
Compiler Intermediate Representation for
Algebraic Data Types

Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord – Grenoble INP/LCIS & LIP/CASH

2022-2023

LIP – UMR CNRS / ENS Lyon / UCB Lyon 1 / Inria – 69007 Lyon
E-mail : gabriel.radanne@inria.fr and Laure.Gonnord@grenoble-inp.fr

1 Context

Algebraic Data Types In the last few decades, Algebraic Data Types (ADT) have emerged as an incredibly ef-
fective tool to model and manipulate data for programming. Algebraic Data Types are the combination of “Product
types”, which correspond to records, and “Sum types”, which correspond to tagged unions, an extension of traditio-
nal enumerations. Algebraic Data Types are also provided with “pattern matching”, an extension of switch which
allow to deconstruct complex values conveniently and safely.

Combined, these features offers numerous advantages :
— Model data in a way that is close to the programmer’s intuition, abstracting away the details of the memory

representation of said data.
— Safely handle the data by ensuring via pattern-matching that its manipulation is well typed, exhaustive, and

non-redundant.
— Optimize manipulation of the data thanks to the presence of richer constructs understood by the compiler.
Let us take the example of the Option algebraic data type, which indicates that a value can be present (the

Some case) or not (the None case).

enum Option<T> { // Optional values of type T
Some(T), // Some value of type T
None, // No value

}

The type Option<Int64> represents an optional 64-bit integer and has a memory representation using up to
two words : one word to distinguish between the two constructors and one word containing the integer. We now
consider the type Option<&T> of optional pointers to a type T. Like machine integers, pointers occupy one word.
However null pointers are forbidden in Rust, which means the value 0 is never used. Therefor, an optional pointer
can use it to distinguish the None constructor which allow Rust to represent values of type Option<&T> with only
one word. This recovers the efficiency of null pointers, without loosing safety. This concept is also used for other
similar types such as file handles (for which −1 is forbidden).

Such optimizing transformations are so far seldom implemented by state-of-the-art compilers. Our long term
project is to develop these transformations and make them available to language designers.

MLIR – Scaling compiler infrastructure for domain specific computation LLVM 1 is the defacto standard com-
piler framework for many languages (ranging from C and Rust, to Haskell). It allow compiler writers and language
designers to harness its numerous builtin compiler transformation, and to write new ones.

MLIR [2] is a general purpose compiler internal representation, developed on top of the LLVM architecture, which
features dialects. Its goal is to enable many different programming language constructs, allowing compiler writer to
choose the one they want. Dialects are then lowered progressively towards the LLVM intermediate representation.

1. https://llvm.org/

1

mailto:gabriel.radanne@inria.fr
mailto:Laure.Gonnord@grenoble-inp.fr
https://llvm.org/


2 Internship objective

In the last few years, we have been working on expressive and optimized memory representation for Algebraic
Data Types[1], in order to make them more appealing to High Performance programmers.

To pursue this goal further, we want to provide an MLIR dialect for Algebraic Data Type which provide language
constructs to build and pattern matching Algebraic Data Types, and the algorithm to compile such pattern matching
to lower representations.

During the internship, the intern will gain working knowledge of algorithm to compiler pattern matching of Alge-
braic Data Types, propose language constructs for ADT in MLIR, and implement them.

3 Internship

The internship will take place in the CASH Team, LIP lab, in Lyon France.

Candidate profile The candidate should ideally be familiar with formal approaches in programming language
design. They should also have taste for algorithmic design.

From the practical point of view, a basic experience in software programming and usage of collaborative tools
such that git.

Références

[1] Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. Knit&Frog : Pattern matching compilation for custom
memory representations (doctoral session). In AFADL 2022 - 21ème journées Approches Formelles dans
l’Assistance au Développement de Logiciels, Vannes, France, June 2022. URL https://hal.inria.fr/
hal-03676356.

[2] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir : Scaling compiler infrastructure for do-
main specific computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 2–14. IEEE, 2021.

2

https://hal.inria.fr/hal-03676356
https://hal.inria.fr/hal-03676356

	Context
	Internship objective
	Internship

