Kolmogorov complexity of 2D sequences

Bruno Durand Laboratoire d'Informatique Fondamentale de Marseille

Kolmogorov complexity

Goal: to measure the complexity of an individual object
(Shannon) theory of information: measures the complexity of a random variable
A theory of optimal compression

"the size of the smallest program that generates the object"

Examples

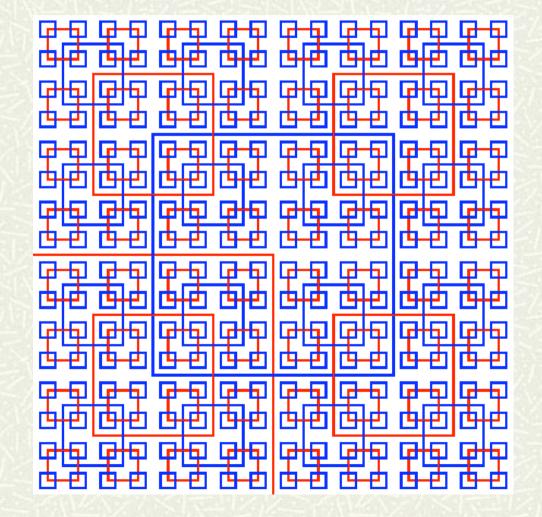
 $\texttt{I} K(n) < \log(n) + c$ $\texttt{I} K(2^n+17) < \log(n) + c$ $\texttt{I} K(x^y) < \log(x) + \log(y) + c$ $\texttt{I} K(x^y|y) < \log(x) + c$ $\texttt{I} Strings with low complexity are rare }$

Two theorems

t The set of prime numbers is infinite **t** If $K(x_0, x_1, ..., x_n | n) < c$, then x_i is computable

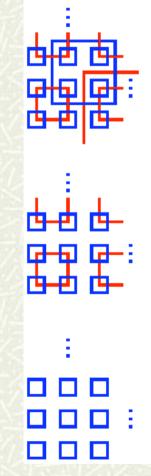
Exemple of 2D infinite objects

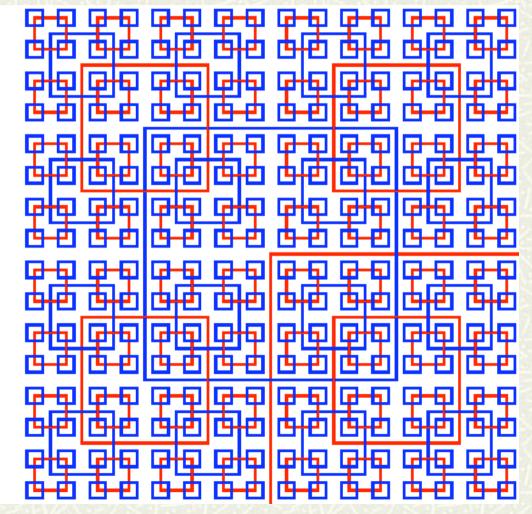
A finitary drawing



This infinite object is "simple"

nxn squareshave log(n)complexity





Complex infinite objects

Flip a coin for each cell
No structure
Theorem (Levin Schnorr 1971): random configurations have maximal complexity. The complexity of all their *nxn-squares* centered in (0,0) is n².

Question of the day

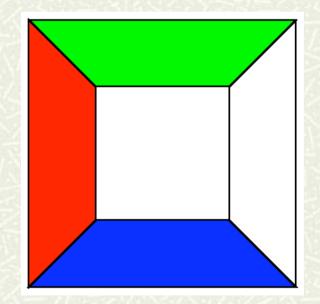
What is the complexity induced by a finite set of local constraints?
Motivations: molecule arrangements, etc.
Hilbert's 18th problem
Hilbert *das Entscheidungsproblem*

Tile sets

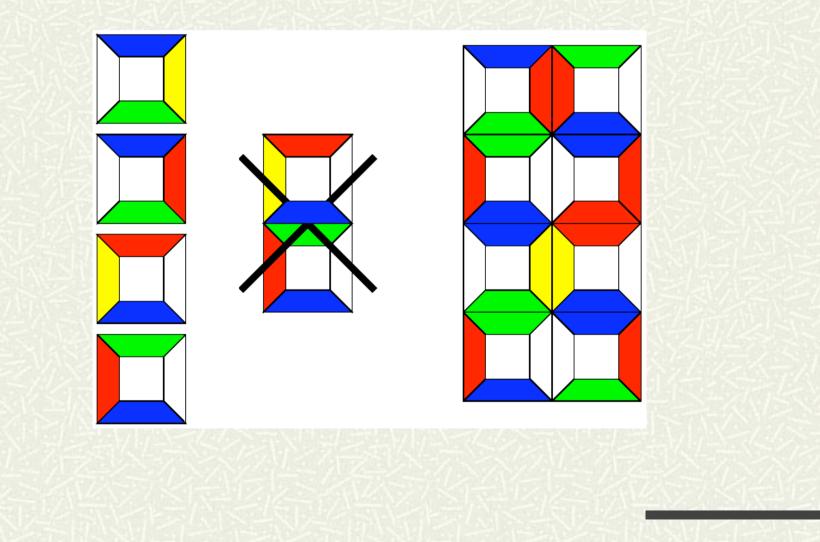
Wang tiles Squares with colored borders **Tiles** with arrows Arrows and colors **#** Polygons -- rational coordinates Correct arrangement ✓ No irrational coordinates (Penrose)

Wang tiles

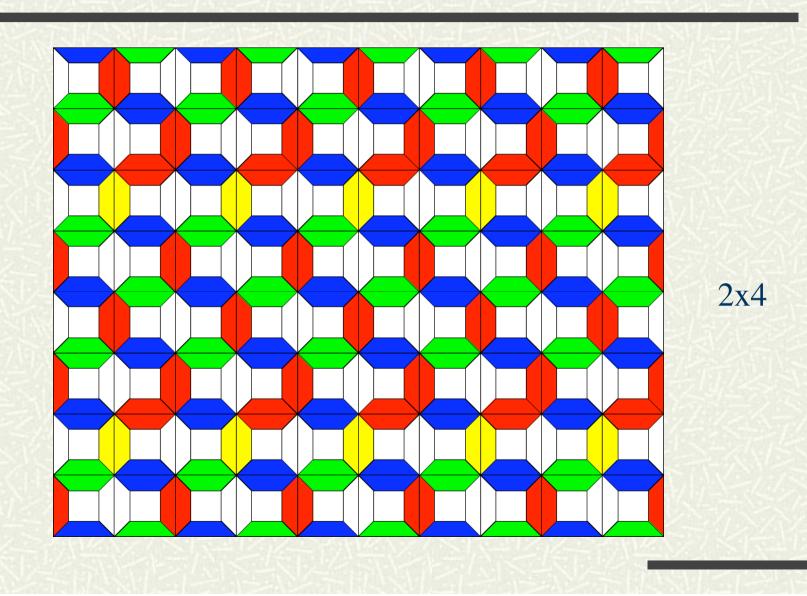
Squares of unit size
Colored borders
No rotations
Finite number
Matching colors



Example - Wang tiles

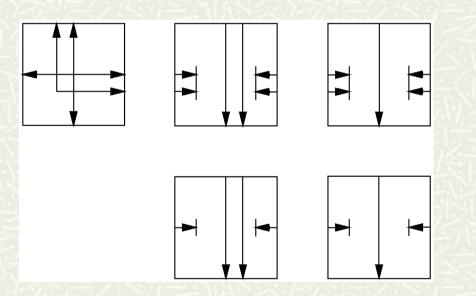


Periodic tiling obtained

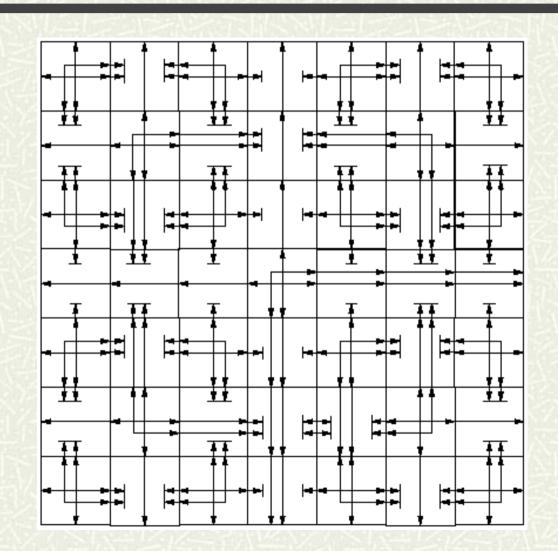


Tiles with arrows

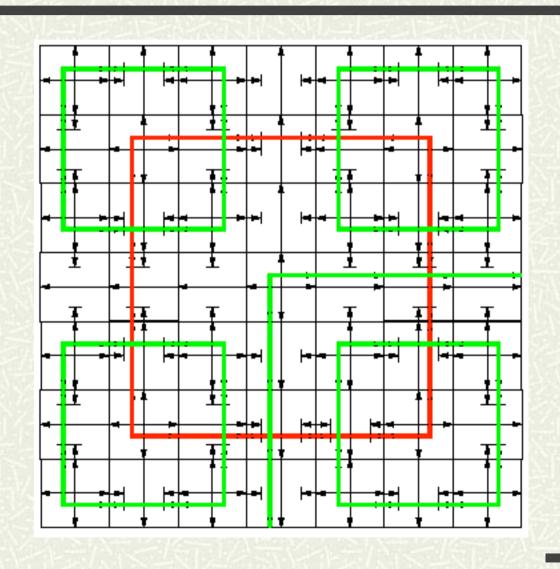
Squares of unit size
Arrows on borders
Rotations allowed
Finite number
Arrows must match



Example - tiles with arrows



See something and...

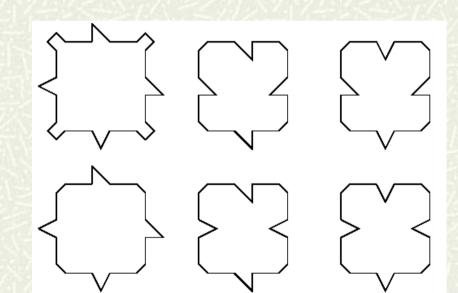


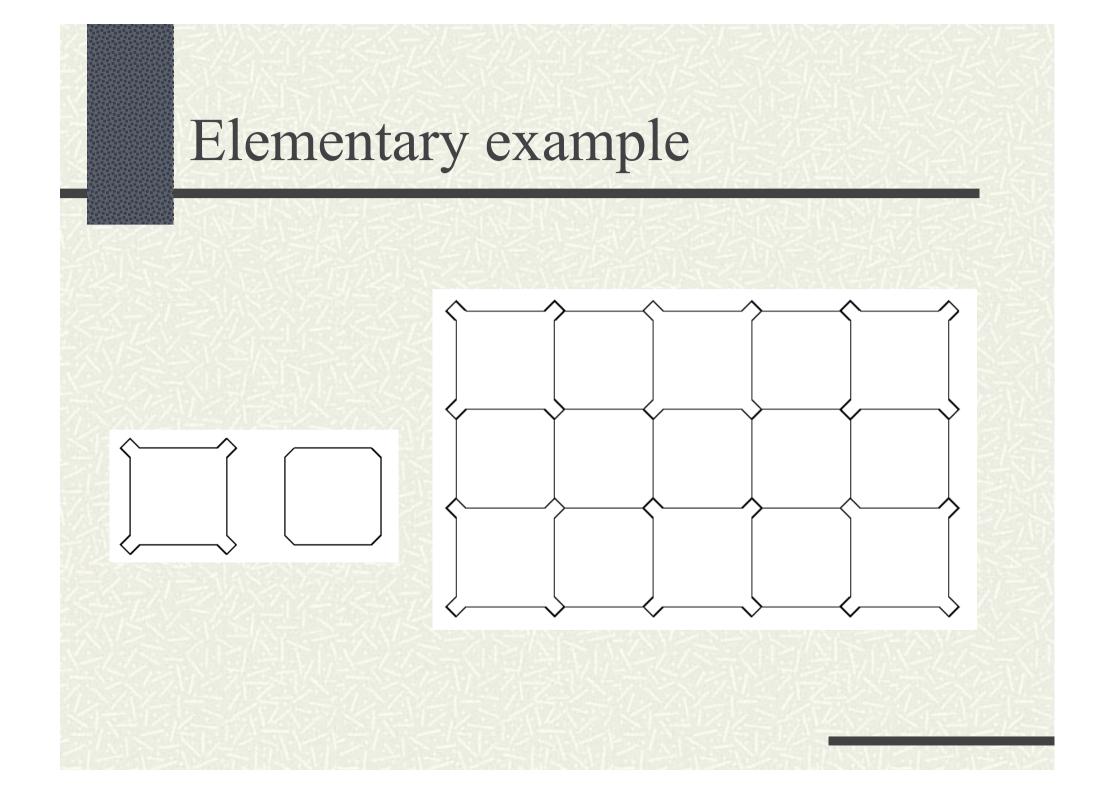
... imagine more

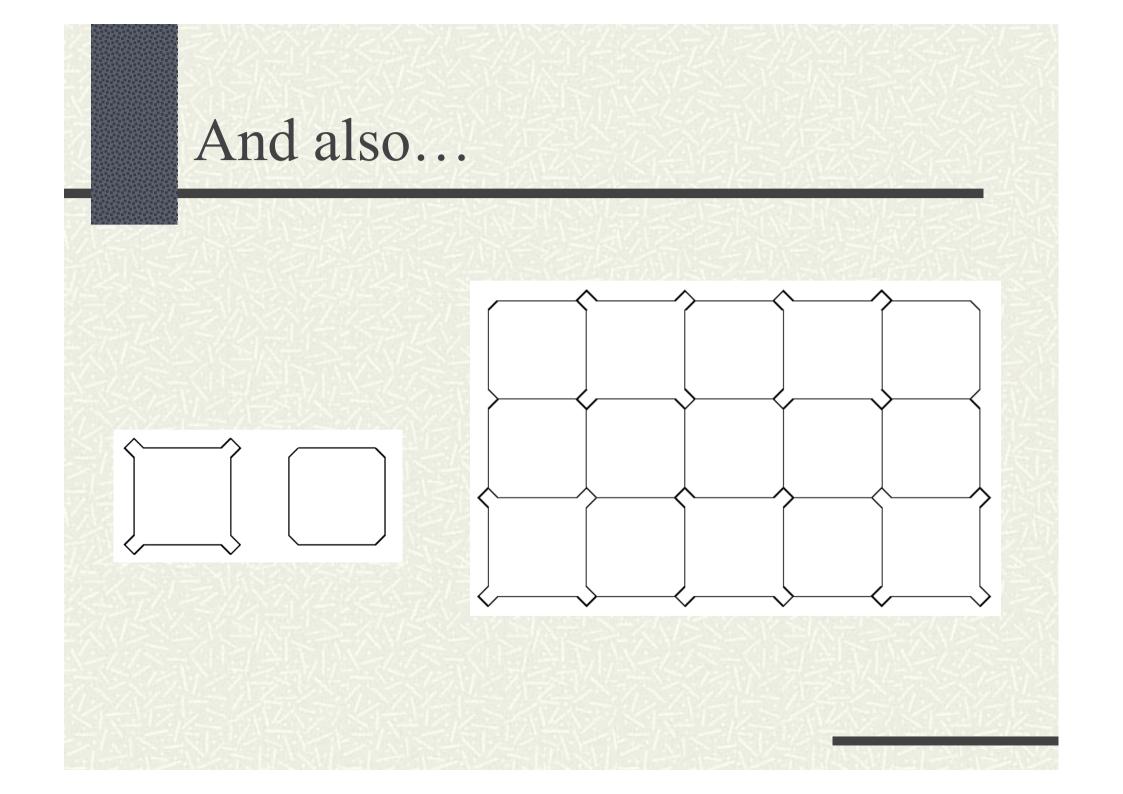
┙ <mark>┼╤╪</mark> ╡╎╞ <mark>╤╶╖┙</mark> ╷┝╍┼╼╡╢╞ <mark>╤╶</mark> ╍┉	╷╷┍┍┲╤╡╸┃╋╾╫╍┝╷┝╍┍╫╤╡╸┃╋╌╫╍┝╷┝┲╌┲┶╸┥┶┹╌╴┱╴┺╴┍╶┼┹╴┍╴╴┺╴┍╶┼┹╴╶╸╴┻╴╴╸ ╴╴┹╴╴┷╴┷╴┷╴┷╴┶╴┶╴┶╴╴┷╴╴┷╴╼╴┺╴┍╴┼┻╴╴╴┱╴┍╶┼┻╴╴╴╴┺╴┍╶┼┻╴╴╸╴┻╴╴╴╸
	╷┍╫╪╣┝┱╫┙┥╶┙┑╖╵┉╴┝╴┍╶╓╓╧╶╡┱╼╣╵╠╧╌╞╶╞╌╎╴┥╶╻╴
	╺╴┍╶┰╴┰╴┰╴╫╴┰╶┰╶┰╶┰╴┰╴┰╴┰╵╫╴┍╶┰╖┍╴┰╴┰ ┑┍╫╦╛╧╫┶╷┝┵╫╩╸╔╬╖┶╷┷╫╩┇╠╬╢┶╢┍╫╧╣╠╬╢┷╷╓╢╺╢┍╓╴╺╶╖ ╷╘╩╶┰╶┷╷┝┙╴┙╶╝╴┙
	╺ ╸╺╴┍╴╌╕╡┝╋╴╔╋╴╔┪┷╴┲╕┙╴┉┥╵┝┷╌╌╕╡┝╋╌╗┥┥┝┿╌╤╕┝╋╌╖╼┥┝┿╌╤╕┥┝┿╌╤╕╎┡╛╌╸┍ ╸┍┶╓╌╕╡┝┹╌╗┿╷╟┿┎╤╕╵╘╧╌╖┥╵┿╌╌╕╡┝┹╌╗┥┙┝┷╌╤╕┝╋╌╖╼┥┝┿╌╤╕╢┝┹╌╖╸ ┍╴╓┙╴┙╴┙┙┙┙┙┙┙┙┙╵┙╴┙╴┙╴┙╴┙╴┙╴┙╴┙╴┙╴┙╴┙╴┙╴
	╺ <u>┍┍└╾╗</u> ┢╾ <u>╤</u> ┿║┝┽ <u>└</u> ╼╗ <mark>┢</mark> ╔╤ <u></u> ┽┥┝┽ <u>└╼╗</u> ╠╔╤┼┥║┍┽ <u>╘╼╶</u> ╦┱┊┥╸┍┽ <u>└</u> ╼╗╠╦╧╵
	┫╺┿╫╫╫┥╞╉╌╫┿╷┝┿╫╫╗╞╫╫┿┪╶┝┿╫╫╬╴╠╉╫┿┥┝┿╫╫╣╴╋╫╫┿ ┍╴╫╫╶╽╶┺╣╴┥╶╫╶╶┪╶╘╴┥┺╴┥┺╴╡┱╌╫┥ ┝┹╌┹┶╷╴╝╴┥╶╫╴╼╴┙┺╴┥┺╴┥┲╴┾╴┺╴╴
	┓┍┽╦╴┾ <mark>╫╧╶╦╪╎┢╦╤┶┚</mark> ┽╶╦┥╵┿╴┼ <mark>┛╧╶╦╡┝╬╤╼┚</mark> ┥╶┯┝ <mark>┝┼╶╶╞╻╧╦╪╖</mark> ┝╦╤╼╜ ┍┶╫╕╻ <mark>╔╌┊┿╷┝╫╕╻╔╌┊┥</mark> ┝┿┽╪╕ ╸╷╴╴╴╴╴╴╴╴
	┲ ╸┝╴┰╶┰╶┰╴┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶┰╶
	┍╴┝╅╧┶╬╝┝╩╧┾┑╵┙╵┇╵┇╵┇╵┇╵┇╵┇╵┇╵┇╵┇╎┇╎┇┥╹╗╶┇╖╵┇┝┇╴┾╸┝┇┝┇╸┤╸ ╒╷┝╬╧┱╣╠╩╧┾┿╵┝┿╧╼╝ ┲┍╅╧┿╝┍╧┶┽╵┛╵┇
	┫ <mark>╺┶╓╈╧╼┰</mark> ╜┿║┯╙╪╗╠ ╔ ┰╜┥║┷╙╼╗╠╔┰╜┥║┵╙╼╻┣┵╙╼╹┝┵╙╼┇┶┰╜┿╠╍╙╼╖
┍╫╫┿ ╪╪┿ ╺╫╫┿ ┍╫╫┿ ╧╷╴┹╷╴┹╷╘╪╴╝╴┥	
	╷╴╦╴╷╶┑╟┸╽╔┰╌┇╴┲╖╖╴╤╌╎╴┰╌┇╴╻ ╵┍┶╙╼╣╠╾╝┿╵┝┽╙╼╗╞╤╝┿╵┿╙╼╕╞╤╝┿╵┿╙╼╶╦╦╜┿╵┿╙╼╕ ╷╷┶╵┹╴┇╴╴╴╷╴╴╴
	╷ <mark>╞╪╤╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪</mark>
	╵╽┍┿╫╌╫╎┝┲╤╫┿┥┝┿╫╤╫╕╔╪╫┿╢┝┿╫╦╫╎╔╪╫┿┥┝┿╫╤╫┤╔╤╫╼┝┝┿╫╤╫╎╔┿╫╼┿╵┝┿╫╤╫╎╠╤╫╌┾╖┝┾╶╫┥╴╄ ╵╷┍┿╫╌╫╎╚╤╫╍┝┝┵╫╕╴╔╪╢┥┑╫╌╫╡┝┿╶╌╫╡┍┾╶╴╫╢┥╶┯┥╵┍┿╫╼╫╎╚╧╫╼┾╵┝┿╫═╝ ╵

Polygons -- rational coordinates

Polygon on a grid
Polygon simple
No rotations
Finite number
Correct arrangement







Tiling of a region

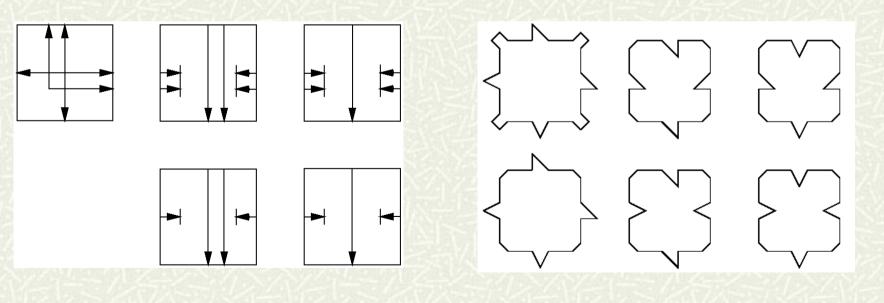
The matching constraint must be ok inside the region
No constraint on the border
Examples:

Tiling of a rectangle
Tiling of a half-plane
Tiling of the plane

Simulations

These models are equivalent for tilability of a region.

Some theory is needed here (skipped)



A more general model: Local constraints

Planar configurations of 0's and 1's
 A configuration is a tiling

 if and only if
 a local and uniform constraint is
 verified
 Local : neighborhood
 Uniform : same rule in each cell

Palettes

■ A local constraint is a palette if and only if it can tile the plane (L. Levin)

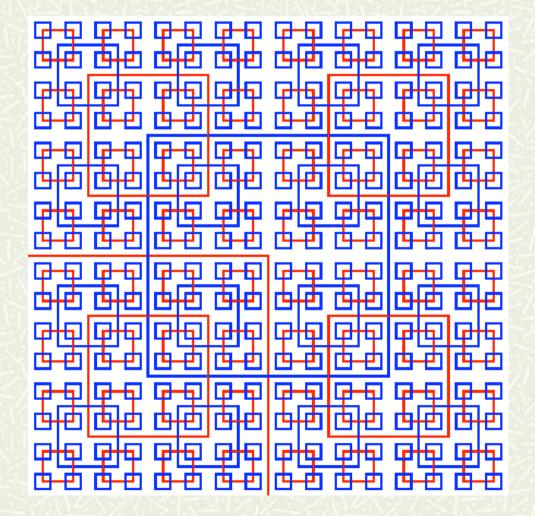
- Idem : Wang tiles
- Idem : tiles with arrows
- Idem : polygons

« computation - geometry »

Decision problem : « domino problem »
Input : a local constraint T
Question : is T a palette ?
This problem is undecidable (Berger 1966)

Break translational symmetry

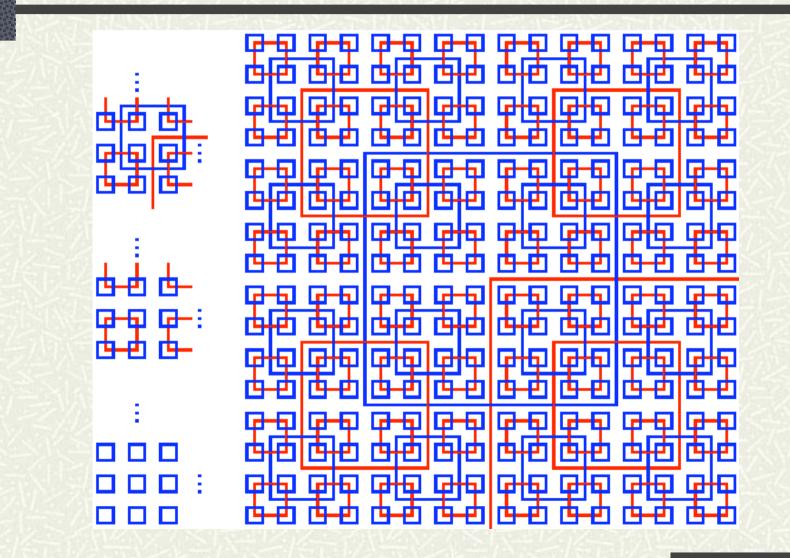
Nice configuration (little cheating...)

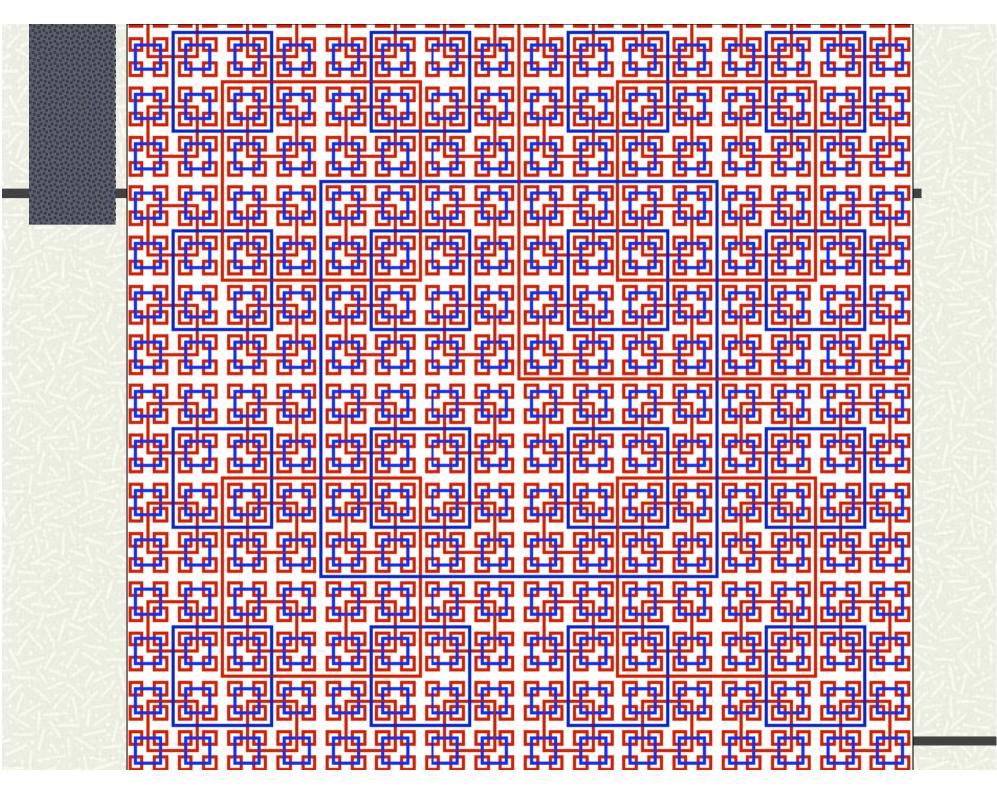


Still nicer : a carpet !

년 년 년 년 GQ Ģ 뫬 閉點 鹍 鹍 騽 머무 다고 야 우 百也 西南 踏翻 郘 鹍 騽

How to build such carpets...





How to express that

 Carpets can be produced by tilings or
 There exists a palette that produces carpets or
 In all tilings by a palette, carpets appear

Tilings enforced by a palette

What we hope to enforce

Let c be a configuration

The set of configurations that contain the same finite patterns than c

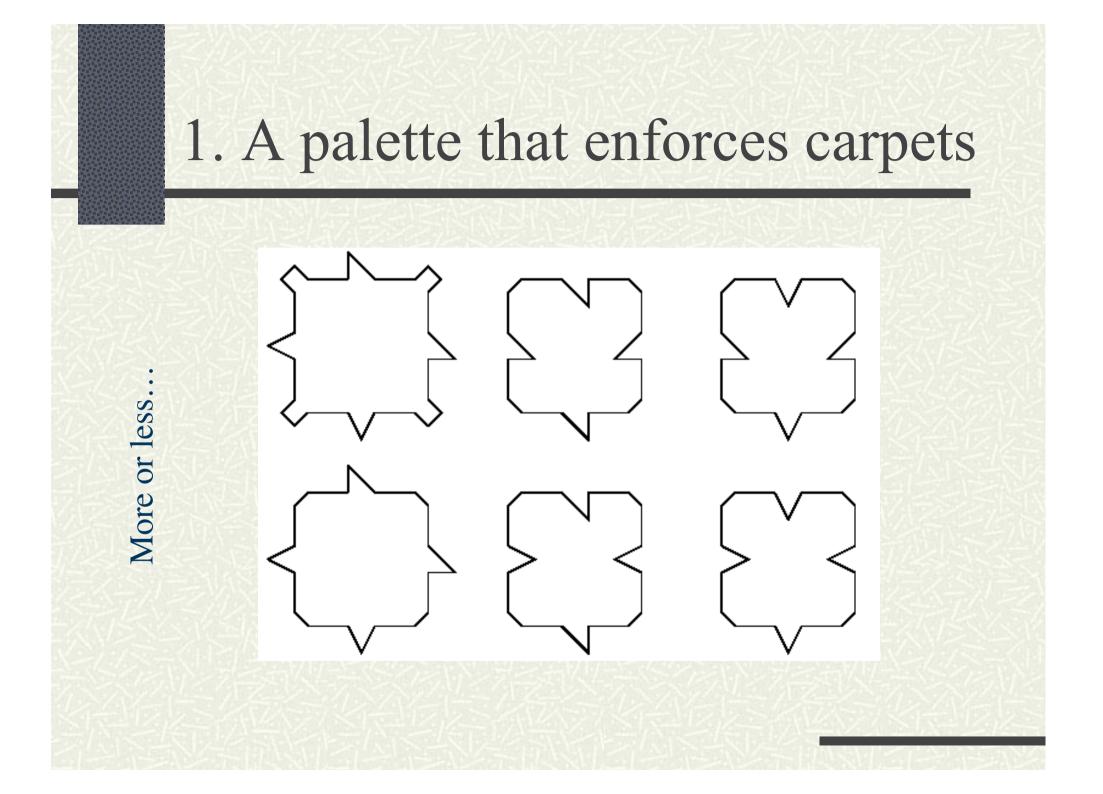
Id est :

$$\Gamma(c) = igcup_{i,j\in\mathbb{Z}} \{\sigma_h^i\circ\sigma_v^j(c)\}.$$

The carpet is enforceable

Possible proofs:

- 1. Give explicitly a palette that enforces it
- 2. Give a construction method for such a palette
- 3. Prove that such a palette exists



2. Construction method: self-similarity of carpets

- Smallest squares are red and form a 2 steps grid
- Squares of same size are vertically and horizontally aligned
- In the center of a red square (resp. blue) lays a corner of a blue one (resp. red)
- **#** Squares of same color are disjoined

3. Existence proof

A configuration c is : \blacksquare of finite type if and only if there exists n such that

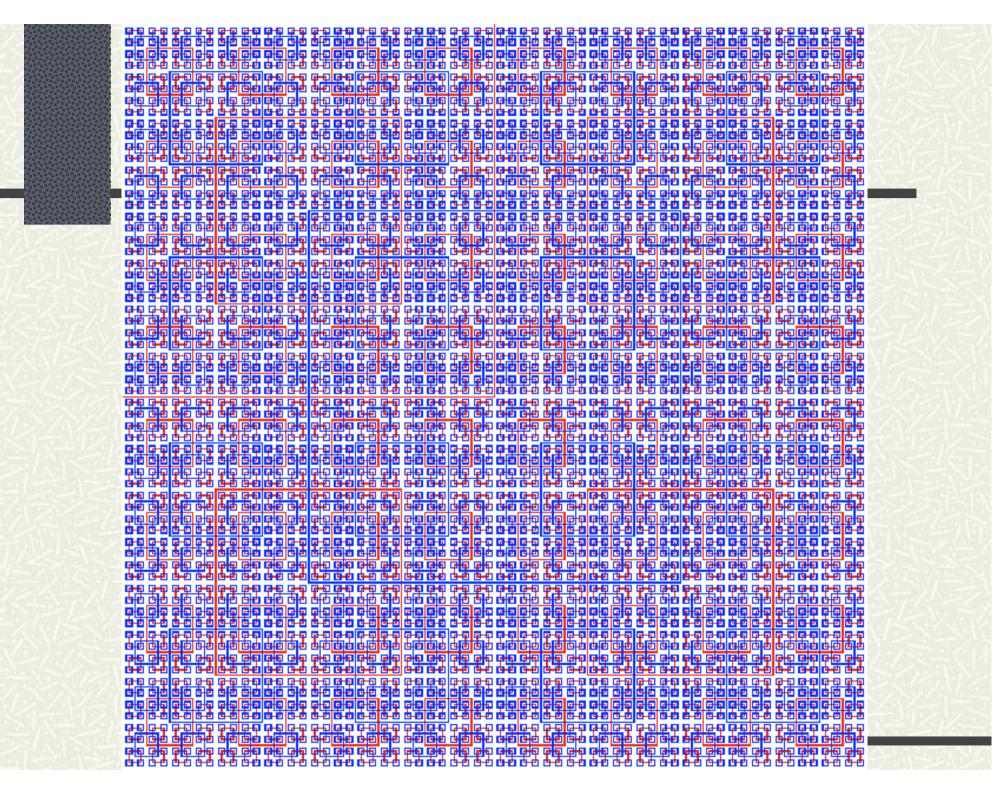
 $\Gamma_n(c) = \Gamma(c)$

of potentially finite type if and only if it can be « enriched » into a configuration of finite type.

Finite types and tilability

■ A configuration is of potentially finite type if and only if it is enforced by a tiling.

Theorem: the carpet is of potentially finite type. Constructive proof (n=2)



Question of the day (bis)

Consider all tilings obtained with a considered palette. How complex is the simplest one?

Theorems

- Undecidability of the « domino problem »... Applications in logics. (Berger 1966, Robinson 1971, Gurevich and Koriakov 1972)
- There exists a palette that produces only non-recursive tilings (Hanf and Myers 1974) Cannot be improved (Albert Muchnik)
- Complexity bound: Any palette can form at least a tiling in which squares of size *n* contain at most O(*n*) bits of information. (BD, Leonid Levin and Alexander Shen 2001)
- There exists a palette s.t. for all tiling, any square of size *n* contains about *n* bits of information. (same paper long version in preparation ready November 2067) Checks that the infinite sequence is complex
- **±** Extensions to configurations that tolerate tiling errors?

Complex tilings constructed

Complexity lemma

■ An infinite sequence x is uniformly c-random if and only if there exists N such that for all k > N for all $i \quad K(x_i...x_{i+k}) > ck$

le true ei

- **\ddagger** Lemma: For all c < 1 there exists a uniformly *c*-random sequence
- works for bi-infinite sequences no arbitrary large subsequences of 0's