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Approximating the Exponential with FP Numbers

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.
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Outline

1 Introduction: Cody & Waite’s exponential

2 Formalizing floating-point algorithms: Coq & Flocq

3 Bounding method errors: Coq.Interval

4 Bounding round-off errors: Gappa

5 Conclusion
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Algorithm Overview and Error Analysis

exp x =

exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(−εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf )−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃ )−1 · (1 + εf )−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.
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C Implementation

double cw_exp(double x)
{

if (fabs(x) > 710.) return x < 0. ? 0. : INFINITY;
double Log2h = 0xb .17217 f7d1c00p -4;
double Log2l = 0xf.79 abc9e3b398p -48;
double InvLog2 = 0x1 .71547652 b82fep0;
double p1 = 0x1.c70e46fb3f692p -8;
double p2 = 0x1.152 a46f58dc1cp -16;
double q1 = 0xe.38 c738a128d98p -8;
double q2 = 0x2.07 f32dfbc7012p -12;

double k = nearbyint(x * InvLog2);
double t = x - k * Log2h - k * Log2l;
double t2 = t * t;
double p = 0.25 + t2 * (p1 + t2 * p2);
double q = 0.5 + t2 * (q1 + t2 * q2);
double f = t * (p / (q - t * p)) + 0.5;
return ldexp(f, (int)k + 1);

}
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Total Relative Error
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Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use reliable numerical
methods.
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Coq: a Proof Assistant

Support

typed lambda-calculus with inductive types,

proof verification using a “small” kernel,

proof assistance using tactic-based backward reasoning.
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Coq: a Proof Assistant

Stating and proving ab
ac

= b
c

Lemma Rdiv_compat_r : (* stating the theorem *)
forall a b c : R,
a <> 0 -> c <> 0 -> (a*b) / (a*c) = b/c.

Proof. (* building the proof using tactics *)
intros.
field.
now split.

Qed. (* verifying the resulting proof *)
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Flocq: a Floating-Point Formalization for Coq

Support

multi-radix (2, 10, exotic),

multi-format (fixed-point, floating-point, exotic).

axiomatic rounding operators (no overflow),

computable IEEE-754 operators, including ÷ and
√
·,

comprehensive library of generic theorems.
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Flocq: a Floating-Point Formalization for Coq

Axiomatizing the binary64 addition

Definition add (x y : R) : R :=
round radix2 (FLT_exp ( -1074) 53) ZnearestE (x + y).

add(x , y) is the real number

the closest to the exact sum x + y ,

when rounding to nearest, tie breaking to even,

in a FP format with 53 β-digits and a minimal value β−1074,

with radix β = 2.
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Coq Implementation and Specification

Flocq-based implementation

Definition cw_exp (x : R) : R :=
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
let t2:= mul t t in
let p := add p0 (mul t2 (add p1 (mul t2 p2))) in
let q := add q0 (mul t2 (add q1 (mul t2 q2))) in
let f:= add (mul t (div p (sub q (mul t p)))) 1/2 in
pow2 (Zfloor k + 1) * f.

Specification

Theorem exp_correct :
forall x : R,
generic_format radix2 (FLT_exp ( -1074) 53) x ->
Rabs x <= 710 ->
Rabs (( cw_exp x - exp x) / exp x) <= 1 * pow2 (-51).
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Intermediate Lemmas

Lemma argument_reduction :
forall x : R,
generic_format radix2 (FLT_exp ( -1074) 53) x ->
Rabs x <= 710 ->
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
Rabs t <= 355 / 1024 /\
Rabs (t - (x - k * ln 2)) <= 65537 * pow2 (-71).

Lemma method_error :
forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).
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Intermediate Lemma: Method Error

Lemma method_error :
forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).
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Automatic Proof using Coq.Interval

Support

Quantifier-free formulas of enclosures of expressions using

basic arithmetic operators: +, −, ×, ÷,
√
·,

elementary functions: cos, sin, tan, arctan, exp, log.

Approach

Fully formalized in Coq:

efficient multi-precision FP arithmetic,

interval arithmetic with univariate Taylor models,

reflexive tactic.
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Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f (t)− exp t

exp t
∈ [0.7, 1.5]− [0.7, 1.5]

[0.7, 1.5]
=

[−0.8, 0.8]

[0.7, 1.5]
⊆ [−1.2, 1.2]

due to the dependency effect.

But one can automatically compute a polynomial P and an
interval ∆ such that

f (t)− exp t

exp t
= P(t) + δ(t) with δ(t) ∈ ∆

and then use naive interval arithmetic to compute tight bounds for

P(t) + δ(t) ∈ [−23 · 2−62, 23 · 2−62].
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Relative Round-off Error

double cw_exp(double x) {
...
//@ assert \abs(t) <= 355. / 1024.;
double t2 = t * t;
double p = 0.25 + t2 * (p1 + t2 * p2);
double q = 0.5 + t2 * (q1 + t2 * q2);
double f = t * (p / (q - t * p)) + 0.5;
//@ assert \abs((f - \exp(t)) / \exp(t)) <= ...;
...

}
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Automatic Proof using Gappa

Support

Quantifier-free formulas of enclosures of expressions using

binary floating-/fixed-point rounding operators,

basic arithmetic operators: +, −, ×, ÷,
√
·.

Approach

1 symbolic proof search of relevant theorems,

2 numerical application of selected instances,

3 proof minimization and output.

Database of ≈ 150 theorems

naive interval arithmetic,

rewriting of errors between structurally-similar expressions.
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Errors Between Structurally-similar Expressions

Let us suppose that ũ and u are close, and ṽ and v too.
How to bound

ũ · ṽ − u · v?

Not by naive interval arithmetic due to the dependency effect.

But it works by rewriting

ũ · ṽ − u · v = (ũ − u) · v + u · (ṽ − v) + (ũ − u) · (ṽ − v)

and then by naive interval arithmetic.
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How to bound

ũ · ṽ − u · v?

Not by naive interval arithmetic due to the dependency effect.

But it works by rewriting

ũ · ṽ − u · v = (ũ − u) · v + u · (ṽ − v) + (ũ − u) · (ṽ − v)

and then by naive interval arithmetic.

Guillaume Melquiond Formal Verification of a Floating-Point Elementary Function



Introduction Coq & Flocq Coq.Interval Gappa Conclusion Gappa Round-off error Argument reduction User hints

Bounding the Relative Round-off Error using Gappa

First Try

t2 double= t * t;
p double= 0.25 + t2 * (p1 + t2 * p2);
q double= 0.5 + t2 * (q1 + t2 * q2);
f double= t * (p / (q - t * p)) + 0.5;

Mt2 = t * t;
Mp = 0.25 + Mt2 * (p1 + Mt2 * p2);
Mq = 0.5 + Mt2 * (q1 + Mt2 * q2);
Mf = t * (Mp / (Mq - t * Mp)) + 0.5;

{ |t| <= 355b-10 -> f -/ Mf in ? }
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Argument Reduction

How to compute x − k · log 2?

Naive implementation

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double t = x - k * 0xb .17217 f7d1cf78p -4;

For x = 700, we get k = 1010 and εt ' 2−44.2.

Cody & Waite’s trick

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double Log2h = 0xb .17217 f7d1cp -4; // 42 bits out of 53
double Log2l = 0xf.79 abc9e3b398p -48;
double t = (x - k * Log2h) - k * Log2l;

For x = 700, we get k = 1010 and εt ' 2−58.1.
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Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for

x − bx · InvLog2e · Log2h

due to the dependency effect inherent to interval arithmetic.

But it can compute tight bounds for

(x · InvLog2) · InvLog2−1 − bx · InvLog2e · Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x · InvLog2) · InvLog2−1.
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Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for

((x − k · Log2h)− k · Log2l)− (x − k · log 2)

due to the dependency effect and the use of log.

But it can compute tight bounds for

((x − k · Log2h)− k · Log2l)− ((x − k · Log2h)− k · µ)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on µ = log 2− Log2h.

User hints: x − k · log 2 = x − k · Log2h− k · (log 2− Log2h)
and Log2l− (log 2− Log2h) ∈ [−2−102, 0].
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Proof Summary

Relative method error:

multi-precision interval arithmetic using Taylor models,
fully automated proof.

Relative round-off error:

naive interval arithmetic + forward error analysis,
fully automated proof.

Argument reduction (tricky code):

naive interval arithmetic + forward error analysis,
partly automated proof, user interactions:

a case analysis for excluding x ' 0,
two trivial identities, (developer knowledge)
some bounds on log 2 using interval arithmetic.

Result reconstruction and total error:

straightforward manual proof + interval arithmetic.
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Lies, Lies, and More Lies

The theorem is formally proved, but what does it actually state?

Flocq’s abstract formats have no upper bound
⇒ need for additional proofs to ensure no overflow occurs.

Result reconstruction is proved over real numbers
⇒ on subnormal numbers, the relative error explodes.

Guillaume Melquiond Formal Verification of a Floating-Point Elementary Function



Introduction Coq & Flocq Coq.Interval Gappa Conclusion

Lies, Lies, and More Lies

The theorem is formally proved, but what does it actually state?

Flocq’s abstract formats have no upper bound
⇒ need for additional proofs to ensure no overflow occurs.

Result reconstruction is proved over real numbers
⇒ on subnormal numbers, the relative error explodes.

Guillaume Melquiond Formal Verification of a Floating-Point Elementary Function



Introduction Coq & Flocq Coq.Interval Gappa Conclusion

Lies, Lies, and More Lies

The theorem is formally proved, but what does it actually state?

Flocq’s abstract formats have no upper bound
⇒ need for additional proofs to ensure no overflow occurs.

Result reconstruction is proved over real numbers
⇒ on subnormal numbers, the relative error explodes.

Guillaume Melquiond Formal Verification of a Floating-Point Elementary Function



Introduction Coq & Flocq Coq.Interval Gappa Conclusion

Total Relative Error (Subnormal Results)
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Questions?

Thanks to dedicated automations, formally proving the correctness
of floating-point algorithms is now accessible to non-specialists.

Flocq: http://flocq.gforge.inria.fr/

Gappa: http://gappa.gforge.inria.fr/

Coq.Interval: http://coq-interval.gforge.inria.fr/

Guillaume Melquiond Formal Verification of a Floating-Point Elementary Function
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