
JIT Compiler Generation Through

Meta-interpretation

December 5, 2022

Supervisor: Guillermo Polito

Emails: guillermo.polito@univ-lille.fr

Keywords: Compilers, Interpreters, Optimization, Code Analysis, Interme-
diate Languages

1 Context

JIT (Just-in-Time) compilers are an optimization technique often used for in-
terpreted languages and virtual machines. They allow to spend time optimizing
only frequently used code, while falling back in slower execution engines for
non-frequent code. For example, the Pharo and the Java VM run on a bytecode
interpreter and eventually compile machine code for methods that are frequently
called.

Nowadays, the Pharo Virtual Machine is implemented in a subset of the
Pharo language called Slang. The Virtual Machine developers then benefit
from the high-level tools used to work with Pharo code, such as the code editors,
testing frameworks and debuggers. In a later stage, the Virtual Machine code
written in Slang is transpiled to C and then compiled to the target architectures.

The current Pharo JIT compiler that is part of the Virtual Machine, aka
Cogit, implements an architecture based on templates of native code per byte-
code. When a method is compiled, each bytecode is mapped to its corresponding
template. All templates are concatenated to form a single machine code method.
This architecture has as drawback that the behavior of the Pharo language is
duplicated in both the bytecode interpreter and their corresponding machine
code templates.

The topic of this internship is to explore the automatic generatation of ma-
chine code templates from the bytecode interpreter using an abstract interpreter
on the existing bytecode interpreter. Such approach could benefit from having
a single implementation of the interpreter and help in keeping both implemen-
tations synchronized.

1



2 Project and objectives

The main objective of this project is to generate ahead-of-time the code of a
compiler using an existing interpreter. A meta-interpreter (i.e., an interpreter
over an interpreter) will interpret the bytecode interpreter’s code and generate
code that knows how to compile at runtime. To avoid the overhead of meta-
interpretation during the execution, such generation happens ahead-of-time (i.e.,
before the program execution). The objectives of the project are:

• Construct an abstract meta-intepreter to analise the existing bytecode
interpreter

• Generate from such analysis an intermediate representation

• Create tools to test and debug such intermediate representation and the
native code generated from it

The student will learn in this internship the following skills:

• How a template-based JIT works

• Abstract interpreters

• Compiler intermediate representations

• Low level memory optimizations such as tagged values

• The interations between generated machine code and runtime code (tram-
polines)

• How to apply standard software engineering practices (testing, automa-
tion, continuous integration) to low level domains

References:

• Practical partial evaluation for high-performance dynamic language run-
times https://dl.acm.org/doi/10.1145/3062341.3062381

• Structure and Interpretation of Computer Programs http://web.mit.edu/alexmv/6.037/sicp.pdf

• Fun with Interpreters https://github.com/SquareBracketAssociates/Booklet-
FunWithInterpreters/releases/download/continuous/fun-with-interpreters-
wip.pdf

2


