
Symbolic-Model-Guided Fuzzing of Cryptographic Protocols

City and country Nancy, France.
Team or project in the lab
Team PESTO at LORIA lab (Inria Nancy, CNRS and Université de Lorraine).
Name and email address of the advisors
Lucca Hirschi, lucca.hirschi@inria.fr & Steve Kremer, steve.kremer@inria.fr
Name and mail of the head of the laboratory
Jean-Yves Marion, jean-yves.marion@loria.fr
Indemnisation
The internship is supported by PEPR "Cybersécurité" (France 2030 program managed by the
French National Research Agency under grant agreement No. ANR-22-PECY-0006).

TL;DR. Critical and widely used cryptographic protocols have repeatedly been found to be
flawed in their design and their implementation. A prominent class of such vulnerabilities are
logical attacks, i.e., attacks that solely exploit flawed protocol logic. Automated formal verifica-
tion methods, based on the Dolev-Yao (DY) attacker, excel in finding such flaws, but operate on
abstract specification models only. Fully automated verification of deployed implementations is
today still out of reach. This leaves open whether the implementations actually being used are
secure. On the opposite side of the spectrum, fuzz testing, developed since the 90s is now the
gold standard for testing security software and is used at scale by the largest software companies.
However, even if a protocol implementation is tested against memory-related vulnerabilities us-
ing state-of-the-art fuzzers, the whole class of implementation-level logical attacks remains out of
scope. Unfortunately, this blind spot hides numerous attacks, notably recent logical attacks on
widely used TLS implementations introduced by implementation bugs.

In prior work, we answer this with a novel approach combining domain-specific, security-related
formal models (e.g., DY attacker) and fuzz testing. We have designed and implemented a first
Proof of Concept fuzzer written in Rust1, which found four new vulnerabilities in WolfSSL2. This
recent work has opened up various exciting new research questions we would like to explore in this
internship. In particular, by building on this prior work, the main objectives are to design and
implement a DY fuzzer feedback metric and to relfect the varieties of DY security properties in
the fuzzer engine.

Context. Today’s information society crucially relies on secure information exchanges achieved
by cryptographic protocols. Those distributed programs that leverage cryptographic primitives
(e.g., encryption, digital signature) to achieve various security goals are critical to many aspects of
our modern society: finance, business, communication, etc. Any flaw in these protocols can have
dramatic consequences, amplified by their ubiquity and our dependence on them. Yet, critical
and widely used protocols have been repeatedly found to be flawed in their design or their
implementation. A prominent class of such flaws are logical attacks, i.e., attacks that solely
exploit flawed protocol logic such as Man-in-the-Middle (MiM), replay, or downgrade attacks, etc.

As such flaws are subtle and hard to catch, formal methods have been proposed to analyze
protocol design specifications since the 80s. Symbolic verification is a first-class, extremely suc-
cessful such method [1]. It offers a mathematical model capturing logical attacks, i.e., the

1Paper under submission, tool available at https://github.com/tlspuffin/tlspuffin
2CVE-2022-42905 (critical severity), CVE-2022-42905 and CVE-2022-42905 (medium severity), and CVE-2022-

38153 (low severity).

1

https://team.inria.fr/pesto/
https://www.loria.fr/en/
lucca.hirschi@inria.fr
steve.kremer@inria.fr
jean-yves.marion@loria.fr
https://github.com/tlspuffin/tlspuffin
https://nvd.nist.gov/vuln/detail/CVE-2022-42905
https://nvd.nist.gov/vuln/detail/CVE-2022-39173
https://nvd.nist.gov/vuln/detail/CVE-2022-38152
https://nvd.nist.gov/vuln/detail/CVE-2022-38153
https://nvd.nist.gov/vuln/detail/CVE-2022-38153


symbolic model also called Dolev-Yao model, as well as rigorous and mechanized methods to rea-
son about protocols. However, a fundamental, inherent issue is that symbolic verification operates
on abstract specification models only. Security proofs thereon are of no practical use when
the programs that end-users deploy or run are insecure. Unfortunately, history shows that frequent
implementation bugs actually introduce vulnerabilities that were nonexistent in the specification,
notably implementation-level logical attacks. This is particularly well illustrated by the long
history of such attacks in the ubiquitous and critical TLS and WiFi protocols ([2, 3, 8, 6, 7] to
only name a few).

Programmers or auditors interested in precluding logical attacks from protocol implementations
are left with testing since security-oriented program verification is extremely expertise-demanding
and does not really scale beyond primitives or minimal protocols. As opposed to formal verification,
testing is unsound by design (i.e., bugs may be missed) but provides a certain level of confidence
by excluding all the potential flaws covered by the body of tests. Therefore, a good coverage of
the tests is paramount. Narrowing down to security, the gold standard is fuzz testing [4, 5] due
to its ability to automatically generate test cases that maximize the coverage typically thanks to
feedback-driven evolutionary algorithms utilizing mutations. Today, fuzzing is paramount in the
industry software development practices, e.g., Google, Cisco, Microsoft use it at scale. The
state-of-the-art fuzzing techniques are adequate to find safety vulnerabilities (sometimes with po-
tential security implications) but are unfortunately unable to find logical attacks since they
operate at a too low level (e.g., random bit-flips on network packets, code-based coverage). Prior
works have proposed fuzzers operating in some ad-hoc state machine model [3, 2] that is also too
weak to capture the class of logical attacks; e.g., message contents cannot be tampered with
by the adversary while most logical attacks rely on this.

Symbolic verification captures logical attacks at the design level only while fuzzing is industry-
ready and operates on implementations but is limited to low-level, safety-oriented flaws, which are
often the low-hanging fruits. Therefore, effective and usable techniques to preclude logical
attacks on implementations are desperately lacking.

Objectives. This internship objective is to develop a symbolic-model-guided fuzzing frame-
work. that will enable checking implementations for the absence of logical attacks with
TLS as a case study. The central idea is to consider symbolic traces (from a symbolic model)
as the input space of the Program Under Test (PUT) that will be fuzzed and then executed on
the PUT through concretization (symbolic terms are evaluated into bitstrings). Fortunately, we
already have a preliminary, proof-of-concept design and implementation in Rust for TLS 1.2 and
1.3 that will serve for this internship as a solid basis and test-bed for exploring new directions.

Intern’s tasks. First of all, the intern will get familiar with formal verification in the symbolic
model, fuzzing, as well as with the existing Rust code base.

Next, depending on the intern’s affinity for and knowledge of the different involved aspects of
this project, we will be able to adapt the project goals and choose one among several research
directions, such as:

1. tighten the link between our fuzzing approach and formal methods and symbolic verifiers
which are able to reason about protocols using formal logic,

2. design domain-specific feedback metric to incentives the fuzzer to seek for new symbolic
traces. The underlying fundamental question is: what is a good “symbolic feedback” that
promotes semantically different symbolic traces?

3. define scoring metrics that can be effectively computed by symbolic verifiers and that can
help the fuzzer promoting test cases that are close to attack traces.

4. design new fuzzing mutations and benchmark them with our test-bed,

5. design an efficient grammar-based fuzzing engine and evaluate it with our test-bed,

The precise direction this project will take shall be agreed upon with the intern at the beginning
of the project. It can be more theory-oriented (1 and 2) or more practical-oriented (3-5). Should
we find any vulnerability, we would follow standard and ethical responsible disclosure practices.

2



Expected ability of the student. We expect mathematical maturity, basic knowledge in logic,
basic theoretical computer science. Knowledge in security and cryptography is not mandatory but
is definitely a plus. For the implementation, a good command of Rust is a plus.

If the candidate is interested, continuation towards a PhD, for which we already have funding.
on related topics is possible.

References
[1] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao,

and Bryan Parno. SoK: Computer-Aided Cryptography. In Symposium on Security and Privacy
(SP). IEEE, 2021.

[2] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A Messy
State of the Union: Taming the Composite State Machines of TLS. In Symposium on Security
and Privacy (SP), pages 535–552. IEEE, May 2015.

[3] Joeri De Ruiter and Erik Poll. Protocol State Fuzzing of TLS Implementations. In USENIX
Security, pages 193–206, 2015.

[4] Patrice Godefroid. Fuzzing: Hack, art, and science. Communications of the ACM, 63(2):70–76,
January 2020.

[5] Valentin Jean Marie Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J. Schwartz, and Maverick Woo. The Art, Science, and Engineering of Fuzzing: A
Survey. IEEE Transactions on Software Engineering (TSE), pages 1–1, 2019.

[6] Mathy Vanhoef. Fragment and forge: Breaking Wi-Fi through frame aggregation and fragmen-
tation. In Proceedings of the 30th USENIX Security Symposium. USENIX Association, August
2021.

[7] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in
WPA2. In Conference on Computer and Communications Security (CCS), pages 1313–1328.
ACM, October 2017.

[8] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the Dragonfly handshake of WPA3
and EAP-pwd. In IEEE Symposium on Security & Privacy (SP). IEEE, 2020.

3


