
Automatic Benchmark Generation

December 5, 2022

Supervisor: Guillermo Polito

Emails: guillermo.polito@univ-lille.fr

Keywords: Compilers, Interpreters, Optimization, Code Analysis, Interme-
diate Languages

1 Context

Designing application benchmarks that are good representatives of application
behaviour and are not subject to internal runtime noise is a hard task for appli-
cation developers. The objective of this internship is to use automatic program
generation techniques (i.e., program synthesis) that are aware of runtime noise
sources as well as application domain knowledge. Noise awareness will minimize
internal noise by construction.

2 Project and objectives

We will study what properties turn existing application tests into relevant bench-
marks. We will use two main techniques. First, we will extract runtime profiling
information to detect application hot spots and identify code portions relevant
to performance. Second, we will use such profiling information to guide static
code analyses on existing application test cases. Such a study will lead us to
the automatic identification of benchmark candidates from existing application
tests.

We will then investigate how application tests can be automatically turned
into benchmarks. Identified benchmark candidates will not exhibit the same
performance profile as the application at runtime because they are by design
built to run fast and have few dependencies. We will design program generation
techniques to produce macro benchmarks from benchmark candidates. Such
program generation techniques will produce benchmarks that remain relevant
and minimize internal noises.

The student will learn in this internship the following skills:

1



• How to write performance tests

• Using statistics to compare performance results

• Code generation to minimize measuring errors

• Extracting profiling data to obtain relevant performance tests

References:

• E. Barrett, C. F. Bolz-Tereick, R. Killick, V. Knight, S. Mount, and L.
Tratt. Virtual machine warmup blows hot and cold. In OOPSLA17.

• A. Bergel. Counting messages as a proxy for average execution time in
pharo. In Proceedings of the 25th European In ECOOP11.

• D. Costa, C.-P. Bezemer, P. Leitner, and A. Andrzejak. Whats wrong
with my benchmark results? studying bad practices in jmh benchmarks.
In IEEE Transactions on Software Engineering, 2021.

• Z. Ding, J. Chen, and W. Shang. Towards the use of the readily available
tests from the release pipeline as performance tests: Are we there yet? In
ICSE20.

• G. Polito, P. Tesone, and S. Ducasse. Interpreter-guided differential jit
compiler unit testing. In PLDI22, 2022.

• L. Traini, V. Cortellessa, D. Di Pompeo, and M. Tucci. Towards effective
assessment of steady state performance in java software: Are we there
yet?, 2022.

• J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning,
and P. Cao. How to build a benchmark. In ICPE15.

2


