Kolmogorov complexity of 2D sequences

Bruno Durand
Laboratoire d'Informatique Fondamentale de Marseille

Kolmogorov complexity

\# Goal: to measure the complexity
of an individual object
\# (Shannon) theory of information: measures the complexity of a random variable
\# A theory of optimal compression
"the size of the smallest program that generates the object"

Examples

\# $\mathrm{K}(n)<\log (n)+\mathrm{c}$
\# $\mathrm{K}\left(2^{n}+17\right)<\log (n)+\mathrm{c}$
\# $\mathrm{K}\left(\mathrm{x}^{y}\right)<\log (x)+\log (y)+\mathrm{c}$
\# $\mathrm{K}\left(\mathrm{x}^{y} \mid y\right)<\log (x)+\mathrm{c}$
\# Strings with low complexity are rare

Two theorems

\# The set of prime numbers is infinite
\# If $\mathrm{K}\left(x_{0}, x_{1}, \ldots x_{n} \mid n\right)<\mathrm{c}$, then x_{i} is computable

Exemple of 2D infinite objects

A finitary drawing

This infinite object is＂simple＂

$n \mathrm{x} n$ squares

ゆ田	
ロロー	
田	
495	
ㅁㅁ）	
ロロロ	

Complex infinite objects

\# Flip a coin for each cell
\# No structure
\# Theorem (Levin Schnorr 1971):
random configurations have maximal complexity. The complexity of all their $n \times n-$ squares centered in $(0,0)$ is n^{2}.

Question of the day

What is the complexity induced by a finite set of local constraints?
Motivations: molecule arrangements, etc.
\# Hilbert's 18th problem
廿 Hilbert das Entscheidungsproblem

Tile sets

\# Wang tiles
Squares with colored borders
\# Tiles with arrows
Arrows and colors
\# Polygons -- rational coordinates
Correct arrangement
\checkmark No irrational coordinates (Penrose)

Wang tiles

\# Squares of unit size
\# Colored borders
\# No rotations
\# Finite number
\# Matching colors

Example - Wang tiles

Periodic tiling obtained

Tiles with arrows

\# Squares of unit size
\# Arrows on borders

\# Rotations allowed
\# Finite number
\# Arrows must match

Example - tiles with arrows

See something and...

imagine more

Polygons -- rational coordinates

\# Polygon on a grid
\# Polygon simple
\# No rotations
\# Finite number
\# Correct arrangement

And also...

Tiling of a region

\# The matching constraint must be ok inside the region
\# No constraint on the border
\# Examples:

- Tiling of a rectangle
- Tiling of a half-plane
- Tiling of the plane

Simulations

\# These models are equivalent for tilability of a region.
\# Some theory is needed here (skipped)

A more general model:

 Local constraints

 Local constraints}
\# Planar configurations of 0's and 1's
\# A configuration is a tiling
if and only if
a local and uniform constraint is
verified
Local : neighborhood
Uniform : same rule in each cell

Palettes

\# A local constraint is a palette if and only if it can tile the plane (L. Levin)

- Idem : Wang tiles

■ Idem : tiles with arrows

- Idem : polygons

« computation - geometry »

\# Decision problem : «domino problem»

- Input : a local constraint T
- Question : is T a palette ?
\# This problem is undecidable (Berger 1966)

Break translational symmetry

Nice configuration
(little cheating...)

Still nicer : a carpet !

How to build such carpets...

How to express that

\# Carpets can be produced by tilings
or
\# There exists a palette that produces carpets
or
\# In all tilings by a palette, carpets appear

Tilings enforced by a palette

A set of configurations that is
\# Shift invariant
\# Compact

What we hope to enforce

Let c be a configuration
\# The set of configurations that contain the same finite patterns than c
\# Id est :

$$
\Gamma(c)=\overline{\bigcup_{i, j \in \mathbb{Z}}\left\{\sigma_{h}^{i} \circ \sigma_{v}^{j}(c)\right\}}
$$

The carpet is enforceable

Possible proofs:

1. Give explicitly a palette that enforces it
2. Give a construction method for such a palette
3. Prove that such a palette exists

1. A palette that enforces carpets

More or less...

2. Construction method: self-similarity of carpets

\# Smallest squares are red and form a 2 steps grid
\# Squares of same size are vertically and horizontally aligned
\# In the center of a red square (resp. blue) lays a corner of a blue one (resp. red)
\# Squares of same color are disjoined

3. Existence proof

A configuration c is :
\# of finite type if and only if there exists n such that

$$
\Gamma_{n}(c)=\Gamma(c)
$$

\# of potentially finite type if and only if it can be « enriched » into a configuration of finite type.

Finite types and tilability

\# A configuration is of potentially finite type if and only if it is enforced by a tiling.
\# Theorem: the carpet is of potentially finite type. Constructive proof ($n=2$)

最家

 TH To

Question of the day (bis)

Consider all tilings obtained with a considered palette.
How complex is the simplest one?

Theorems

\# Undecidability of the «domino problem »... Applications in logics. (Berger 1966, Robinson 1971, Gurevich and Koriakov 1972)
\# There exists a palette that produces only non-recursive tilings (Hanf and Myers 1974) Cannot be improved (Albert Muchnik)
\# Complexity bound: Any palette can form at least a tiling in which squares of size n contain at most $\mathrm{O}(n)$ bits of information. (BD, Leonid Levin and Alexander Shen 2001)
\# There exists a palette s.t. for all tiling, any square of size n contains about n bits of information. (same paper - long version in preparation - ready November 2067) Checks that the infinite sequence is complex
\# Extensions to configurations that tolerate tiling errors?

Complex tilings constructed

\# Aperiodic tile sets
\# Arecursive tile sets $(x, y) \square \mathrm{T}(x, y)$
\# Complex tilings:
in all $n \times n$-squares there are n bits of a random sequence (optimal)

Complexity lemma

\# An infinite sequence x is uniformly c-random if and only if there exists N such that for all $k>N$ for all $i \mathrm{~K}\left(x_{i} \ldots x_{i+k}\right)>c k$
\# Lemma: For all $c<1$ there exists a uniformly c-random sequence
\# works for bi-infinite sequences - no arbitrary large subsequences of 0 's

