization of the quadric QR into each plane. This leads to an equation of bidegree (1,1)
in the parameters with coefficients in Q(

√
d+,

√
γ). This field is equal to Q(

√
d+) because d+ ∈

Q(
√
δ) and γδ is a square. We finally obtain each line by factoring the equation in the parameters

into to terms of bidegree (1,0) and (0,1) and by substituting the solutions of these factors into the
parameterization of QR. We thus obtain a parameterization of the four lines defined over Q(

√
d+),

d+ ∈ Q(
√
δ), an extension field of degree 4 (in the worst case) with one nested square root.

√
δ $∈ Q and

√

γδ $∈ Q. In this case we apply the generic algorithm of Part I: we substitute the
parameterization of QR into the equation of another quadric of the pencil (with rational coefficients).
The resulting equation in the parameters of bidegree (2,2) has coefficients in Q(

√
γ). We factor it

into two terms of bidegree (2,0) and (0,2), whose coefficients also live in Q(
√
γ). We solve each

term separately and each real solution leads to a real line. At least one of the two factors has two
real solutions, which are defined in an extension field of the form Q(

√

α1+α2
√
γ), αi ∈ Q. If the

other factor has real solutions, they are defined in Q(
√

α1−α2
√
γ). Thus in the case where the

intersection consists of two real lines, we obtain parameterization defined over an extension field
Q(

√

α1+α2
√
γ) of degree 4 (in the worst case), with one nested square root. In the case where the

intersection consists of four real lines, the parameterization of the four lines altogether is defined
over an extension field of degree 8 (in the worst case) but each of the lines is parameterized over
an extension Q(

√

α1+α2
√
γ) or Q(

√

α1−α2
√
γ) of degree 4 (in the worst case), with one nested

square root.
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2.12.2 Optimality

We prove that the algorithms described above output parameterizations that are always optimal in
the number and depth of square roots appearing in their coefficients. This proof needs some consid-
erations of Galois theory that can be found in Appendix A.

The two input quadrics intersect here in four lines in P3(C). The pencil contains two (possibly
complex) pair of planes and these lines are the intersections between two planes taken in two differ-
ent pairs of planes. Let p1, . . . ,p4 be their pairwise intersection points of the four lines. These points
are the singular points of the intersection. These points are also the intersections of the singular line
of a pair of planes with the other pair of planes, and vice versa. Let the points be numbered such
that p1 and p3 are on the singular line of one pair of planes of the pencil; p2 and p4 are then on the
singular line of the other pair of planes of the pencil. The four lines of intersection are thus p1p2,
p2p3, p3p4, and p4p1.

Let K be the field of smallest degree on which the four points pi are rational. The above algo-
rithms show that K has degree 1, 2, 4 or 8 (since two rational lines in K intersect in a rational point
in K). Let G be its Galois group, which acts by permutations on the points pi. It follows that G is
a subgroup of the dihedral group D4 of order 8 of the symmetries of the square. This group D4 acts
on the four points pi and on the lines joining them the way the 8 isometries of a square act on its
vertices and edges. We show that the optimal number of square roots needed for parameterizing the
four lines and the way this optimal number is reached only depend on G and on its action on the pi.

The eight elements of D4 are the identity, the transpositions τ13 and τ24 which exchange p1 and
p3 or p2 and p4 (symmetries with respect to the diagonal), the permutation τ12,34 (resp. τ14,23) of
order 2 which exchange p1 with p2 and p3 with p4 (resp. p1 with p4 and p2 with p3), the circular
permutations ρ and ρ−1 of order 4, and the permutation ρ2 = τ13τ24 = τ12,34τ14,23 of order 2.

If G is included in the group GL of order 4 generated by τ13 and τ24 (symmetries of the lozenge),
its action leaves fixed the pairs {p1,p3} and {p2,p4} and thus also the lines p1p3 and p2p4 and
the two singular quadrics of the pencil (the two pairs of planes). It follows that the roots of the
determinantal equation D are rational. Conversely, if these roots are rational, the singular quadrics
and their singular lines are invariant under the action of G, as well as the pairs {p1,p3} and {p2,p4},
which implies that G is included in GL . A similar argument shows that G is the identity (resp. is
generated by τ13 (or τ24), or contains τ13τ24), if and only if 0 (resp. 1 or 2) of the singular quadrics
consist of irrational planes. Moreover, in the case where G contains τ13τ24, the group is different
from GL if and only if any element which exchanges p1 and p3 also exchanges p2 and p4, i.e. if and
only if the conjugations exchanging the planes in each singular quadric is the same (implying that
the square roots needed for factoring them are one and the same). As the degree of K is the order of
G, this shows that the number of square roots needed in our algorithm is always optimal if the roots
of D are rational (i.e. δ is a square).

When the roots of D are not rational, we consider, in the algorithm, a rational quadricQR passing
through a rational point p. Let D be the line of QR passing through p and intersecting the lines p1p2
and p3p4 in two points q1 and q2. If the discriminant of QR is a square (and its parameterization
is rational), then D is rational and is fixed by any Galois automorphism. It follows that the lines
p1p2 and p3p4 are either fixed or exchanged, which implies that G is included in the group GR of
order 4 generated by τ12,34 and τ14,23 (symmetries of the rectangle). Conversely, if G ⊂ GR , the
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lines p1p2 and p3p4 are fixed or exchanged by any Galois automorphism; the image of D by such
an automorphism is D itself or the other line of QR passing through p; as this image contains the
images of q1 and q2 which are on p1p2 or p3p4, we may conclude that D is fixed by any Galois
automorphism, and is rational; this shows that the discriminant of QR is a square by Lemma I.7.4.
Pushing these arguments a little more, it is easy to see that G is generated by τ12,34 or τ14,23 (or is
the identity) if and only if the roots of either or both of the factors of bidegree (2,0) and (0,2) of the
equation Ω in the parameters are rational.

By similar arguments of invariance, we may also conclude that the group G is generated by the
circular permutation ρ if and only if any Galois automorphism which exchanges the lines p1p3 and
p2p4 exchanges also the lines of QR passing through p (and if there is such an automorphism). It
follows that this case occurs when the square root of the discriminant of QR and the roots of D
generate the same field.

Finally, G is of order 8 if none of the preceding cases occur.
Optimality in all cases is proved by checking that, for each possible group, the algorithm involves

exactly 0, 1 or 2 square roots for parameterizing the lines if the size of the orbit of a line is 1, 2 or 4
respectively.

2.12.3 Examples

We now give examples in all the possible cases outlined in Section 2.12.1. These examples are
obtained using the following proposition which gives a rational canonical form for pencils having
two double roots corresponding to quadrics of rank 2. Its proof is postponed to Appendix B and
needs again elements of Galois theory that can be found in Appendix A.

Proposition 2.1. Let R(λ,µ) be a rational pencil of quadrics whose determinantal equation has two
double roots corresponding to two quadrics of rank 2. Then there is a rational change of frame such
that the pencil is generated by quadrics (QS,QT ) of equation

{

x2− γy2−2wz= 0,
αx2+2γxy+αγy2− z2− (α2− γ)w2 = 0,

where α,γ ∈ Q,δ= α2− γ $= 0. Moreover, a field K of smallest degree on which the four lines of the
intersection are rationally parameterized is generated by the roots of t4−2αt+ γ= 0.

The different cases are as follows:
• δ> 0,γ> 0, and α< 0 : the real intersection is empty.
• δ> 0,γ> 0, and α> 0 : the real intersection consists of four lines.
• δ> 0 and γ< 0 : the real intersection consists of two points.
• δ< 0 : the real intersection consists of two lines.

Note that the determinantal equation for the reduced pair of quadrics QS and QT is

D (λ,µ) = γ
(

λ2−δµ2
)2

= 0.
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Its roots are (λ0,µ0) = (±
√
δ,1) and, when δ> 0, the associated quadrics of the pencil are the pairs

of planes of equations

λ0QS+µ0QT = (α±
√
δ)

(

x+(α∓
√
δ)y

)2
− (z±

√
δw)2 = 0

and of discriminants d± = α±
√
δ. Note also that, when γ> 0, the quadric QS has inertia (2,2) and

can be parameterized, using the parameterization of Table I.3, by:

X=

(

ut+ vs,
ut− vs
√
γ

,vt,2us
)

, (u,v),(s, t) ∈ P1(R).

Plugging X into the equation of T gives the following biquadratic equation in the parameters:

Ω :
(

2(α+
√
γ)u2− v2

)(

2(α−
√
γ)s2− t2

)

= 0.

We can now give examples in all the possible cases outlined cases outlined in Section 2.12.1. We
start with the four real lines case:

• δ is a square:

– If (α,γ) = (5,9), then
√
δ = 4, the discriminants of the pairs of planes are d± = 5± 4,

so
√
d± ∈ Q, and the four lines are defined in Q.

– If (α,γ) = (3,5), then
√
δ = 2, the discriminants of the pairs of planes are d± = 3± 2,

so
√
d+ $∈ Q and

√
d− ∈ Q, and the four lines are defined in Q(

√
5).

– If (α,γ) = (5,16), then
√
δ = 3, the discriminants of the pair of planes are d± = 5± 3,

so
√
d± $∈ Q but

√
d− and

√
d+ generate the same field Q(

√
2), and the four lines are

defined in Q(
√
2).

– If (α,γ) = (6,20), then
√
δ= 4, the discriminants of the pairs of planes are d± = 6±4,

so
√
d± $∈Q,

√
d+ and

√
d− do not generate the same field and the four lines are defined

in Q(
√
2,
√
10).

• δ is not a square but γδ is a square: let (α,γ) = (2,2), then δ= 2,
√
δ $∈ Q but

√

γδ= 2 ∈ Q.
The discriminant of the pairs of planes are d± = 2±

√
2, so the four lines are defined in

Q(
√

2+
√
2).

• Neither δ nor γδ are squares:

– If (α,γ) = (3,1), then δ = γδ = 8 is not a square, √γ ∈ Q so QR can be rationally
parameterized and the factors of bidegree (2,0) and (0,2) ofΩ have rational coefficients.
Since 2(α−√

γ) = 4 is a square, one of those factors splits in two rational linear factors.
Thus two lines have a rational parameterization. Since 2(α+

√
γ) = 8, the other two

lines are defined in Q(
√
8) = Q(

√
2).
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– If (α,γ) = (2,1), then δ= γδ= 3 is not a square, √γ ∈ Q so QR can be rationally param-
eterized. Since 2(α+

√
γ) = 6 and 2(α−√

γ) = 2, two lines have a rational parameteri-
zation in Q(

√
2) and the other two lines have a rational parameterization in Q(

√
6).

– If (α,γ) = (3,3), then δ = 6 and γδ = 18 are not squares, √γ $∈ Q so QR cannot be
rationally parameterized. Two lines are defined inQ(

√

6+2
√
3) and the other two lines

are rational in Q(
√

6−2
√
3).

Now we give examples for the two real lines case:

• If (α,γ) = (3,25), then δ = −16 < 0, √γ = 5 and
√

2(α+
√
γ) = 4 are rational, so the two

lines are rational.

• If (α,γ) = (1,4), then δ= −3< 0, √γ ∈ Q and
√

2(α+
√
γ) =

√
6 $∈ Q, so the two lines are

defined in Q(
√
6).

• If (α,γ) = (1,3), then δ= −2< 0, √γ and
√

2(α+
√
γ) are not rational, so the two lines are

defined in Q(
√√

3−1).

Finally, here are examples for the two points case:

• If (α,γ) = (0,−1), then
√
δ= 1 is rational and the discriminant α+

√
δ= 1 of the real pair of

planes is a square, so the two points are in Q.

• If (α,γ) = (1,−3), then
√
δ= 2 is rational but the discriminant α+

√
δ= 3 of the real pair is

not a square, so the two points are in Q(
√
3).

• If (α,γ) = (1,−2), then
√
δ is not rational and the two points are in Q(

√

1+
√
3).

3 Parameterizing degenerate intersections: singular pencils
We now turn to singular pencils. Except when the intersection consists of four concurrent lines, the
parameterization algorithms are straightforward and therefore only briefly sketched.

3.1 Conic and double line in P3(C), σ4 = [1{3}]
As we have seen in Section II.4.1, the pencil contains in this case one pair of planes. Furthermore
each of the planes is rational by Proposition I.6.2 because the pair of planes contains a rational point
outside its singular locus (by Proposition II.4.1). One plane is tangent to all the cones of the pencil,
giving a rational double line. The other plane intersects all the cones transversally, giving a conic.
The conic contains a rational point (its intersection with the singular line of the planes), so it can be
rationally parameterized.

To actually parameterize the line and the conic, we proceed as follows. If QS is a pair of planes,
replace QS by QS +QT . Now, QS is a real projective cone whose vertex is on QT . Use this rational
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vertex to obtain a rational parameterization ofQT . Plug this parameterization into the equation ofQS.
This equation in the parameters factors in a squared linear factor (corresponding to the double line)
and a bilinear factor, corresponding to the conic. It can rationally be solved. The parameterization
ofC is defined in Q[ξ].

3.2 Four concurrent lines in P3(C), σ3 = [111]
In this case, and in the three following cases, the two quadrics QS and QT have a singular point
in common. So first compute this singular point p, which is rational, and compute the rational
transformation sending this point to (0,0,0,1). In this new frame, QS and QT are functions of x,y,z
only and we can look at the restricted determinantal equation of the 3× 3 upper left matrices to
determine the real type of the intersection.

When the restricted determinantal equation has three simple roots (in C), there are three types
of intersection over the reals: a point, two concurrent lines, or four concurrent lines (see Table I.5).
In the first case, the four lines are imaginary and the real part of the intersection consists of their
common rational point, i.e. the point p.

We now look at the two other cases.

3.2.1 Algorithm and optimality

The algorithm for computing the lines is as follows. Determine a plane x = 0,y = 0,z = 0, or
w = 0, that does not contain the singular point p. Substitute the equation of that plane (say x = 0)
into the equations of QS(x,y,z,w) and QT (x,y,z,w). This gives a system of two non-homogeneous
degree-two equations in three variables having four distinct complex projective solutions qi. The
real lines ofC are then the two or four lines going through p and one of the qi with real coordinates,
i= 1, . . . ,4.

This algorithm outputs an optimal parameterization of C. Indeed, since the common singular
point p of QS and QT is rational and the plane (x= 0) used to cut QS and QT is rational, the lines are
rational if and only if their intersection with the planes (the points qi) are rational.

3.2.2 Degree of the extension

The following result shows that the roots of any polynomial of degree 4 without multiple root may
be needed to parameterize four real concurrent lines. It uses notions of Galois theory that can be
found in Appendix A.

Proposition 3.1. For any rational univariate polynomial of degree 4 without multiple root, there
are rational pencils of quadrics whose intersection is four (real or imaginary) concurrent lines, such
that each of them is rational on the field generated by one of the roots of the polynomial and is not
rational on any smaller field (for the inclusion and the degree).

Proof. Let us consider a polynomial of degree 4 with rational coefficients and without multiple
factors. Let us consider its four real or complex roots t1, . . . , t4 and the four points qi of coordinates
(1, ti, t2i ,0). Let us consider also two rational points r j = (a j,b j,c j,0), j = 1,2. Exactly one conic
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exists in the plane w = 0, which passes through the four points qi and one of the r j. Each of these
conics has necessarily a rational equation, because, if it were not, the conjugate conics (under the
action of the Galois group of the field containing the coefficients) would pass through the same five
points. In other words, the equation of the conic is invariant under the Galois group and is thus
rational. Now the rational cones containing these conics and having the point (0,0,0,1) as vertex
intersect in four (real or imaginary) lines passing through this vertex and the points qi.

The equations of these conics are easy to compute explicitly. Consider a conic with generic coef-
ficients. Expressing that it passes through 5 points induces five linear equations in the coefficients of
the equation of the conic. Solving this linear system expresses these coefficients as symmetric func-
tions of the ti, and thus as rational functions of the coefficients of the polynomial of degree 4.

3.2.3 Examples

The proof of Proposition 3.1 gives a way of constructing examples of pencils of quadrics whose inter-
section is four concurrent lines for any quartic f without multiple root. Table 2 shows an exhaustive
list of examples covering the possible degrees of field extension on which the lines of intersection are
defined. We here focus on the cases where f has two or four real roots, corresponding, respectively,
to the two and four concurrent lines cases.

When f has four real roots, the degree of the extension of Q needed to parameterize the four
lines together is the order of the Galois group of f , in view of Proposition 3.1 and Appendix A. In
other words, this degree is either 1, 2, 3, 4, 6, 8, 12 or 24. However, each line is defined individually
on an extension of degree at most 4. For instance, when the Galois group is the dihedral group D4
of order 8, the four lines are collectively defined in an extension of degree 8 but each line is defined
in an extension of degree 4.

When f has two real and two complex roots, the degree of the extension on which the four lines
are defined is again the order of the Galois group of f , but the degree of the extension on which the
two real lines are collectively defined is only half the order of the Galois group. This degree is 1, 2,
3, 4 or 12.

Every extension degree can be attained by picking the right polynomial f . To build examples in
all cases, it is sufficient to find the equations of two distinct rational cones containing the four points
qi = (1, ti, t2i ,0) and having the same vertex. Assume f is given by:

f = t4+αt3+βt2+ γt+δ.

Then the following pair (QS,QT ) satisfies the constraints:
{

xz− y2 = 0,
δx2+ γxy+βy2+αyz+ z2 = 0.

Any two distinct quadrics of the pencil generated by QS and QT intersect in four (real or imaginary)
concurrent lines defined collectively on an extension of Q of degree equal to the order of the Galois
group of f .

By picking the right polynomial, we can generate pairs of quadrics intersecting in four concurrent
lines for all types of Galois groups of a quartic. For instance, taking f = t4+ t+1, we build the two

INRIA



Near-Opt. Param. of the Intersection of Quadrics: III. Parameterizing Singular Intersections 21

quadrics
{

xz− y2 = 0,
x2+ xy+ z2 = 0.

The four real concurrent lines of the intersection are defined on an extension ofQ of degree 24, since
the Galois group of f is the group S4 of permutations of four elements (of order 24). Each line is
defined in an extension of degree 4.

3.3 Two concurrent lines and a double line in P3(C), σ3 = [12]
In this case, the restricted pencil has a real and rational double root corresponding to a pair of planes
QR and a rational simple root corresponding to another pair of planes. The second pair is always
real. There are two cases.

Double line. The pair of planes QR is imaginary. The intersection is reduced to the singular line
of this pair, which is clearly rational.

Double line and two simple lines. The double line is rational (otherwise its conjugate would also
be in the intersection). The two simple lines are contained inQR and go through the common singular
point p of QS and QT . They are rational if and only if QR has a rational point outside its singular
line, i.e. if the discriminant of QR is a square.

A simple example where this is not the case is as follows:
{

xy= 0,
y2−2z2 = 0.

3.4 Two double lines in P3(C), σ3 = [1(11)]
The determinantal equation has a real and rational double root corresponding to a double plane QR.
The other root corresponds to a (real or imaginary) pair of planes. There are two cases.

Point. The pair of planes is imaginary. The intersection is reduced to the intersection of its singular
line with QR, i.e. the rational point p.

Two real double lines. The two double lines are conjugate. They contain the rational point p and
are rational if they go through another rational point. This happens when the discriminant of the pair
of planes is a square.

This situation does not necessarily happen, as the following example shows:
{

z2 = 0,
x2−2y2 = 0.
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3.5 Line and triple line in P3(C), σ3 = [3]
The determinantal equation has a real and rational triple root corresponding to a real pair of planes.
The intersection consists of the (triple) singular line of this pair of planes, which is clearly rational,
and of a single line which is also rational, otherwise its conjugate would also be in the intersection.
The simple line is found by intersecting one of the planes with any other cone of the pencil.

3.6 Quadruple line in P3(C), σ3 = [(21)]
Here, the determinantal equation has a real and rational triple root, corresponding to a double plane.
The intersection consists of the (quadruple) line of tangency of this double plane with a cone of the
pencil. This line is clearly rational.

3.7 Remaining cases
In the remaining cases, that is when the restricted determinantal equation identically vanishes, the
description of the possibles cases given in Section II.4.2.6 directly yields algorithms for computing
parameterizations of the intersection over Q[ξ].

4 Examples
The algorithm described in this paper for computing a near-optimal parameterization of the inter-
section of two arbitrary quadrics with integer coefficients has been fully implemented in C++. The
implementation details as well as an analysis of the complexity (i.e., the height) of the integer coef-
ficients appearing in the parameterizations are presented in Part IV [4].

In this section, we illustrate our algorithm with three examples covering different situations. The
output given is the actual output of our implementation, with debug information turned on so as to
follow what the algorithm is doing.

4.1 Example 1
Our first example is as shown in Output 1. As explained in Section II.5, we first determine the type
of the intersection by looking at the multiple roots of the determinantal equation and the ranks of
the associated quadrics. Here, we find two real double roots corresponding to quadrics of rank 3:
Algorithm II.6 tells us that the real type of the intersection is “cubic and secant line”. We have
rational roots, so we can parameterize the intersection using cones. One of the two cones of the
pencil is

QR = −2QS+QT = −25wx−30wy−5wz−20xy−30w2−5x2−20y2.

This cone has the point (−2,1,4,0) as vertex and contains the vertex of the second cone, i.e.
(−4,1,4,1). The line of the intersection is the line joining these two points. Here, we have ap-
plied a simple reparameterization to the line by picking two other representative points with smaller
“height” than the original two. On the reparameterized line, a very simple point is (−2,0,0,1)which
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Output 1 Execution trace for Example 1.
>> quadric 1: 3*x^2 + 5*x*y + 2*x*z + 13*x*w + 14*y^2 - 4*y*z + 4*y*w + z^2 + 6*z*w + 14*w^2
>> quadric 2: x^2 - 10*x*y + 4*x*z + x*w + 8*y^2 - 8*y*z - 22*y*w + 2*z^2 + 7*z*w - 2*w^2

>> launching intersection
>> determinantal equation: 4*l^4 + 12*l^3*m + l^2*m^2 - 12*l*m^3 + 4*m^4
>> gcd of derivatives of determinantal equation: 2*l^2 + 3*l*m - 2*m^2
>> ranks of singular quadrics: 3 and 3
>> two real rational double roots: [ 1 2 ] and [ -2 1 ]
>> complex intersection: cubic and secant line
>> real intersection: cubic and secant line
>> reparameterization of line
>> singular point of cone: [ -2 1 4 0 ]
>> rational point on cone: [ -2 0 0 1 ]
>> parameterization of cone with rational point
>> cubic and line intersect at [ -4 1 4 1 ] and [ -2 1 4 0 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of cubic:
[4*u^3 + u^2*v + 2*v^3, - u^3 - v^3, - 4*u^3 - u^2*v + u*v^2 - 4*v^3, - u^3]
>> parameterization of line:
[- 2*u, v, 4*v, u - v]

>> time spent: 10 ms

we use as rational point for parameterizing QR. Plugging the parameterization of QR in the second
cone and leaving aside the linear factor corresponding to the line gives the cubic.

4.2 Example 2
Our second example is displayed in Output 2. Here, the determinantal equation has a double real
root at (λ,µ) = (0,1), the two other simple roots are real (solution of E (λ,µ) = 4µ2−λ2 = 0), the
singular quadric R = R(0,1) is a real pair of planes and E (0,1) > 0, so Algorithm II.3 tells us that
the intersection is two secant conics, the singularities of the intersection being convex. Here, the two
planes of R are rational:

QR = (w− y+2z)(w−4x+3y−2z).

We can parameterize each of these planes and plug their parameterization in turn in any other quadric
of the pencil. This gives the implicit equations of the two conics which we can parameterize. As
explained in Section 2.5, we are here in one of the few situations where we cannot guarantee that
what we output is optimal: the square root in the parameterization of the conics might well be
unnecessary. (It turns out that in this particular example it is necessary.) This explains why the
implementation reports that the parameterizations of the two conics are only near-optimal.

4.3 Example 3
Our last example is presented in Output 3. Here, the determinantal equation vanishes identically
and all the quadrics of the pencil share a common singular point, with coordinates (1,3,−1,−2).
We apply to all the quadrics of the pencil a projective transformation sending this point to the point
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Output 2 Execution trace for Example 2.
>> quadric 1: 16*x^2 - 12*x*y + 8*x*z + 4*x*w - y^2 - 20*y*z + 2*y*w - 2*z^2 + 3*w^2
>> quadric 2: 4*x*y - 8*x*z - 4*x*w - 3*y^2 + 8*y*z + 2*y*w - 4*z^2 + w^2

>> launching intersection
>> determinantal equation: - l^4 + 4*l^2*m^2
>> gcd of derivatives of determinantal equation: l
>> double real root: [ 0 1 ]
>> inertia: [ 1 1 ]
>> parameterization of pair of planes
>> complex intersection: two secant conics
>> real intersection: two secant conics, convex singularities
>> parameterization of rational conic
>> status of conic 1 param: near-optimal
>> parameterization of rational conic
>> status of conic 2 param: near-optimal
>> end of intersection

>> parameterization of conic 1:
[- 3*u^2 - 9*v^2 - 14*u*v*sqrt(2), - 12*u^2 - 36*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*sqrt(2),
- 2*u^2 - 6*v^2, - 8*u^2 - 24*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*sqrt(2)]
>> parameterization of conic 2:
[(u^2 - 28*u*v - 42*v^2)*sqrt(2), - 2*u^2 - 84*v^2 - 28*u*v*sqrt(2), - 8*u^2 - 336*v^2
+ (- 6*u^2 + 252*v^2)*sqrt(2), - 10*u^2 - 420*v^2 + (- 8*u^2 - 28*u*v + 336*v^2)*sqrt(2)]

>> time spent: 10 ms

Output 3 Execution trace for Example 3.
>> quadric 1: 17*x^2 - 12*x*y + 14*x*z - 8*x*w - 4*y^2 - 18*y*w + 5*z^2 + 2*z*w - 16*w^2
>> quadric 2: - 3*x^2 + 28*x*y + 30*x*z + 24*x*w - 4*y^2 + 8*y*z - 2*y*w + 9*z^2 + 18*z*w

>> launching intersection
>> vanishing 4 x 4 determinantal equation
>> dimension of common singular locus: 0
>> common singular point of quadrics: [ 1 3 -1 -2 ]
>> computing matrix sending singular point to [ 0 0 0 1 ]
>> 3 x 3 determinantal equation: - l^3 + l^2*m + 5*l*m^2 + 3*m^3
>> gcd of derivatives of 3 x 3 determinantal equation: l + m
>> double real root: [ -1 1 ]
>> second root: [ 3 1 ]
>> complex intersection: two concurrent lines and double line
>> real intersection: two concurrent lines and double line
>> reparameterization of line
>> parameterization of pair of lines
>> reparameterization of lines
>> the three lines meet at [ 1 3 -1 -2 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of double line:
[v, 3*v, - 2*u - v, u - 2*v]
>> parameterization of line 1:
[- 3*u + v, 3*v, u - v, - 2*u - 2*v]
>> parameterization of line 2:
[u - v, 3*u + 6*v, - u + 5*v, - 2*u]

>> time spent: 10 ms
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(0,0,0,1). The determinantal equation of the pencil restricted to the upper left 3×3 part has a double
real root at (−1,1). Corresponding to this double root is a real pair of planes QR and Algorithm II.2
tells us that the real type of the intersection is “two concurrent lines and a double line”.

As we have seen in Section 3.3, the double line of the intersection is the singular line of QR.
To parameterize the other two lines, we first parameterize QR and plug the result in the equation
of the other pair of planes of the pencil, corresponding to the second root (3,1) of the restricted
determinantal equation. The result follows.

5 Conclusion
We have presented in Parts I, II, and III of this paper a new algorithm for computing an exact para-
metric representation of the intersection of two quadrics in three-dimensional real space given by
implicit equations with rational coefficients. We have shown that our algorithm computes projective
parameterizations that are optimal in terms of the functions used in the sense that they are poly-
nomials whenever it is possible and contain the square root of some polynomial otherwise. The
parameterizations are also near-optimal in the sense that the number of square roots appearing in the
coefficients of these functions is minimal except in a small number of cases (characterized by the
real type of the intersection) where there may be an extra square root (see Table 1 for a summary).
Furthermore, we have shown that in the latter cases, testing whether the extra square root is unnec-
essary and, if so, finding an optimal parameterization are equivalent to finding a rational point on
a curve or a surface. Hence, leaving for a moment that well-known problem aside, our algorithm
closes the problem of finding parameterizations of the intersection that are optimal in the senses
discussed above. It should be emphasized that our algorithm is not only theoretically powerful but
is also practical: a complete, robust and efficient C++ implementation is described in Part IV [4].

For most applications, the near-optimal parameterizations of intersections of quadrics computed
by our algorithm are good enough since they are at most one square root away from being optimal.
However, there may be situations where one is interested in fully asserting the optimality of a pa-
rameterization and, if a given parameterization is not optimal, in obtaining one. As we have seen,
this is akin to deciding whether a given curve or surface has a rational point and to computing such
a point. The problem of finding integer (or rational) points on an algebraic variety is known to be
hard in general, and many instances of the problem are undecidable [6]. When the intersection is a
smooth quartic, deciding whether the extra square root can be avoided amounts to finding a rational
point on a surface of degree 8 (see Section I.7) and very little is known about this problem, to the
best of our knowledge. The situation is, however, better for the other near-optimal cases, which
boil down to finding a rational point on a (possibly non-rational) conic. Indeed, when the conic is
rational, Cremona and Rusin [1] recently gave an efficient algorithm for solving this problem, which
has been implemented in recent releases of the Magma computational algebra system [5]. As an
example, this implementation solves the problem for an equation of the form ax2+by2 = cz2, where
a,b and c are 200-digit primes, in less than 2 seconds on a mainstream PC. In the future, we plan to
use this algorithm in our intersection software.

Finally, it should be stressed that the classification, presented in Part II, of pairs of quadrics
depending on the type of their real intersection is of independent interest. For instance, it could be
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used in a collision detection context to predict when collisions between two moving quadrics will
occur.
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A A primer on Galois theory
Galois theory was introduced in the 19th century for deciding when a polynomial is solvable by rad-
icals. We give here a brief introduction to this theory, which is especially geared towards geometric
objects.

Let K be a finite field extension of the field Q of the rational numbers. Its dimension as Q-
vector space is called the degree of K. In our context, K is usually the smallest field containing the
coefficients of the equations or of the parameterization of a geometric object such as a point, a line, a
curve or a plane. This field K may always be defined asQ(α), where α is a root of some polynomial
f of degree n= degree(K).
The splitting field K ′ of K is defined as the smallest field containing all the roots of f . It may

be proved that it is independent from the choice of f and α. The Galois group G of K and K ′ is the
group of the field automorphisms of K ′. It is immediate that the elements of G permute the roots of
f , and this allows to identify G to a subgroup of the group Sn of all the permutations of the n roots
of f .

The important fact for geometric considerations is that any element g of G acts on any object
defined from the elements of K by the four field operations (+,−,∗,/) simply by replacing any
element of K appearing in the definition of the object by its image by the automorphism g, exactly
as the complex conjugation acts on any object defined with complex numbers. The different images
of an object under the action of the elements of G are called the conjugates of this object.

If H is a subgroup of the Galois group G, one may define K ′H , the field of the elements of K ′

such that g(x) = x for any g ∈ H. The main result of Galois theory is that the map H )→ K ′H is a
bijection between the subgroups of G and the subfields of K ′H . Moreover, we have degree

(

K′H)

=
order(G)/order(H). It follows that an element of K which has k conjugates lies in a subfield of K of
degree k.

This may be extended to the

Galois principle: Two conjugate objects are isomorphic and any object which has k
conjugates (including itself) may be defined on a field of degree k and may not be defined
on a smaller field.

This principle is behind all our proofs of optimality. We describe briefly some other conse-
quences in the context of intersection of quadrics.

One of its first consequences is that any object which has no conjugate except itself may be
rationally defined. For example this is the case for the singular point of a singular quartic appearing
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as the intersection of two rational quadrics. If the intersection of two quadrics is decomposed in a
cubic and a line, both may be rationally defined, because their conjugates have to be components
of the intersection and the conjugate of a line is a line. Similarly, if the determinantal equation of a
pencil of quadrics has two double roots and if the corresponding singular quadrics are a cone and a
pair of planes, both are rational because they are not isomorphic.

A more involved application of the Galois principle occurs when the intersection of two quadrics
consists in four non concurrent lines. As a conjugate of a line in the intersection may only be another
line of the intersection, each line may be defined on a field of degree 4. Moreover, if a point lies on a
line, any conjugate of the point lies on the corresponding conjugate of the line. Thus the arrangement
of the four lines and their four intersection points is preserved by the action of the Galois group. It
follows that the Galois group is included in a group of order 8 which acts on the lines and their
intersections as the 8 isometries of a square act on its edges and its vertices. By looking at the
subgroups of this group, the Galois principle says that the field K of definition of any of the lines
has a degree which divides 4, and that if its degree is 4 it has a subfield of degree 2. Therefore each
line may be parameterized with at most 2 square roots. As the splitting field has degree at most 8, it
is possibly generated by another square root. This shows, without any explicit computation, that at
most 3 square roots are needed to define all the four intersection points and the four lines.

B Rational canonical form for the four skew lines case
We here give a proof of Proposition 2.1.

Proof. LetK be aQ-extension field of smallest degree on which the four lines of the intersection are
rationally parameterized, and let L be the field generated by the roots of the determinantal equation.
To decompose the singular quadrics of the pencil in two planes, we have to extract the square roots
of two elements d1 and d2 of L, which are algebraically conjugate on Q if L is different from Q.
Let t2−2αt+ γ be the (rational) polynomial having d1 and d2 as roots. It is easy to verify that K is
generated by the roots of the biquadratic polynomial t4−2αt2+ γ.

Let the points pi, i = 1, . . . ,4, be the singular points of the intersection in P3(C) of any two
distinct quadrics of the pencil. Now, let us choose four points qi on which the Galois group G of
this polynomial acts in the same way as on the pi. For instance, take for qi, i = 1, . . . ,4, the points
of coordinates (1, ti, t2i , t3i ), where the ti are the roots of the biquadratic polynomial, numbered such
that t1 = −t3. It is now easy to compute the equations H j of the planes containing all the points qi
except q j. The quadrics of equations

{

H1H3+H2H4 = 0,
√

α2− γ(H1H3−H2H4) = 0

are rational and their intersection consists in the four (not necessarily real) lines q1q2, q2q3, q3q4,
and q4q1. Now, the change of frame sending the qi to the points of coordinates (ti,−1/ti, t2i −α,1)
is rational and leads to the equations

{

x2− γy2−2wz= 0,
αx2+2γxy+αγy2− z2− (α2− γ)w2 = 0.
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There is a unique projective transformation sending the points pi on the qi and leaving fixed some
rational point which is not on any of the planes defined by the pi or by the qi. This transformation
is invariant under the action of the Galois group G. Thus it is rational, showing the existence of the
rational change of frame which is sought.

We now show how the different types of real intersection follow from the signs of δ= α2− γ,α,
and γ. First note that the determinantal equation for the rational canonical pencil above is

D (λ,µ) = γ
(

λ2−δµ2
)2

.

Furthermore, the double roots of D are (λ0,µ0) = (±
√
δ,1) and, when δ> 0, the associated pairs of

planes have equations

λ0QS+µ0QT = (α±
√
δ)

(

x+(α∓
√
δ)y

)2
− (z±

√
δw)2.

The discriminants of the two pairs of planes of the pencil are thus d± = α±
√
δ.

We know from Table I.4 that, when the real intersection consists of two lines, the double roots are
complex, hence δ< 0. In the other cases, the double roots are real and distinct thus δ> 0. Note that
d+d− is then equal to c. When the real intersection is empty, the inertia of the two pairs of planes is
(2,0), hence d± < 0; thus d+ +d− = 2α< 0 and d+d− = γ> 0. When the real intersection consists
of two points, the discriminants of the two pairs of planes have opposite signs, thus d+d− = γ < 0.
Finally, when the intersection consists of four skew lines, the discriminants of the two pairs of planes
are both positive, thus d+ +d− = 2α > 0 and d+d− = γ > 0. This completes the proof since these
cases for the signs of δ, α, and γ are disjoint.

C Examples in all cases
Table 2 gives an exhaustive list of examples covering all possible degrees of extension fields on
which the components of the intersection are defined, for all real types of intersection. The next-to-
last column gives the optimal ring of definition on which a parameterization of the given example
is known to exist (ξ is the parameter of the parameterization). When the parameterization output
by our algorithm is optimal, the last column gives the degree of the Q-extension field on which the
coefficients of the parameterization of each real component of the intersection is defined. When our
algorithm is only near-optimal, the last column gives both the optimal degree and the near-optimal
one.

Table 2: Exhaustive list of examples when the intersection is 0- or 1-dimensional over C.

complex type real type example fi eld of defi nition degree

smooth quartic,
σ4 = [1111] /0

{

6xy+5y2+2z2+6zw−w2=0
3x2+y2−z2+11w2=0
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Table 2: (continued)

complex type real type example fi eld of defi nition degree

smooth quartic,
two fi nite
components

{

x2+y2−z2−w2=0
xy−2zw=0

quartic in Q[ξ,
√
Δ], Δ ∈ Q[ξ] 1 / 2

{

6xy+5y2+2z2+6zw−w2=0
3x2+y2−z2−w2=0

quartic in Q(
√
δ)[ξ,

√
Δ],

Δ ∈ Q(
√
δ)[ξ]

2

smooth quartic,
one fi nite
component

{

x2+y2+2zw=0
x2+z2+zw−w2=0

quartic in Q[ξ,
√
Δ] 1 / 2











2x2−2xy+2xz−2xw+y2

+4yz−4yw+2z2−4zw=0
x2−2xy+4xz+4xw−y2

+2yz+4yw+4zw−2w2=0

quartic in Q(
√
δ)[ξ,

√
Δ],

Δ ∈ Q(
√
δ)[ξ]

2

smooth quartic,
two infi nite
components

{

xy+zw=0
x2−y2+z2+2zw−w2=0

quartic in Q[ξ,
√
Δ], Δ ∈ Q[ξ] 1 / 2

{

x2−2y2+4zw=0
xy+z2+2zw−w2=0

quartic in Q(
√
δ)[ξ,

√
Δ],

Δ ∈ Q(
√
δ)[ξ]

2

nodal quartic,
σ4 = [112] point

{

y2+z2+w2=0
xy+w2=0

point in Q 1

nodal quartic

{

y2+z2−w2=0
xy+w2=0

quartic in Q[ξ] 1 / 2
{

y2+z2−3w2=0
xy+w2=0

quartic in Q(
√
3)[ξ] 2

nodal quartic
with isolated
singularity

{

y2−z2−w2=0
xy+w2=0

quartic in Q[ξ],
point in Q

1 / 2
1

{

y2+z2−3w2=0
xw+y2=0

quartic in Q(
√
3)[ξ],

point in Q

2
1

cuspidal quartic,
σ4 = [13] cuspidal quartic

{

yz+w2=0
xz+y2=0

quartic in Q[ξ] 1

cubic and secant
line, σ4 = [22]

cubic and secant
line

{

y2+zw=0
xy+w2=0

cubic in Q[ξ],
line in Q[ξ]

1
1

cubic and
non-secant line

{

xw+yz=0
xz−yw+zw=0

cubic in Q[ξ],
line in Q[ξ]

1
1

cubic and tangent
line, σ4 = [4]

cubic and tangent
line

{

yw+z2=0
xw+yz=0

cubic in Q[ξ],
line in Q[ξ]

1
1

two secant conics,
σ4 = [11(11)] /0

{

z2−w2=0
x2+y2+w2=0
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Table 2: (continued)

complex type real type example fi eld of defi nition degree

two points

{

z2+w2=0
x2−y2+w2=0

two points in Q 1
{

z2+w2=0
x2−2y2+w2=0

two points in Q(
√
2) 2

one conic

{

zw=0
x2+y2+z2−w2=0

one conic in Q[ξ] 1 / 2
{

x2−4xw+3w2=0
x2+y2+z2−4w2=0

one conic in Q(
√
3)[ξ] 2

{

x2−4xw−3w2=0
x2+y2+z2−w2=0

one conic in Q(
√

4
√
7−10) 4

two non-secant
conics

{

x2−w2=0
y2+z2−w2=0

two conics in Q[ξ] 1 / 2
{

x2−w2=0
y2+z2−3w2=0

two conics in Q(
√
3)[ξ] 2

{

x2−3w2=0
y2+z2−3w2=0

two conics in Q(
√
3)[ξ] 2 / 4

{

x2−33w2=0
y2+z2−3w2=0

two conics in Q(
√
3,
√
11)[ξ] 4

two secant conics

{

x2−y2=0
y2+z2−w2=0

two conics in Q[ξ] 1 / 2
{

x2−y2=0
y2+z2−3w2=0

two conics in Q(
√
3)[ξ] 2

{

x2−3y2=0
y2+z2−3w2=0

two conics in Q(
√
3)[ξ] 2 / 4

{

x2−33y2=0
y2+z2−3w2=0

two conics in Q(
√
3,
√
11)[ξ] 4

two tangent conics,
σ4 = [1(21)] point

{

x2+w2=0
xy+z2=0

point in Q 1

two conics

{

x2−w2=0
xy+z2=0

two conics in Q[ξ] 1
{

x2−2w2=0
xy+z2=0

two conics in Q(
√
2)[ξ] 2

double conic,
σ4 = [1(111)] /0

{

w2=0
x2+y2+z2=0

double conic

{

x2=0
y2+z2−w2=0

conic in Q[ξ] 1 / 2
{

x2=0
y2+z2−3w2=0

conic in Q(
√
3)[ξ] 2
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Table 2: (continued)

complex type real type example fi eld of defi nition degree

conic and two lines
not crossing,
σ4 = [2(11)]

point

{

xy=0
y2+z2+w2=0

point in Q 1

conic and point

{

xw=0
y2+z2−w2=0

point in Q,
conic in Q[ξ]

1
1 / 2

{

xw=0
y2+z2−3w2=0

point in Q,
conic in Q(

√
3)[ξ]

1
2

conic and two
lines

{

xy=0
y2+z2−w2=0

two lines in Q[ξ],
conic in Q[ξ]

1
1

{

xy=0
2y2+z2−3w2=0

two lines in Q(
√
3)[ξ],

conic in Q[ξ]

2
1 / 2

{

xy=0
y2+z2−3w2=0

two lines in Q(
√
3)[ξ],

conic in Q(
√
3)[ξ]

2
2

conic and two lines
crossing,
σ4 = [(31)]

conic

{

yz=0
xz+y2+w2=0

conic in Q[ξ] 1

conic and two
lines

{

yz=0
xz+y2−w2=0

conic in Q[ξ],
two lines in Q[ξ]

1
1

{

yz=0
xz+y2−2w2=0

conic in Q[ξ],
two lines in Q(

√
2)[ξ]

1
2

four skew lines,
σ4 = [(11)(11)] /0

{

x2+y2=0
z2+w2=0

two points

{

x2+y2−2zw=0
2xy+z2+w2=0

two points in Q 1
{

x2+3y2−2zw=0
x2−6xy−3y2−z2−4w2=0

two points in Q(
√
3) 2

{

x2+2y2−2zw=0
x2−4xy−2y2−z2−3w2=0

two points in Q(
√

1+
√
3) 4

two skew lines

{

x2−25y2−2zw=0
3x2+50xy+75y2−z2+16w2=0

two lines in Q[ξ] 1
{

x2−4y2−2zw=0
x2+8xy+4y2−z2+3w2=0

two lines in Q(
√
6)[ξ] 2

{

x2−3y2−2zw=0
x2+6xy+3y2−z2+2w2=0

two lines in Q(
√√

3−1)[ξ] 4

four skew lines

{

x2−9y2−2zw=0
5x2+18xy+45y2−z2−16w2=0

four lines in Q[ξ] 1
{

x2−y2−2zw=0
3x2+2xy+3y2−z2−8w2=0

two lines in Q[ξ],
two lines in Q(

√
2)[ξ]

1
2
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Table 2: (continued)

complex type real type example fi eld of defi nition degree
{

x2−16y2−2zw=0
5x2+32xy+80y2−z2−9w2=0

four lines in Q(
√
2)[ξ] 2

{

x2−y2−2zw=0
2x2+2xy+2y2−z2−3w2=0

two lines in Q(
√
2)[ξ],

two lines in Q(
√
6)[ξ]

2
2

{

x2−20y2−2zw=0
6x2+40xy+120y2−z2−16w2=0

four lines in Q(
√
2,
√
10)[ξ] 4

{

x2−2y2−2zw=0
2x2+4xy+4y2−z2−2w2=0

four lines in Q(
√

2+
√
2)[ξ] 4

{

x2−3y2−2zw=0
3x2+6xy+9y2−z2−6w2=0

two lines in Q(
√

3−
√
3)[ξ],

two lines in Q(
√

3+
√
3)[ξ]

4
4

two skew lines and
a double line,
σ4 = [(22)]

double line

{

y2+w2=0
xy+zw=0

double line in Q[ξ] 1

two skew lines
and a double line

{

y2−w2=0
xy−zw=0

double line in Q[ξ]

two simple lines in Q[ξ]

1
1

{

y2−2w2=0
xy−zw=0

double line in Q[ξ]

two simple lines in Q(
√
2)[ξ]

1
2

two concurrent
double lines,
σ4 = [(211)]

point

{

w2=0
x2+y2+zw=0

point in Q 1

two double lines

{

w2=0
x2−y2+zw=0

two lines in Q[ξ] 1
{

w2=0
x2−2y2+zw=0

two lines in Q(
√
2)[ξ] 2

conic and double
line, σ4 = [1{3}]

conic and double
line

{

xw=0
xz+y2=0

conic in Q[ξ],
line in Q[ξ]

1
1

four concurrent
lines, σ3 = [111] point

{

x2+z2=0
y2+z2=0

point in Q 1

two concurrent
lines

{

xz−y2=0
−x2+z2=0

two lines in Q[ξ] 1
{

xz−y2=0
−2x2−y2+z2=0

two lines in Q(
√
2)[ξ] 2

{

xz−y2=0
2xy+z2=0

one line in Q[ξ],
one line in K[ξ],degree(K) = 3

1
3

{

xz−y2=0
−3x2+z2=0

two lines in Q(
√

3
√
3)[ξ] 4

{

xz−y2=0
−3x2−3xy+z2=0

one line in K[ξ],degree(K) = 4
one line in K′[ξ],degree(K′) = 4

4
4
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Table 2: (continued)

complex type real type example fi eld of defi nition degree

four concurrent
lines

{

xz−y2=0
4x2−5y2+z2=0

four lines in Q[ξ] 1
{

xz−y2=0
2x2−3y2+z2=0

two lines in Q[ξ],
two lines in Q(

√
2)[ξ]

1
2

{

xz−y2=0
−4x2+8xy−4yz+z2=0

four lines in Q(
√
2)[ξ] 2

{

xz−y2=0
xy−3y2+z2=0

one line in Q[ξ],
three lines li in Ki[ξ],degree(Ki) = 3

1
3

{

xz−y2=0
2x2−4y2+z2=0

four lines in Q(
√

2+
√
2)[ξ] 4

{

xz−y2=0
4x2−10y2+z2=0

four lines in Q(
√
6,
√
14)[ξ] 4

{

xz−y2=0
2x2+10xy+15y2+7yz+z2=0

two lines in Q(
√
2)[ξ],

two lines in Q(
√
5)[ξ]

2
2

{

xz−y2=0
xy−4y2+z2=0

one line in Q[ξ],
three lines li in Ki[ξ],degree(K) = 3

1
3

{

xz−y2=0
2x2−5y2+z2=0

two lines in Q(
√

5+
√
17)[ξ],

two lines in Q(
√

5−
√
17)[ξ]

4
4

{

xz−y2=0
x2−3xy−7y2+z2=0

four lines li in Ki[ξ],degree(Ki) = 4 4
{

xz−y2=0
x2+xy+z2=0

four lines li in Ki[ξ],degree(Ki) = 4 4

two concurrent
lines and a double
line, σ3 = [12]

double line

{

xy=0
y2+z2=0

double line in Q[ξ] 1

two concurrent
lines and a
double line

{

xy=0
y2−z2=0

double line in Q[ξ],
two simple lines in Q[ξ]

1
1

{

xy=0
y2−2z2=0

double line in Q[ξ],
two simple lines in Q(

√
2)[ξ]

1
2

line and triple line,
σ3 = [3]

line and triple
line

{

xz+y2=0
yz=0

simple line in Q[ξ],
triple line in Q[ξ]

1
1

two concurrent
double lines,
σ3 = [1(11)]

point

{

z2=0
x2+y2=0

point in Q 1

two double lines

{

z2=0
x2−y2=0

two lines in Q[ξ] 1
{

z2=0
x2−2y2=0

two lines in Q(
√
2)[ξ] 2
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Table 2: (continued)

complex type real type example fi eld of defi nition degree

quadruple line,
σ3 = [(21)] quadruple line

{

y2=0
xy+z2=0

line in Q[ξ] 1

quadruple line,
σ2 = [11] quadruple line

{

x2=0
y2=0

line in Q[ξ] 1
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