Factoring integers with CADO-NFS

Jérémie Detrey
CARAMEL team, LORIA
INRIA Nancy – Grand Est, France
Jeremie.Detrey@loria.fr
Why factor?

► Cryptography:
 • Integer factorization is a (supposedly) difficult problem, but integer multiplication is not
 • E.g., basis for the security of the RSA public-key cryptosystem:
 → private key: large primes \(p \) and \(q \)
 → public key: \(N = p \cdot q \)
 • Key length recommendations
 • Break weak instances of RSA (short keys)
Why factor?

► Cryptography:

- Integer factorization is a (supposedly) difficult problem, but integer multiplication is not
- E.g., basis for the security of the RSA public-key cryptosystem:
 - private key: large primes p and q
 - public key: $N = p \cdot q$
- Key length recommendations
- Break weak instances of RSA (short keys)

► Number theory:

- Cunningham tables: factorizations of $b^n \pm 1$
- Aliquot sequences: $s_{n+1} = \sum_{d|s_n} d - s_n$
- etc.
Why factor?

▶ Cryptography:
- Integer factorization is a (supposedly) difficult problem, but integer multiplication is not.
- E.g., basis for the security of the RSA public-key cryptosystem:
 → private key: large primes p and q
 → public key: $N = p \cdot q$
- Key length recommendations
- Break weak instances of RSA (short keys)

▶ Number theory:
- Cunningham tables: factorizations of $b^n \pm 1$
- Aliquot sequences: $s_{n+1} = \sum_{d|s_n} d - s_n$
- etc.

▶ For fun 😊
Find small- to medium-size prime factors p of an integer N:
Factorization algorithms (I)

Find small- to medium-size prime factors p of an integer N:
- Trial division: $O(p)$
Factorization algorithms (I)

- Find small- to medium-size prime factors p of an integer N:
 - Trial division: $O(p) = O\left(\exp(\log p)\right)$
 \rightarrow complexity exponential in $\log p$
 - Pollard's ρ method [Pollard, 1975]: $O\left(\sqrt{p}\right) = O\left(\exp\left(\frac{1}{2} \log p\right)\right)$
 - Pollard's $p - 1$ [Pollard, 1974] and Pollard's $p + 1$ [Williams, 1982]
 - ECM (Elliptic Curve Method) [Lenstra, 1987]: $O\left(\exp\left(\sqrt{2 \log p \log \log p}\right)\right)$
 \rightarrow subexponential complexity!
Factorization algorithms (I)

Find small- to medium-size prime factors p of an integer N:

- Trial division: $O(p) = O\left(\exp(\log p)\right)$
 \rightarrow complexity exponential in $\log p$

- ρ method [Pollard, 1975]:

 $$O(\sqrt{p})$$

- $p-1$ [Pollard, 1974] and $p+1$ [Williams, 1982]

- ECM (Elliptic Curve Method) [Lenstra, 1987]:

 $$O\left(\exp\left(\sqrt{2 \log p \log \log p}\right)\right)$$
 \rightarrow subexponential complexity!
Factorization algorithms (I)

Find small- to medium-size prime factors p of an integer N:

- **Trial division**: $O(p) = O\left(\exp(\log p)\right)$
 \rightarrow complexity exponential in $\log p$

- **ρ method** [Pollard, 1975]:
 \[O(\sqrt{p}) = O\left(\exp\left(\frac{1}{2} \log p\right)\right) \]
Find small- to medium-size prime factors \(p \) of an integer \(N \):

- Trial division: \(O(p) = O(\exp (\log p)) \)
 \(\rightarrow\) complexity exponential in \(\log p \)

- \(\rho \) method [Pollard, 1975]:
 \[
 O(\sqrt{p}) = O\left(\exp \left(\frac{1}{2} \log p\right)\right)
 \]

- \(p - 1 \) [Pollard, 1974] and \(p + 1 \) [Williams, 1982]
Factorization algorithms (I)

Find small- to medium-size prime factors p of an integer N:

- **Trial division**: $O(p) = O\left(\exp(\log p)\right)$
 → complexity exponential in $\log p$

- **ρ method [Pollard, 1975]:**

 $$O(\sqrt{p}) = O\left(\exp\left(\frac{1}{2} \log p\right)\right)$$

- **$p - 1$ [Pollard, 1974] and $p + 1$ [Williams, 1982]**

- **ECM (Elliptic Curve Method) [Lenstra, 1987]:**

 $$O\left(\exp\left(\sqrt{2 \log p \log \log p}\right)\right)$$
 → subexponential complexity!
Factorization algorithms (II)

Find all prime factors of an integer N:
Factorization algorithms (II)

Find all prime factors of an integer N:

- **SQUFOF** (SQUare FOrms Factorization) [Shanks, ca. 1975]:

 $$O\left(\sqrt[4]{N}\right) = O\left(\exp\left(\frac{1}{4} \log N\right)\right)$$

 → complexity exponential in $\log N$
Find all prime factors of an integer N:

- **SQUFOF** (SQUare FOrms Factorization) [Shanks, ca. 1975]:

 $$O(\sqrt[4]{N}) = O\left(\exp\left(\frac{1}{4} \log N\right)\right)$$

 → complexity exponential in $\log N$

- **CFRAC** (Continued FRACtions) [Morrison & Brillhart, 1975]:

 $$O\left(\exp\left(\sqrt{2 \log N \log \log N}\right)\right)$$

 → subexponential complexity!
Find all prime factors of an integer N:

- **QS** (Quadratic Sieve) [Pomerance, 1981] and **MPQS** (Multiple Polynomial QS) [Silverman, 1987] in $O(\exp(\sqrt{\log N \log \log N}))$

- **SNFS** (Special Number Field Sieve) [Lenstra, Lenstra, Manasse, & Pollard, 1990]: $O\left(\exp\left(\frac{3}{2} \sqrt[3]{32^9 \log N} \left(\frac{1}{3} \log \log N\right)^{-\frac{2}{3}} \right)\right)$

- **GNS** (General Number Field Sieve) [Buhler, Lenstra, & Pomerance, 1993]: $O\left(\exp\left(\frac{3}{2} \sqrt[3]{64^9 \log N} \left(\frac{1}{3} \log \log N\right)^{-\frac{2}{3}} \right)\right)$
Factorization algorithms (III)

Find all prime factors of an integer N:

- **QS** (Quadratic Sieve) [Pomerance, 1981] and **MPQS** (Multiple Polynomial QS) [Silverman, 1987] in

\[O \left(\exp \left(\sqrt{\log N \log \log N} \right) \right) \]

- **SNFS** (Special Number Field Sieve) [Lenstra, Lenstra, Manasse, & Pollard, 1990]:

\[O \left(\exp \left(\sqrt[3]{\frac{32}{9}} (\log N)^{1/3} (\log \log N)^{2/3} \right) \right) \]
Find all prime factors of an integer \(N \):

- **QS** (Quadratic Sieve) [Pomerance, 1981] and **MPQS** (Multiple Polynomial QS) [Silverman, 1987] in

\[
O \left(\exp \left(\sqrt{\log N \log \log N} \right) \right)
\]

- **SNFS** (Special Number Field Sieve) [Lenstra, Lenstra, Manasse, & Pollard, 1990]:

\[
O \left(\exp \left(\sqrt[3]{\frac{32}{9}} (\log N)^{1/3} (\log \log N)^{2/3} \right) \right)
\]

- **(G)NFS** (General Number Field Sieve) [Buhler, Lenstra, & Pomerance, 1993]:

\[
O \left(\exp \left(\sqrt[3]{\frac{64}{9}} (\log N)^{1/3} (\log \log N)^{2/3} \right) \right)
\]
Current factorization records

► ECM (small- to medium-size factors):
 • 2013: found 83-digit-factor of $7^{337} + 1$ (285 digits)
Current factorization records

- **ECM** (small- to medium-size factors):
 - 2013: found 83-digit-factor of $7^{337} + 1$ (285 digits)

- **SNFS** (numbers of a special form):
 - 1990: factorization of $F_9 = 2^{2^9} + 1$ (155 digits) in ~ 340 CPU-years
 - ...
 - 2011–12: fact. of $2^{1061} - 1$ (320 digits) in ~ 335 CPU-years
 - 2010–14: fact. of 17 numbers of the form $2^n - 1$ for $1007 \leq n \leq 1199$ (304–361 digits) in ~ 7500 core-years

- **GNFS** (general numbers, esp. RSA moduli):
 - 1996: fact. of RSA-130 (130 digits) in ~ 17 CPU-years
 - ...
 - 2007–09: fact. of RSA-768 (232 digits) in ~ 2000 core-years

- **Quantum computer**:
 - 2012: fact. of 56153 (a whopping 5 digits!)
Current factorization records

► ECM (small- to medium-size factors):
 • 2013: found 83-digit-factor of $7^{337} + 1$ (285 digits)

► SNFS (numbers of a special form):
 • 1990: factorization of $F_9 = 2^{2^9} + 1$ (155 digits) in ~ 340 CPU-years
 • ...
 • 2011–12: fact. of $2^{1061} - 1$ (320 digits) in ~ 335 CPU-years
 • 2010–14: fact. of 17 numbers of the form $2^n - 1$ for $1007 \leq n \leq 1199$ (304–361 digits) in ~ 7500 core-years

► GNFS (general numbers, esp. RSA moduli):
 • 1996: fact. of RSA-130 (130 digits) in ~ 17 CPU-years
 • ...
 • 2007–09: fact. of RSA-768 (232 digits) in ~ 2000 core-years
Current factorization records

▶ ECM (small- to medium-size factors):
 • 2013: found 83-digit-factor of $7^{337} + 1$ (285 digits)

▶ SNFS (numbers of a special form):
 • 1990: factorization of $F_9 = 2^{2^9} + 1$ (155 digits) in ~ 340 CPU-years
 • ...
 • 2011–12: fact. of $2^{1061} - 1$ (320 digits) in ~ 335 CPU-years
 • 2010–14: fact. of 17 numbers of the form $2^n - 1$ for $1007 \leq n \leq 1199$ (304–361 digits) in ~ 7500 core-years

▶ GNFS (general numbers, esp. RSA moduli):
 • 1996: fact. of RSA-130 (130 digits) in ~ 17 CPU-years
 • ...
 • 2007–09: fact. of RSA-768 (232 digits) in ~ 2000 core-years

▶ Quantum computer:
 • 2012: fact. of 56153 (a whopping 5 digits!)
Free (as in free speech) factorization software

- $p - 1$, $p + 1$, and ECM:
 - GMP-ECM [Zimmermann et al.]:
 - http://ecm.gforge.inria.fr/
Free (as in free speech) factorization software

- $p - 1, p + 1,$ and ECM:
 - GMP-ECM [Zimmermann et al.]:
 - http://ecm.gforge.inria.fr/

- QS and MPQS:
 - YAFU [Buhrow]:
 - http://yafu.sourceforge.net/
Free (as in free speech) factorization software

- **$p - 1$, $p + 1$, and ECM:**
 - GMP-ECM [Zimmermann et al.]:
 http://ecm.gforge.inria.fr/

- **QS and MPQS:**
 - YAFU [Buhrow]:
 http://yafu.sourceforge.net/

- **SNFS and GNFS:**
 - NFS@home [Childers]:
 http://escatter11.fullerton.edu/nfs/
 - Msieve [Papadopoulos]:
 http://www.boo.net/~jasonp/qs.html
 - CADO-NFS:
 http://cado-nfs.gforge.inria.fr/
Mostly developed in the CARAMEL team in Nancy, France, with several regular external contributors:

- Shi Bai (AriC team, LIP, Lyon, France)
- Cyril Bouvier (CARAMEL)
- Alain Filbois (Inria Nancy – Grand Est, France)
- Pierrick Gaudry (CARAMEL)
- Laurent Imbert (ECO team, LIRMM, Montpellier, France)
- Alexander Kruppa (CARAMEL)
- François Morain (GRACE team, LIX, Saclay, France)
- Emmanuel Thomé (CARAMEL)
- Paul Zimmermann (CARAMEL)
CADO-NFS

Mostly developed in the CARAMEL team in Nancy, France, with several regular external contributors:

- Shi Bai (AriC team, LIP, Lyon, France)
- Cyril Bouvier (CARAMEL)
- Alain Filbois (Inria Nancy – Grand Est, France)
- Pierrick Gaudry (CARAMEL)
- Laurent Imbert (ECO team, LIRMM, Montpellier, France)
- Alexander Kruppa (CARAMEL)
- François Morain (GRACE team, LIX, Saclay, France)
- Emmanuel Thomé (CARAMEL)
- Paul Zimmermann (CARAMEL)

Started in 2007, last release (2.1.1) in 2014, still under heavy development (10k commits, almost 300k lines of code)
CADO-NFS

- Mostly developed in the CARAMEL team in Nancy, France, with several regular external contributors:
 - Shi Bai (AriC team, LIP, Lyon, France)
 - Cyril Bouvier (CARAMEL)
 - Alain Filbois (Inria Nancy – Grand Est, France)
 - Pierrick Gaudry (CARAMEL)
 - Laurent Imbert (ECO team, LIRMM, Montpellier, France)
 - Alexander Kruppa (CARAMEL)
 - François Morain (GRACE team, LIX, Saclay, France)
 - Emmanuel Thomé (CARAMEL)
 - Paul Zimmermann (CARAMEL)

- Started in 2007, last release (2.1.1) in 2014, still under heavy development (10k commits, almost 300k lines of code)

- Support for integer factorization (GNFS and SNFS), but also discrete logarithm in finite fields (FFS, NFS-DL, NFS-HD)

Website: http://cado-nfs.gforge.inria.fr/
Mostly developed in the CARAMEL team in Nancy, France, with several regular external contributors:

- Shi Bai
 (AriC team, LIP, Lyon, France)
- Cyril Bouvier
 (CARAMEL)
- Alain Filbois
 (Inria Nancy – Grand Est, France)
- Pierrick Gaudry
 (CARAMEL)
- Laurent Imbert
 (ECO team, LIRMM, Montpellier, France)
- Alexander Kruppa
 (CARAMEL)
- François Morain
 (GRACE team, LIX, Saclay, France)
- Emmanuel Thomé
 (CARAMEL)
- Paul Zimmermann
 (CARAMEL)

Started in 2007, last release (2.1.1) in 2014, still under heavy development (10k commits, almost 300k lines of code)

Support for integer factorization (GNFS and SNFS), but also discrete logarithm in finite fields (FFS, NFS-DL, NFS-HD)

Website: http://cado-nfs.gforge.inria.fr/
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 - With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \) (mod \(N \))
 - With good probability, \(\gcd(x \pm y, N) \) gives a non-trivial factor of \(N \)

- Obtain such equalities through two number fields
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 - With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N
- Obtain such equalities through two number fields

$$\mathbb{Z}[X]$$
The Number Field Sieve

Based on Fermat’s factoring method (congruence of squares):

- Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
- With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

Obtain such equalities through two number fields

- f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 - With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

- Obtain such equalities through two number fields
 - f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}

\[
\mathbb{Z}[X] \\
X \mapsto X \mod f_1 \\
\mathbb{Z}[X]/(f_1(X))
\]
The Number Field Sieve

Based on Fermat’s factoring method (congruence of squares):
- Find two integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \pmod{N} \)
- With good probability, \(\gcd(x \pm y, N) \) gives a non-trivial factor of \(N \)

Obtain such equalities through two number fields
- \(f_1 \) and \(f_2 \in \mathbb{Z}[X] \) two polynomials, irreducible and coprime over \(\mathbb{Q} \)
- \(\alpha_i \) root of \(f_i \): \(\mathbb{Q}(\alpha_i) \) is an algebraic number field

\[
\begin{align*}
\mathbb{Z}[X] & \times \alpha_1 \\
\mathbb{Z}[\alpha_1] & \subset \mathcal{O}_{\mathbb{Q}(\alpha_1)}
\end{align*}
\]
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 - With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

- Obtain such equalities through two number fields
 - f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}
 - α_i root of f_i: $\mathbb{Q}(\alpha_i)$ is an algebraic number field

\[
\begin{array}{c}
\mathbb{Z}[X] \\
X \mapsto \alpha_1 & X \mapsto \alpha_2 \\
\mathbb{Z}[\alpha_1] & \mathcal{O}_{\mathbb{Q}(\alpha_2)} \supset \mathbb{Z}[\alpha_2]
\end{array}
\]
The Number Field Sieve

Based on Fermat’s factoring method (congruence of squares):
- Find two integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \pmod{N} \)
- With good probability, \(\gcd(x \pm y, N) \) gives a non-trivial factor of \(N \)

Obtain such equalities through two number fields
- \(f_1 \) and \(f_2 \in \mathbb{Z}[X] \) two polynomials, irreducible and coprime over \(\mathbb{Q} \)
- \(\alpha_i \) root of \(f_i \): \(\mathbb{Q}(\alpha_i) \) is an algebraic number field
- \(f_1 \) and \(f_2 \) chosen such that they have a common root \(m \) in \(\mathbb{Z}/N\mathbb{Z} \)

\[
\begin{align*}
\mathbb{Z}[X] & \quad \xrightarrow{X \mapsto \alpha_1} \quad \mathbb{Z}[\alpha_1] \\
\mathbb{Z}[X] & \quad \xrightarrow{X \mapsto \alpha_2} \quad \mathbb{Z}[\alpha_2]
\end{align*}
\]
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \pmod{N} \)
 - With good probability, \(\gcd(x \pm y, N) \) gives a non-trivial factor of \(N \)

- Obtain such equalities through two number fields
 - \(f_1 \) and \(f_2 \in \mathbb{Z}[X] \) two polynomials, irreducible and coprime over \(\mathbb{Q} \)
 - \(\alpha_i \) root of \(f_i \): \(\mathbb{Q}(\alpha_i) \) is an algebraic number field
 - \(f_1 \) and \(f_2 \) chosen such that they have a common root \(m \) in \(\mathbb{Z}/N\mathbb{Z} \)

\[
\begin{array}{c}
\mathbb{Z}[X] \\
X \mapsto \alpha_1 & X \mapsto \alpha_2 \\
\mathbb{Z}[\alpha_1] & \mathbb{Z}[\alpha_2] \\
\alpha_1 \mapsto m \pmod{N} & \alpha_2 \mapsto m \pmod{N} \\
\mathbb{Z}/N\mathbb{Z}
\end{array}
\]
The Number Field Sieve

Based on Fermat’s factoring method (congruence of squares):
- Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
- With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

Obtain such equalities through two number fields
- f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}
- α_i root of f_i: $\mathbb{Q}(\alpha_i)$ is an algebraic number field
- f_1 and f_2 chosen such that they have a common root m in $\mathbb{Z}/N\mathbb{Z}$

$$\Gamma(X) \in \mathbb{Z}[X]$$

$X \mapsto \alpha_1$ \quad $X \mapsto \alpha_2$

$\mathbb{Z}[\alpha_1] \quad \mathbb{Z}[\alpha_2]$

$\alpha_1 \mapsto m \mod N$ \quad $\alpha_2 \mapsto m \mod N$

$\mathbb{Z}/N\mathbb{Z}$
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \pmod N \)
 - With good probability, \(\gcd(x \pm y, N) \) gives a non-trivial factor of \(N \)

- Obtain such equalities through two number fields
 - \(f_1 \) and \(f_2 \in \mathbb{Z}[X] \) two polynomials, irreducible and coprime over \(\mathbb{Q} \)
 - \(\alpha_i \) root of \(f_i \): \(\mathbb{Q}(\alpha_i) \) is an algebraic number field
 - \(f_1 \) and \(f_2 \) chosen such that they have a common root \(m \) in \(\mathbb{Z}/N\mathbb{Z} \)

\[
\begin{align*}
\Gamma(X) & \in \mathbb{Z}[X] \\
X & \mapsto \alpha_1 \\
X & \mapsto \alpha_2 \\
\Gamma(\alpha_1) & \in \mathbb{Z}[\alpha_1] \\
\mathbb{Z}[\alpha_2] & \ni \Gamma(\alpha_2) \\
\alpha_1 & \mapsto m \mod N \\
\alpha_2 & \mapsto m \mod N \\
\mathbb{Z}/N\mathbb{Z} & \ni m \mod N
\end{align*}
\]
The Number Field Sieve

- Based on Fermat’s factoring method (congruence of squares):
 - Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 - With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

- Obtain such equalities through two number fields
 - f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}
 - α_i root of f_i: $\mathbb{Q}(\alpha_i)$ is an algebraic number field
 - f_1 and f_2 chosen such that they have a common root m in $\mathbb{Z}/N\mathbb{Z}$

\[\Gamma(X) \in \mathbb{Z}[X] \]

\[X \mapsto \alpha_1 \quad X \mapsto \alpha_2 \]

\[\gamma_1(\alpha_1)^2 \equiv \Gamma(\alpha_1) \in \mathbb{Z}[\alpha_1] \quad \mathbb{Z}[\alpha_2] \ni \Gamma(\alpha_2) \equiv \gamma_2(\alpha_2)^2 \]

\[\alpha_1 \mapsto m \pmod{N} \quad \alpha_2 \mapsto m \pmod{N} \]

\[\mathbb{Z}/N\mathbb{Z} \]
The Number Field Sieve

- Based on Fermat's factoring method (congruence of squares):
 * Find two integers x and y such that $x^2 \equiv y^2 \pmod{N}$
 * With good probability, $\gcd(x \pm y, N)$ gives a non-trivial factor of N

- Obtain such equalities through two number fields
 * f_1 and $f_2 \in \mathbb{Z}[X]$ two polynomials, irreducible and coprime over \mathbb{Q}
 * α_i root of f_i: $\mathbb{Q}(\alpha_i)$ is an algebraic number field
 * f_1 and f_2 chosen such that they have a common root m in $\mathbb{Z}/N\mathbb{Z}$

\[
\begin{align*}
\Gamma(X) &\in \mathbb{Z}[X] \\
X &\mapsto \alpha_1 \quad X \mapsto \alpha_2 \\
\gamma_1(\alpha_1)^2 &\equiv \Gamma(\alpha_1) \in \mathbb{Z}[\alpha_1] \\
\mathbb{Z}[\alpha_2] &\ni \Gamma(\alpha_2) \equiv \gamma_2(\alpha_2)^2 \\
\alpha_1 &\mapsto m \pmod{N} \\
\alpha_2 &\mapsto m \pmod{N} \\
\Rightarrow \gamma_1(m)^2 &\equiv \gamma_2(m)^2 \pmod{N}
\end{align*}
\]
How can one find such a polynomial $\Gamma(X)$?
How can one find such a polynomial $\Gamma(X)$?

\[
\begin{align*}
\mathbb{Z}[X] & \quad \mathbb{Z}[X] \\
X \mapsto \alpha_1 & \quad X \mapsto \alpha_2 \\
\mathbb{Z}[\alpha_1] & \quad \mathbb{Z}[\alpha_2] \\
\alpha_1 \mapsto m \mod N & \quad \alpha_2 \mapsto m \mod N \\
\mathbb{Z}/N\mathbb{Z} & \quad \mathbb{Z}/N\mathbb{Z}
\end{align*}
\]
The Number Field Sieve

- How can one find such a polynomial $\Gamma(X)$?

- For all pairs of coprime integers $(a, b) \in [-A, A] \times]0, A[$:

\[
\begin{align*}
X &\mapsto \alpha_1 \\
Z[\alpha_1] &\quad Z[\alpha_2] \\
\alpha_1 &\mapsto m \mod N \\
\mathbb{Z}/N\mathbb{Z} &\quad \alpha_2 \mapsto m \mod N
\end{align*}
\]
The Number Field Sieve

- How can one find such a polynomial \(\Gamma(X) \)?

- For all pairs of coprime integers \((a, b) \in [-A, A] \times 0, A]\):
 - Consider the polynomial \(a - bX \) in the diagram

\[\begin{align*}
\mathbb{Z}[X] & \\
\mathbb{Z}[\alpha_1] & \quad \mathbb{Z}[\alpha_2] \\
\mathbb{Z} / N \mathbb{Z} & \\
\alpha_1 \mapsto m \mod N & \quad \alpha_2 \mapsto m \mod N
\end{align*} \]
The Number Field Sieve

How can one find such a polynomial $\Gamma(X)$?

For all pairs of coprime integers $(a, b) \in [-A, A] \times [0, A]$:

- Consider the polynomial $a - bX$ in the diagram.
The Number Field Sieve

- How can one find such a polynomial \(\Gamma(X) \)?

- For all pairs of coprime integers \((a, b) \in [-A, A] \times [0, A]\):
 - Consider the polynomial \(a - bX \) in the diagram
How can one find such a polynomial $\Gamma(X)$?

For all pairs of coprime integers $(a, b) \in [-A, A] \times [0, A]$:

- Consider the polynomial $a - bX$ in the diagram
- Try to factor each $a - b\alpha_i$ into a product of primes \leq bound B_i
The Number Field Sieve

How can one find such a polynomial $\Gamma(X)$?

For all pairs of coprime integers $(a, b) \in [-A, A] \times [0, A]$:

- Consider the polynomial $a - bX$ in the diagram
- Try to factor each $a - b\alpha_i$ into a product of primes \leq bound B_i

\[
\prod_j p_{1,j}^{e_{1,j}} = a - b\alpha_1 \in \mathbb{Z}[\alpha_1] \\
\prod_j p_{2,j}^{e_{2,j}} = a - b\alpha_2 \in \mathbb{Z}[\alpha_2]
\]

$\mathbb{Z}/N\mathbb{Z}$

\[
\alpha_1 \mapsto m \mod N \\
\alpha_2 \mapsto m \mod N
\]
The Number Field Sieve

How can one find such a polynomial $\Gamma(X)$?

For all pairs of coprime integers $(a, b) \in [-A, A] \times [0, A]$:

- Consider the polynomial $a - bX$ in the diagram
- Try to factor each $a - b\alpha_i$ into a product of primes \leq bound B_i
- Such a pair is called a relation: add (a, b) to \mathcal{R} (set of relations)
Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b)\in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$.
Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a, b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:
Once enough relations were collected, find subset $S \subset R$ such that
\[\prod_{(a,b) \in S} (a - b\alpha_i) \text{ is a square in } \mathbb{Z}[\alpha_i], \text{ for both } i \in \{1, 2\} \]

Example:
\[
(a_1, b_1): \quad a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2}^2 p_{1,3}^2 \\
(a_2, b_2): \quad a_2 - b_2\alpha_2 = p_{2,1} p_{2,2}^4
\]
Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

- (a_1, b_1): $a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2} p_{1,3}^2$
 $a_1 - b_1\alpha_2 = p_{2,1} p_{2,2}^4$

- (a_2, b_2): $a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3}$
 $a_2 - b_2\alpha_2 = p_{2,1} p_{2,2} p_{2,3}$
Once enough relations were collected, find subset $S \subset \mathcal{R}$ such that

$$\prod_{(a,b) \in S} (a - b \alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

\[(a_1, b_1) : \quad a_1 - b_1 \alpha_1 = p_{1,1}^2 \ p_{1,2} \ p_{1,3}^2 \quad a_1 - b_1 \alpha_2 = p_{2,1} \ p_{2,2}^4 \]
\[(a_2, b_2) : \quad a_2 - b_2 \alpha_1 = p_{1,2}^3 \ p_{1,3} \quad a_2 - b_2 \alpha_2 = p_{2,1} \ p_{2,2} \ p_{2,3} \]
\[(a_3, b_3) : \quad a_3 - b_3 \alpha_1 = p_{1,1} \ p_{1,2}^2 \ p_{1,3} \quad a_3 - b_3 \alpha_2 = p_{2,2} \ p_{2,3}^3 \]
The Number Field Sieve

Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

$$(a_1, b_1) : \quad a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2} p_{1,3}^2$$

$$(a_2, b_2) : \quad a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3}$$

$$(a_3, b_3) : \quad a_3 - b_3\alpha_1 = p_{1,1} p_{1,2}^2 p_{1,3}$$

$$(a_4, b_4) : \quad a_4 - b_4\alpha_1 = p_{1,1} p_{1,3}$$
Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$.

Example:

$(a_1, b_1) : a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2} p_{1,3}^{2,3}$

$(a_2, b_2) : a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3}$

$(a_3, b_3) : a_3 - b_3\alpha_1 = p_{1,1} p_{1,2}^2 p_{1,3}$

$(a_4, b_4) : a_4 - b_4\alpha_1 = p_{1,1} p_{1,3}$
The Number Field Sieve

Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$
is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

(a_1, b_1): $a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2}^2$ \quad $a_1 - b_1\alpha_2 = p_{2,1} p_{2,2}^4$

(a_2, b_2): $a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3}$ \quad $a_2 - b_2\alpha_2 = p_{2,1} p_{2,2} p_{2,3}$

(a_3, b_3): $a_3 - b_3\alpha_1 = p_{1,1} p_{1,2}^2 p_{1,3}$ \quad $a_3 - b_3\alpha_2 = p_{2,2} p_{2,3}^3$

(a_4, b_4): $a_4 - b_4\alpha_1 = p_{1,1} p_{1,3}$ \quad $a_4 - b_4\alpha_2 = p_{2,1}^2 p_{2,2} p_{2,3}$

$$\prod_{i \in \{1, 2, 4\}} (a_i - b_i\alpha_1) = p_{1,1}^4 p_{1,2}^4 p_{1,3}^4$$
$$\prod_{i \in \{1, 2, 4\}} (a_i - b_i\alpha_2) = p_{2,1}^4 p_{2,2}^6 p_{2,3}^2$$
Once enough relations were collected, find subset \(S \subset R \) such that
\[
\prod_{(a,b) \in S} (a - b \alpha_i) \text{ is a square in } \mathbb{Z}[\alpha_i], \text{ for both } i \in \{1, 2\}
\]

Example:

\[
\begin{align*}
(a_1, b_1) : \quad & a_1 - b_1 \alpha_1 = p_{1,1}^2 \ p_{1,2} \ p_{1,3}^2 \quad & a_1 - b_1 \alpha_2 = p_{2,1} \ p_{2,2}^4 \\
(a_2, b_2) : \quad & a_2 - b_2 \alpha_1 = p_{1,2}^3 \ p_{1,3} \quad & a_2 - b_2 \alpha_2 = p_{2,1} \ p_{2,2} \ p_{2,3}^2 \\
(a_3, b_3) : \quad & a_3 - b_3 \alpha_1 = p_{1,1} \ p_{1,2}^2 \ p_{1,3} \quad & a_3 - b_3 \alpha_2 = p_{2,2} \ p_{2,3}^3 \\
(a_4, b_4) : \quad & a_4 - b_4 \alpha_1 = p_{1,1} \ p_{1,3} \quad & a_4 - b_4 \alpha_2 = p_{2,1}^2 \ p_{2,2} \ p_{2,3}^2
\end{align*}
\]

\[
\prod_{i \in \{1,2,4\}} (a_i - b_i \alpha_1) = p_{1,1}^4 \ p_{1,2}^4 \ p_{1,3}^4 \quad \prod_{i \in \{1,2,4\}} (a_i - b_i \alpha_2) = p_{2,1}^4 \ p_{2,2}^6 \ p_{2,3}^2
\]

Tantamount to finding a vector of the left-kernel of the matrix over \(\mathbb{F}_2 \) formed by the exponents of the primes in the relations
The Number Field Sieve

Once enough relations were collected, find subset $S \subset R$ such that
\[
\prod_{(a,b) \in S} (a - b\alpha_i) \text{ is a square in } \mathbb{Z}[\alpha_i], \text{ for both } i \in \{1, 2\}
\]

Example:

\begin{align*}
(a_1, b_1) : & \quad a_1 - b_1\alpha_1 = p_{1,1}^2 p_{1,2} p_{1,3}^2 & \quad a_1 - b_1\alpha_2 = p_{2,1} p_{2,2}^4 \\
(a_2, b_2) : & \quad a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3} & \quad a_2 - b_2\alpha_2 = p_{2,1} p_{2,2} p_{2,3} \\
(a_3, b_3) : & \quad a_3 - b_3\alpha_1 = p_{1,1} p_{1,2}^2 p_{1,3} & \quad a_3 - b_3\alpha_2 = p_{2,2} p_{2,3}^3 \\
(a_4, b_4) : & \quad a_4 - b_4\alpha_1 = p_{1,1} p_{1,3} & \quad a_4 - b_4\alpha_2 = p_{2,1}^2 p_{2,2} p_{2,3}
\end{align*}

Tantamount to finding a vector of the left-kernel of the matrix over \mathbb{F}_2 formed by the exponents of the primes in the relations
The Number Field Sieve

Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

$$(a_1, b_1): \quad a_1 - b_1\alpha_1 \equiv (2 \ 1 \ 2) \quad a_1 - b_1\alpha_2 \equiv (1 \ 4 \ 0)$$

$$(a_2, b_2): \quad a_2 - b_2\alpha_1 = p_{1,2}^3 p_{1,3} \quad a_2 - b_2\alpha_2 = p_{2,1} p_{2,2} p_{2,3}$$

$$(a_3, b_3): \quad a_3 - b_3\alpha_1 = p_{1,1} p_{1,2}^2 p_{1,3} \quad a_3 - b_3\alpha_2 = p_{2,2}^3 p_{2,3}$$

$$(a_4, b_4): \quad a_4 - b_4\alpha_1 = p_{1,1} p_{1,3} \quad a_4 - b_4\alpha_2 = p_{2,1}^2 p_{2,2} p_{2,3}$$

Tantamount to finding a vector of the left-kernel of the matrix over \mathbb{F}_2 formed by the exponents of the primes in the relations
Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

$(a_1, b_1) : \quad a_1 - b_1\alpha_1 \equiv (2 \ 1 \ 2) \quad a_1 - b_1\alpha_2 \equiv (1 \ 4 \ 0)$

$(a_2, b_2) : \quad a_2 - b_2\alpha_1 \equiv (0 \ 3 \ 1) \quad a_2 - b_2\alpha_2 \equiv (1 \ 1 \ 1)$

$(a_3, b_3) : \quad a_3 - b_3\alpha_1 \equiv (1 \ 2 \ 1) \quad a_3 - b_3\alpha_2 \equiv (0 \ 1 \ 3)$

$(a_4, b_4) : \quad a_4 - b_4\alpha_1 \equiv (2 \ 0 \ 1) \quad a_4 - b_4\alpha_2 \equiv (2 \ 1 \ 1)$

Tantamount to finding a vector of the left-kernel of the matrix over \mathbb{F}_2 formed by the exponents of the primes in the relations.
The Number Field Sieve

- Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$

is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

- Example:

 (a_1, b_1): $a_1 - b_1\alpha_1 \equiv (0 1 0)$
 $a_1 - b_1\alpha_2 \equiv (1 0 0)$

 (a_2, b_2): $a_2 - b_2\alpha_1 \equiv (0 1 1)$
 $a_2 - b_2\alpha_2 \equiv (1 1 1)$

 (a_3, b_3): $a_3 - b_3\alpha_1 \equiv (1 0 1)$
 $a_3 - b_3\alpha_2 \equiv (0 1 1)$

 (a_4, b_4): $a_4 - b_4\alpha_1 \equiv (0 0 1)$
 $a_4 - b_4\alpha_2 \equiv (0 1 1)$

- Tantamount to finding a vector of the left-kernel of the matrix over \mathbb{F}_2 formed by the exponents of the primes in the relations.
The Number Field Sieve

Once enough relations were collected, find subset $S \subset R$ such that

$$\prod_{(a,b) \in S} (a - b\alpha_i)$$
is a square in $\mathbb{Z}[\alpha_i]$, for both $i \in \{1, 2\}$

Example:

$$\begin{align*}
(a_1, b_1) : & \quad a_1 - b_1\alpha_1 \equiv (0 \ 1 \ 0) & a_1 - b_1\alpha_2 \equiv (1 \ 0 \ 0) \\
(a_2, b_2) : & \quad a_2 - b_2\alpha_1 \equiv (0 \ 1 \ 1) & a_2 - b_2\alpha_2 \equiv (1 \ 1 \ 1) \\
(a_3, b_3) : & \quad a_3 - b_3\alpha_1 \equiv (1 \ 0 \ 1) & a_3 - b_3\alpha_2 \equiv (0 \ 1 \ 1) \\
(a_4, b_4) : & \quad a_4 - b_4\alpha_1 \equiv (0 \ 0 \ 1) & a_4 - b_4\alpha_2 \equiv (0 \ 1 \ 1)
\end{align*}$$

$$\prod_{i \in \{1,2,4\}} (a_i - b_i\alpha_1) \equiv (0 \ 0 \ 0) \quad \prod_{i \in \{1,2,4\}} (a_i - b_i\alpha_2) \equiv (0 \ 0 \ 0)$$

Tantamount to finding a vector of the left-kernel of the matrix over \mathbb{F}_2 formed by the exponents of the primes in the relations.
The Number Field Sieve

\[a - bX \in \mathbb{Z}[X]\]

\[p^{e_1,j}_{1,j} = a - b\alpha_1 \in \mathbb{Z}[\alpha_1]\]

\[\mathbb{Z}[\alpha_2] \ni a - b\alpha_2 = \prod_j p^{e_2,j}_{2,j}\]

\[\alpha_1 \mapsto m \mod N\]

\[\alpha_2 \mapsto m \mod N\]

\[\mathbb{Z}/NZ\]
The Number Field Sieve

- Slight problem: no unique factorization of numbers in $\mathbb{Z}[\alpha_i]$ or $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$
The Number Field Sieve

- Slight problem: no unique factorization of numbers in $\mathbb{Z}[\alpha_i]$ or $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$.
- However, $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$ is a Dedekind domain: unique factorization of ideals into products of prime ideals.

\[a - bX \in \mathbb{Z}[X] \]

\[
\begin{align*}
X &\mapsto \alpha_1 \\
\mathbb{Z}[\alpha_1] &\twoheadrightarrow \mathbb{Z}/N\mathbb{Z} \\
\alpha_1 &\mapsto m \mod N
\end{align*}
\]

\[
\begin{align*}
X &\mapsto \alpha_2 \\
\mathbb{Z}[\alpha_2] &\twoheadrightarrow \mathbb{Z}/N\mathbb{Z} \\
\alpha_2 &\mapsto m \mod N
\end{align*}
\]
The Number Field Sieve

- Slight problem: no unique factorization of numbers in \(\mathbb{Z}[\alpha_i] \) or \(\mathcal{O}_{\mathbb{Q}(\alpha_i)} \)
- However, \(\mathcal{O}_{\mathbb{Q}(\alpha_i)} \) is a Dedekind domain: unique factorization of ideals into products of prime ideals

In the diagram:

- \(a - bX \in \mathbb{Z}[X] \)
- \(X \mapsto \alpha_1 \) and \(X \mapsto \alpha_2 \)
- \(\langle a - b\alpha_1 \rangle \subset \mathbb{Z}[\alpha_1] \) and \(\mathbb{Z}[\alpha_2] \supset \langle a - b\alpha_2 \rangle \)
- \(\alpha_1 \mapsto m \mod N \) and \(\alpha_2 \mapsto m \mod N \)
- \(\mathbb{Z} / N\mathbb{Z} \)
The Number Field Sieve

▶ Slight problem: no unique factorization of numbers in $\mathbb{Z}[\alpha_i]$ or $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$

▶ However, $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$ is a Dedekind domain: unique factorization of ideals into products of prime ideals

• Prime ideals p of $\mathbb{Z}[\alpha_i]$ given by integers (p, r) such that p is prime and $f_i(r) \equiv 0 \pmod{p}$

\[
\begin{align*}
\text{Let } a - bX & \in \mathbb{Z}[X] \\
X & \mapsto \alpha_1, \quad X \mapsto \alpha_2 \\
\langle a - b\alpha_1 \rangle & \subset \mathbb{Z}[\alpha_1] \\
\mathbb{Z}[\alpha_2] & \supset \langle a - b\alpha_2 \rangle \\
\alpha_1 & \mapsto m \pmod{N} \\
\alpha_2 & \mapsto m \pmod{N} \\
\mathbb{Z} / N\mathbb{Z} & \to
\end{align*}
\]
The Number Field Sieve

- Slight problem: no unique factorization of numbers in $\mathbb{Z}[\alpha_i]$ or $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$.

- However, $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$ is a Dedekind domain: unique factorization of ideals into products of prime ideals.
 - Prime ideals p of $\mathbb{Z}[\alpha_i]$ given by integers (p, r) such that p is prime and $f_i(r) \equiv 0 \pmod{p}$.
 - p^e "divides" $\langle a - b\alpha_i \rangle$ iff. $a - br \equiv 0 \pmod{p}$ and $p^e | N_i(a - b\alpha_i)$, where $N_i(a - b\alpha_i) = f_i(a/b)b^{\deg f_i}$ is called the norm of $a - b\alpha_i$.

\[
\begin{align*}
\mathbb{Z}[X] & \ni a - bX \\
X & \mapsto \alpha_1 & X & \mapsto \alpha_2
\end{align*}
\]

\[
\begin{align*}
\langle a - b\alpha_1 \rangle & \subset \mathbb{Z}[\alpha_1] & \mathbb{Z}[\alpha_2] & \supset \langle a - b\alpha_2 \rangle \\
\alpha_1 & \mapsto m \pmod{N} & \alpha_2 & \mapsto m \pmod{N}
\end{align*}
\]

\[
\mathbb{Z}/N\mathbb{Z}
\]
The Number Field Sieve

- Slight problem: no unique factorization of numbers in $\mathbb{Z}[\alpha_i]$ or $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$

- However, $\mathcal{O}_{\mathbb{Q}(\alpha_i)}$ is a Dedekind domain: unique factorization of ideals into products of prime ideals
 - Prime ideals p of $\mathbb{Z}[\alpha_i]$ given by integers (p, r) such that p is prime and $f_i(r) \equiv 0 \pmod{p}$
 - p^e "divides" $\langle a - b\alpha_i \rangle$ iff. $a - br \equiv 0 \pmod{p}$ and $p^e|N_i(a - b\alpha_i)$, where $N_i(a - b\alpha_i) = f_i(a/b)b^{\deg f_i}$ is called the norm of $a - b\alpha_i$

\[
a - bX \in \mathbb{Z}[X]
\]

\[
\begin{align*}
\mathcal{O}_{\mathbb{Q}(\alpha_i)} &\supset \langle a - b\alpha_i \rangle = \langle a - b\alpha_2 \rangle = u_2 \prod_j p_{2j}^{e_{2j}} \\
\mathbb{Z}[\alpha_1] &\supset \langle a - b\alpha_1 \rangle = \prod_j p_{1j}^{e_{1j}} \\
\mathbb{Z}/N\mathbb{Z} &\ni \alpha_1 \mapsto m \pmod{N} \\
\mathbb{Z}/N\mathbb{Z} &\ni \alpha_2 \mapsto m \pmod{N}
\end{align*}
\]
The Number Field Sieve

Let’s recap!

- Sieving domain: coprime pairs \((a, b)\) in \([-A, A] \times [0, A]\)

- Factor base \(B_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

- For each \((a, b)\) pair in the sieving domain:
 - Compute the norms \(N_i(a - b \alpha_i) = f_i(a/b)b^i\)
 - Check if \(N_i(a - b \alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))

- We need more relations than elements of the factor bases: \(\#R > \#B_1 + \#B_2\)
The Number Field Sieve

Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times]0, A]\)
The Number Field Sieve

Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times]0, A]\)
- **Factor base** \(B_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)
Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times [0, A]\)
- **Factor base** \(B_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

For each \((a, b)\) pair in the sieving domain:
The Number Field Sieve

Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times]0, A]\)
- **Factor base** \(\mathcal{B}_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times [0, A]\)
- **Factor base** \(B_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
The Number Field Sieve

Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times]0, A]\)
- **Factor base** \(B_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
- If both norms are smooth, then \((a, b)\) is a relation
The Number Field Sieve

Let’s recap!

- **Sieving domain**: coprime pairs \((a, b)\) in \([-A, A] \times \{0, A\}\)
- **Factor base** \(\mathcal{B}_i\): prime ideals \(p = (p, r)\) of \(\mathbb{Z}[\alpha_i]\) with \(p \leq B_i\)

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
- If both norms are smooth, then \((a, b)\) is a relation

We need more relations than elements of the factor bases:

\[
\#\mathcal{R} > \#\mathcal{B}_1 + \#\mathcal{B}_2
\]
The Number Field Sieve

1 Relation collection (a.k.a. sieving): build set of relations \(\mathcal{R} \)
The Number Field Sieve

1. **Relation collection** (a.k.a. sieving): build set of relations \(\mathcal{R} \)

2. **Linear algebra**: find vector of left-kernel of the matrix over \(\mathbb{F}_2 \)

\(\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N} \)
The Number Field Sieve

1. **Relation collection** (a.k.a. sieving): build set of relations \mathcal{R}

2. **Linear algebra**: find vector of left-kernel of the matrix over \mathbb{F}_2

3. **Square root**: compute elements $\gamma_1 \in \mathbb{Z}[\alpha_1]$ and $\gamma_2 \in \mathbb{Z}[\alpha_2]$ such that $\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N}$
The Number Field Sieve

1. **Polynomial selection**: find suitable polynomials \(f_1 \) and \(f_2 \)

2. **Relation collection** (a.k.a. sieving): build set of relations \(\mathcal{R} \)

3. **Linear algebra**: find vector of left-kernel of the matrix over \(\mathbb{F}_2 \)

4. **Square root**: compute elements \(\gamma_1 \in \mathbb{Z}[\alpha_1] \) and \(\gamma_2 \in \mathbb{Z}[\alpha_2] \) such that \(\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N} \)
The Number Field Sieve

1. **Polynomial selection**: find suitable polynomials f_1 and f_2

2. **Factor base generation**: build factors bases B_1 and B_2

3. **Relation collection** (a.k.a. sieving): build set of relations \mathcal{R}

4. **Linear algebra**: find vector of left-kernel of the matrix over \mathbb{F}_2

5. **Square root**: compute elements $\gamma_1 \in \mathbb{Z}[\alpha_1]$ and $\gamma_2 \in \mathbb{Z}[\alpha_2]$ such that $\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N}$
The Number Field Sieve

1. **Polynomial selection**: find suitable polynomials f_1 and f_2

2. **Factor base generation**: build factors bases B_1 and B_2

3. **Relation collection** (a.k.a. sieving): build set of relations \mathcal{R}

4. **Filtering**: build and simplify matrix from relations

5. **Linear algebra**: find vector of left-kernel of the matrix over \mathbb{F}_2

6. **Square root**: compute elements $\gamma_1 \in \mathbb{Z}[\alpha_1]$ and $\gamma_2 \in \mathbb{Z}[\alpha_2]$ such that $\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N}$
The Number Field Sieve

1. **Polynomial selection**: find suitable polynomials f_1 and f_2

2. **Factor base generation**: build factors bases B_1 and B_2

3. **Relation collection** (a.k.a. sieving): build set of relations R

4. **Filtering**: build and simplify matrix from relations

5. **Linear algebra**: find vector of left-kernel of the matrix over \mathbb{F}_2

6. **Characters**: deal with number-field-related technicalities (e.g., units)

7. **Square root**: compute elements $\gamma_1 \in \mathbb{Z}[\alpha_1]$ and $\gamma_2 \in \mathbb{Z}[\alpha_2]$ such that $\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N}$
The Number Field Sieve

1. **Polynomial selection**: find suitable polynomials f_1 and f_2

2. **Factor base generation**: build factors bases B_1 and B_2

3. **Relation collection** (a.k.a. sieving): build set of relations \mathcal{R}

4. **Filtering**: build and simplify matrix from relations

5. **Linear algebra**: find vector of left-kernel of the matrix over \mathbb{F}_2

6. **Characters**: deal with number-field-related technicalities (e.g., units)

7. **Square root**: compute elements $\gamma_1 \in \mathbb{Z}[\alpha_1]$ and $\gamma_2 \in \mathbb{Z}[\alpha_2]$ such that $\gamma_1(m)^2 \equiv \gamma_2(m)^2 \pmod{N}$

8. **Profit!**
Back to CADO-NFS

- Each step is handled by a specific binary/script

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Directory/Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polynomial selection</td>
<td>polyselect/polyselect2l</td>
</tr>
<tr>
<td>2</td>
<td>Factor base generation</td>
<td>sieve/makefb</td>
</tr>
<tr>
<td>3</td>
<td>Relation collection</td>
<td>sieve/{freerel,las}</td>
</tr>
<tr>
<td>4</td>
<td>Filtering</td>
<td>filter/{dup1,dup2,purge,merge,replay}</td>
</tr>
<tr>
<td>5</td>
<td>Linear algebra</td>
<td>linalg/bwc/bwc.pl</td>
</tr>
<tr>
<td>6</td>
<td>Characters</td>
<td>linalg/characters</td>
</tr>
<tr>
<td>7</td>
<td>Square root</td>
<td>sqrt/sqrt</td>
</tr>
</tbody>
</table>
Back to CADO-NFS

- Each step is handled by a **specific binary/script**
- **cadofactor.py**: Python script to run **whole factorization**
 → All NFS parameters in a **single parameter file**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Directory/Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polynomial selection</td>
<td>polyselect/polyselect2l</td>
</tr>
<tr>
<td>2</td>
<td>Factor base generation</td>
<td>sieve/makefb</td>
</tr>
<tr>
<td>3</td>
<td>Relation collection</td>
<td>sieve/{freerel,las}</td>
</tr>
<tr>
<td>4</td>
<td>Filtering</td>
<td>filter/{dup1,dup2,purge,merge,replay}</td>
</tr>
<tr>
<td>5</td>
<td>Linear algebra</td>
<td>linalg/bwc/bwc.pl</td>
</tr>
<tr>
<td>6</td>
<td>Characters</td>
<td>linalg/characters</td>
</tr>
<tr>
<td>7</td>
<td>Square root</td>
<td>sqrt/sqrt</td>
</tr>
</tbody>
</table>
Back to CADO-NFS

- Each step is handled by a specific binary/script
- `cadofactor.py`: Python script to run whole factorization
 → All NFS parameters in a single parameter file
- `factor.sh`: Bash script for simple factorizations

<table>
<thead>
<tr>
<th>Bash script</th>
<th>Python script + parameter file</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor.sh</td>
<td>scripts/cadofactor/cadofactor.py</td>
</tr>
<tr>
<td>1 Polynomial selection</td>
<td>polyselect/polyselect2l</td>
</tr>
<tr>
<td>2 Factor base generation</td>
<td>sieve/makefb</td>
</tr>
<tr>
<td>3 Relation collection</td>
<td>sieve/{freerel,las}</td>
</tr>
<tr>
<td>4 Filtering</td>
<td>filter/{dup1,dup2,purge,merge,replay}</td>
</tr>
<tr>
<td>5 Linear algebra</td>
<td>linalg/bwc/bwc.pl</td>
</tr>
<tr>
<td>6 Characters</td>
<td>linalg/characters</td>
</tr>
<tr>
<td>7 Square root</td>
<td>sqrt/sqrt</td>
</tr>
</tbody>
</table>
Let’s play!

Requirements:

- GNU/Linux (or Mac OS X + Xcode)
- GCC 4.4 or later
- GMP 5 or later
- GNU Make and CMake 2.6.3 or later
- Python 3.2 or later
- SQLite 3, including Python bindings
- GNU Wget or cURL
- GNU Gzip
- GNU Bash
Let’s play!

Go and download **CADO-NFS 2.1.1** from

http://cado-nfs.gforge.inria.fr/
Let’s play!

▸ Go and download **CADO-NFS 2.1.1** from

http://cado-nfs.gforge.inria.fr/

▸ Un-tar:

```bash
$ tar xzvf cado-nfs-2.1.1.tar.gz
$ cd cado-nfs-2.1.1
```
Let’s play!

- Go and download **CADO-NFS 2.1.1** from

 http://cado-nfs.gforge.inria.fr/

- Un-tar:

 $ tar xzvf cado-nfs-2.1.1.tar.gz
 $ cd cado-nfs-2.1.1

- Optional: **tweak build configuration** (esp. for Mac OS X):

 $ cp local.sh.example local.sh
 $ vi local.sh
Let’s play!

▶ Go and download CADO-NFS 2.1.1 from

 http://cado-nfs.gforge.inria.fr/

▶ Un-tar:

 $ tar xzvf cado-nfs-2.1.1.tar.gz
 $ cd cado-nfs-2.1.1

▶ Optional: tweak build configuration (esp. for Mac OS X):

 $ cp local.sh.example local.sh
 $ vi local.sh

▶ Build:

 $ make
A toy factorization

Let’s factor this 59-digit composite integer:

\[c_{59} = 90377629292003121684002147101760858109247336549001090677693 \]

(you can just copy-paste it from http://www.loria.fr/~detreyje/cado-nfs.txt)
A toy factorization

Let’s factor this 59-digit composite integer:

\[c_{59} = 90377629292003121684002147101760858109247336549001090677693 \]

(you can just copy-paste it from http://www.loria.fr/~detreyje/cado-nfs.txt)

Run:

```
$ export CADO_DEBUG=1
$ mkdir /tmp/c59
$ t=/tmp/c59 ./factor.sh 903...693 -t 2
```
A toy factorization

Let’s factor this 59-digit composite integer:

\[c_{59} = 90377629292003121684002147101760858109247336549001090677693 \]

(you can just copy-paste it from http://www.loria.fr/~detreyje/cado-nfs.txt)

Run:

$ export CADO_DEBUG=1
$ mkdir /tmp/c59
$ t=/tmp/c59 ./factor.sh 903...693 -t 2

Get factors!

...
Info: Complete Factorization: ...
588120598053661 260938498861057
760926063870977 773951836515617
OK
Diving into details – Polynomial selection

Find polynomials \(f_1 \) and \(f_2 \in \mathbb{Z}[X] \) such that

- \(f_1 \) and \(f_2 \) are irreducible and coprime over \(\mathbb{Q} \)
- they have a common root \(m \in \mathbb{Z}/N\mathbb{Z} \):

\[
f_1(m) \equiv 0 \pmod{N} \quad \text{and} \quad f_2(m) \equiv 0 \pmod{N}
\]
Diving into details – Polynomial selection

- Find polynomials f_1 and $f_2 \in \mathbb{Z}[X]$ such that
 - f_1 and f_2 are irreducible and coprime over \mathbb{Q}
 - they have a common root $m \in \mathbb{Z}/N\mathbb{Z}$:

$$f_1(m) \equiv 0 \pmod{N} \quad \text{and} \quad f_2(m) \equiv 0 \pmod{N}$$

- In practice:
 - Take a linear polynomial for f_2: this is called the ”rational side”
 - Take a degree-d polynomial for f_1, with $d \in \{4, 5, 6\}$: this is called the ”algebraic side”

$$f_1(X) = f_{1,d}X^d + f_{1,d-1}X^{d-1} + \cdots + f_{1,1}X + f_{1,0}$$
Diving into details – Polynomial selection

► Find polynomials f_1 and $f_2 \in \mathbb{Z}[X]$ such that

 • f_1 and f_2 are irreducible and coprime over \mathbb{Q}
 • they have a common root $m \in \mathbb{Z}/N\mathbb{Z}$:

$$f_1(m) \equiv 0 \pmod{N} \quad \text{and} \quad f_2(m) \equiv 0 \pmod{N}$$

► In practice:

 • Take a linear polynomial for f_2: this is called the ”rational side”
 • Take a degree-d polynomial for f_1, with $d \in \{4, 5, 6\}$: this is called the ”algebraic side”

$$f_1(X) = f_{1,d}X^d + f_{1,d-1}X^{d-1} + \cdots + f_{1,1}X + f_{1,0}$$

► Look for a polynomial f_1 of degree d:

 • such that norms $N_1(a - b\alpha_1) = f_1(a/b)b^d$ are as small as possible for pairs (a, b) in the sieving domain
 • which has many roots modulo small primes
Diving into details – Polynomial selection

- Two main steps:
 - **Size optimization**: find polynomials with small norm
 - **Root optimization**: translate/rotate candidates so that they have many roots modulo small primes

- CADO-NFS parameters (tasks.polyselect.*):
 - **degree**: degree d of polynomial f
 - **admin**: minimum value for leading coefficient f_1, d
 - **admax**: maximum value for leading coefficient f_1, d
 - **incr**: force f_1, d to be a multiple of this smooth number
 - **nrkeep**: how many candidates to keep after first step
 - **adrange**: split search interval for f_1, d into ranges of this size

→ easy parallelization

- Best polynomial stored in: \langle name \rangle.polyselect2.poly
Diving into details – Polynomial selection

Two main steps:

- **Size optimization**: find polynomials with small norm
- **Root optimization**: translate/rotate candidates so that they have many roots modulo small primes

CADO-NFS parameters (`tasks.polyselect.*`):

- **degree**: degree d of polynomial f_1
- **admin (0)**: minimum value for leading coefficient $f_{1,d}$
- **admax**: maximum value for leading coefficient $f_{1,d}$
- **incr (60)**: force $f_{1,d}$ to be a multiple of this smooth number
- **nrkeep**: how many candidates to keep after first step
Diving into details – Polynomial selection

Two main steps:
- **Size optimization**: find polynomials with small norm
- **Root optimization**: translate/rotate candidates so that they have many roots modulo small primes

CADO-NFS parameters (`tasks.polyselect.*`):
- **degree**: degree d of polynomial f_1
- **admin (0)**: minimum value for leading coefficient $f_{1,d}$
- **admax**: maximum value for leading coefficient $f_{1,d}$
- **incr (60)**: force $f_{1,d}$ to be a multiple of this smooth number
- **nrkeep**: how many candidates to keep after first step
- **adrange**: split search interval for $f_{1,d}$ into ranges of this size
 → easy parallelization
Diving into details – Polynomial selection

Two main steps:
- **Size optimization**: find polynomials with small norm
- **Root optimization**: translate/rotate candidates so that they have many roots modulo small primes

CADO-NFS parameters `(tasks.polyselect.*):
- **degree**: degree d of polynomial f_1
- **admin** (0): minimum value for leading coefficient $f_{1,d}$
- **admax**: maximum value for leading coefficient $f_{1,d}$
- **incr** (60): force $f_{1,d}$ to be a multiple of this smooth number
- **nrkeep**: how many candidates to keep after first step
- **adrange**: split search interval for $f_{1,d}$ into ranges of this size → easy parallelization

Best polynomial stored in:

$\langle name\rangle.polyselect2.poly$
Diving into details – Relation collection

► For each \((a, b)\) pair in the sieving domain:

 - Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
 - Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
 - If both norms are smooth, then \((a, b)\) is a relation
Diving into details – Relation collection

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
- If both norms are smooth, then \((a, b)\) is a relation

Special-\(q\) sieving:

- Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
- The set of \((a, b)\) pairs such that \(q\) divides \(\langle a - b\alpha_i \rangle\) is a Euclidean lattice of \(\mathbb{Z}^2\)
- Compute basis \((u, v)\) of this lattice
- Enumerate lattice elements as pairs \((a, b)\) = \(i u + j v\) with \((i, j) \in [-I, I] \times [0, I]\)
- One independent subtask for each special-\(q\) → easy parallelization
Diving into details – Relation collection

- For each \((a, b)\) pair in the sieving domain:
 - Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
 - Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
 - If both norms are smooth, then \((a, b)\) is a relation

- Special-\(q\) sieving:
 - Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
Diving into details – Relation collection

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
- If both norms are smooth, then \((a, b)\) is a relation

Special-\(q\) sieving:

- Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
- The set of \((a, b)\) pairs such that \(q\) divides \(\langle a - b\alpha_i \rangle\) is a Euclidean lattice of \(\mathbb{Z}^2\)
Diving into details – Relation collection

▶ For each \((a, b)\) pair in the sieving domain:
 - Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
 - Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
 - If both norms are smooth, then \((a, b)\) is a relation

▶ Special-\(q\) sieving:
 - Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
 - The set of \((a, b)\) pairs such that \(q\) divides \(\langle a - b\alpha_i \rangle\) is a Euclidean lattice of \(\mathbb{Z}^2\)
 - Compute basis \((u, v)\) of this lattice
Diving into details – Relation collection

For each \((a, b)\) pair in the sieving domain:

- Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
- Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
- If both norms are smooth, then \((a, b)\) is a relation

Special-\(q\) sieving:

- Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
- The set of \((a, b)\) pairs such that \(q\) divides \(\langle a - b\alpha_i \rangle\) is a Euclidean lattice of \(\mathbb{Z}^2\)
- Compute basis \((u, v)\) of this lattice
- Enumerate lattice elements as pairs \((a, b) = iu + jv\) with \((i, j) \in [-l, l] \times [0, l]\)
Diving into details – Relation collection

- For each \((a, b)\) pair in the sieving domain:
 - Compute the norms \(N_i(a - b\alpha_i) = f_i(a/b)b^i\)
 - Check if \(N_i(a - b\alpha_i)\) is \(B_i\)-smooth (all its prime factors are \(\leq B_i\))
 - If both norms are smooth, then \((a, b)\) is a relation

- Special-\(q\) sieving:
 - Fix a prime ideal \(q = (q, \rho)\) of \(\mathbb{Z}[\alpha_1]\)
 - The set of \((a, b)\) pairs such that \(q\) divides \(a - b\alpha_i\) is a Euclidean lattice of \(\mathbb{Z}^2\)
 - Compute basis \((u, v)\) of this lattice
 - Enumerate lattice elements as pairs \((a, b) = iu + jv\) with \((i, j) \in [-I, I] \times [0, I]\)
 - One independent subtask for each special-\(q\)
 \(\rightarrow\) easy parallelization
Example from c_{59}:

- Polynomials:

 $f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 - 4872316534587 \cdot X - 9288039622841198$

 $f_2(X) = 4827001309 \cdot X - 192616011406041$

- Special-q: $(q, \rho) = (200003, 74941)$

- Sieving position: $(a, b) = (-876877, 31)$

- Is (a, b) a relation? Factor its norms

- Remove small factors by sieving techniques (up to bound B')

- Co-factor remaining parts only if not too large

 $N_1(a - b^{\alpha_1}) = 34039772577219966371130285$

 $N_2(a - b^{\alpha_2}) = -10203782780419264$
Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \\
 - 4872316534587 \cdot X - 9288039622841198 \\
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]
Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 - 4872316534587 \cdot X - 9288039622841198
 \]
 \[
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]

- **Special-q:** $(q, \rho) = (200003, 74941)$
Diving into details – Relation collection

Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \\
 \quad \quad - 4872316534587 \cdot X - 9288039622841198
 \]

 \[
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]

- **Special-q:** \((q, \rho) = (200003, 74941)\)

- **Sieving position:** \((a, b) = (-876877, 31)\)
Example from c_{59}:

- Polynomials:

 $$f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2$$
 $$- 487231653457 \cdot X - 9288039622841198$$

 $$f_2(X) = 4827001309 \cdot X - 192616011406041$$

- Special-q: $(q, \rho) = (200003, 74941)$
- Sieving position: $(a, b) = (-876877, 31)$

Is (a, b) a relation? Factor its norms
Diving into details – Relation collection

Example from c_{59}:

- Polynomials:

 \[f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 - 4872316534587 \cdot X - 9288039622841198 \]
 \[f_2(X) = 4827001309 \cdot X - 192616011406041 \]

- Special-q: \((q, \rho) = (200003, 74941) \)
- Sieving position: \((a, b) = (-876877, 31) \)

Is \((a, b) \) a relation? Factor its norms

\[N_1(a - b\alpha_1) = 34039772577219966371130285 \]
\[N_2(a - b\alpha_2) = -10203782780419264 \]
Diving into details – Relation collection

Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \\
 - 4872316534587 \cdot X - 9288039622841198
 \]

 \[
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]

- **Special-q:** $(q, \rho) = (200003, 74941)$

- **Sieving position:** $(a, b) = (-876877, 31)$

Is (a, b) a relation? Factor its norms

\[
N_1(a - b\alpha_1) = 170196309941450710095 \cdot q
\]

\[
N_2(a - b\alpha_2) = -10203782780419264
\]
Diving into details – Relation collection

Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \\
 - 4872316534587 \cdot X - 9288039622841198
 \]
 \[
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]

- **Special-q:** $(q, \rho) = (200003, 74941)$
- **Sieving position:** $(a, b) = (-876877, 31)$

Is (a, b) a relation? Factor its norms

- **Remove small factors by sieving techniques (up to bound B'_i)**

 \[
 N_1(a - b\alpha_1) = 170196309941450710095 \cdot q
 \]
 \[
 N_2(a - b\alpha_2) = -10203782780419264
 \]
Diving into details – Relation collection

Example from c_{59}:

- Polynomials:

 \[f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \]

 \[- 4872316534587 \cdot X - 928803962284198 \]

 \[f_2(X) = 4827001309 \cdot X - 192616011406041 \]

- Special-q: \((q, \rho) = (200003, 74941) \)
- Sieving position: \((a, b) = (-876877, 31) \)

Is \((a, b) \) a relation? Factor its norms

- Remove small factors by sieving techniques (up to bound \(B'_i \))

\[
N_1(a - b\alpha_1) = 3^2 \cdot 5 \cdot 43 \cdot 53 \cdot 59 \cdot 61 \cdot 151 \cdot 3053757221 \cdot q
\]

\[
N_2(a - b\alpha_2) = -2^6 \cdot 67 \cdot 311 \cdot 617 \cdot 709 \cdot 17491
\]
Example from c_{59}:

- **Polynomials:**

 \[
 f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \\
 - 4872316534587 \cdot X - 928803962284198
 \]

 \[
 f_2(X) = 4827001309 \cdot X - 192616011406041
 \]

- **Special-q:** $(q, \rho) = (200003, 74941)$

- **Sieving position:** $(a, b) = (-876877, 31)$

Is (a, b) a relation? Factor its norms

- Remove small factors by sieving techniques (up to bound B'_i)
- **Co-factor** remaining parts only if not too large

\[
N_1(a - b\alpha_1) = 3^2 \cdot 5 \cdot 43 \cdot 53 \cdot 59 \cdot 61 \cdot 151 \cdot 3053757221 \cdot q
\]

\[
N_2(a - b\alpha_2) = -2^6 \cdot 67 \cdot 311 \cdot 617 \cdot 709 \cdot 17491
\]
Diving into details – Relation collection

Example from c_{59}:

- Polynomials:
 \[f_1(X) = 60 \cdot X^4 + 164823 \cdot X^3 + 2561101187 \cdot X^2 \]
 \[- 4872316534587 \cdot X - 9288039622841198 \]
 \[f_2(X) = 4827001309 \cdot X - 192616011406041 \]

- Special-q: $(q, \rho) = (200003, 74941)$

- Sieving position: $(a, b) = (-876877, 31)$

- Is (a, b) a relation? Factor its norms

 - Remove small factors by sieving techniques (up to bound B_i')
 - Co-factor remaining parts only if not too large

 \[N_1(a - b\alpha_1) = 3^2 \cdot 5 \cdot 43 \cdot 53 \cdot 59 \cdot 61 \cdot 151 \cdot 22447 \cdot 136043 \cdot q \]
 \[N_2(a - b\alpha_2) = -2^6 \cdot 67 \cdot 311 \cdot 617 \cdot 709 \cdot 17491 \]
Diving into details – Relation collection

- General parameters (tasks.*):
 - `alim` / `rlim`: the maximum norm of sieved primes (B'_i)
 - `lpba` / `lpbr`: the so-called large prime bound, in bits ($\log_2 B_i$)
 - `I`: bounds on sieving domain
Diving into details – Relation collection

▶ General parameters (tasks.*)
 • alim / rlim: the maximum norm of sieved primes (B'_i)
 • lpba / lpbr: the so-called large prime bound, in bits ($\log_2 B_i$)
 • I: bounds on sieving domain

▶ Sieving parameters (tasks.sieve.*)
 • mfba / mfbr: co-factorization threshold, in bits
 • qmin: first special-q to sieve
 • rels_wanted: number of relations to collect
Diving into details – Relation collection

- General parameters (tasks.*)
 - alim / rlim: the maximum norm of sieved primes (B'_i)
 - lpba / lpbr: the so-called large prime bound, in bits ($\log_2 B_i$)
 - I: bounds on sieving domain

- Sieving parameters (tasks.sieve.*)
 - mfba / mfbr: co-factorization threshold, in bits
 - qmin: first special-q to sieve
 - rels_wanted: number of relations to collect
 - qrange: number of special-q’s to sieve per subtask
Thank you for your attention

Happy factoring!