Computational models of biological
systems

oA
_vexY

Giancarlo Mauri Universita di Milano-Bicocca

Complexity in biology

Molecular level

— Regulatory gene networks
— Protein folding

Cellular level

— Cell physiology
Organism level

— Immune system

— Nervous system
Population level

— Population dynamics

— Ecological systems

17/12/02 WSCS Lyon

Does Neural Communication
Grow on Trees?

Analysis of interspike intervals
sequences to learn and generalize
correlations among neurons

The Goals

 To search for discriminating parameters between
neural substrates sottending different perceptive
states

 To develop analysis strategies applicable to
spontaneous neural activities

e To understand neural code

e To infer (thalamocortical) networks of neurons
from simultaneous record of their firing activity

 To study the neurophysiology of (cronic) pain

17/12/02 WSCS Lyon 4

State of the art

e Gerstein, Aertsen 1985: Crosscorrelograms to
study cooperative firing activity in simultaneously
recorded populations of neurons

e Knierim, McNaughton 2001: analysis of records of
hippocampal place-cells firing through embedding
in a vector space

* Victor, Purpura 2001: metric space based on edit
distance

17/12/02 Wl e .

State of the art

 Rieke et al. 1997; Borst, Theunissen 1999; Johnson
et al 2001: Information theoretical analysis of
neural coding

* Panzeri et al. 1999: study of the capacity of neural
channels

17/12/02 WSCS Lyon 6

The tools

 Longest Common Subsequence

 Lempel-Ziv complexity and LZ-Trees

* Tree Compression

17/12/02 WSCS Lyon

Encoding neuron’s activity

Time Diagram

Record

17/12/02 WSCS Lyon

Encoding neuron’s activity

Time discretization

Record J

1 2 3 4 5 6 7 &8 9 10 11 12

17/12/02 WSCS Lyon

Encoding neuron’s activity

Binary encoding

Record J

1 2 3 4 5 6 7 &8 9 10 11 12

0 1 0 1 o o0 O O 1 0 0 O

17/12/02 WSCS Lyon

Encoding neuron’s activity

Encoding through interspike intervals

Record

1 2 3 4 5 6 7 8 9 10 11 12
Spike Times Interspike Intervals

2 4 9 1 1 4 3

17/12/02 WSCS Lyon

Alphabets, words, languages

Alphabet

finite set 2 of elements called letters,characters or symbols

Examples
>2=1{0,1}
2={a,b,c,..V,z}
>=1{A,C,G, T}

2= {GLY, ALA, VAL, LEU}

17/12/02 WSCS Lyon 12

Alphabets, words, languages

Word, string or sequence over X

function w from {1,... ,n} to >

= Wewritew=a, a,..a wherea =w() €2
= n1s the length of the sequence, denoted by |w|
= X" denotes the set of words over =

EX: w=AATGCA lw|=6
Empty word ¢ €| =0

17/12/02 WSCS Lyon

13

Alphabets, words, languages

Concatenation of w and v,

word consisting of the characters from w, followed by the
characters from v

« ES: w=AATGCATAGGC
v= GGCTACT
w Vv =AATGCATAGGCGGCTACT

17/12/02 WSCS Lyon 14

17/12/02

Alphabets, words, languages

Prefix of w

string v such that w = vt for some t S

Suffix of w

string v such that w = tv for some t e>"

WSCS Lyon

15

Longest Common Subsequence

Let S, and S, be two sequences over Z.

S, is a subsequence of S, if it can be obtained from
S, by removing some of its symbols

GCGCAATCG
G C A T G

S, is subsequence of S,

17/12/02 WSCS Lyon 16

Longest Common Subsequence

Let § be a set of sequences.

S is a common subsequence of § if it is a
subsequence of every sequence in §

Problem (LCS):

Given a set 8§ of sequences, compute a longest
common subsequence Ics(S)

17/12/02 WSCS Lyon 17

17/12/02

Longest Common Subsequence,

an example
51 = szl ez3]ls|2]6|1]58]3
\ N /I
92 = sla41213]lalz2]s]1]28]:3
.
LCS (S1,52) = slalalela]ls]1]¢e]:z

WSCS Lyon

18

Longest Common Subsequence

Def: Given an alphabet 2 and sequences S,, S, € X%, Ics(S,,
S,) is a sequence W such that:

1) Vi, l1sis|[W-L,
Jj,j:1=j<j’=|S,,AkK:1=k<Kk’=<|S,|such
that:

WIi]= S, [j]= Sy[k],
and
Wlit+l]=§,[)°]= S,[K’];

2) —3IAW’ €3*: (1) and [W’| > [W|.

17/12/02 WSCS Lyon 19

LCS in sequence analysis

The Ics is able to:

 Measure the similarity among a set of sequences
through its length

e Exhibit the nature of the similarity through the
symbols it contains

Applications in:

e data compression

* syntactic pattern recognition
 file comparison

* bioinformatics

17/12/02 WSCS Lyon

20

Complexity of LCS

Many polynomial time algorithms for LCS on two
sequences

Maier 78: LCS among k sequences is NP-hard
Jiang, Li 95: nonapproximability results

Jiang, Li 95: Long Run, approximation algorithm
over a fixed alphabet

Bonizzoni, Della Vedova, Mauri 98:better
approximation ratio on the average

17/12/02 WSCS Lyon 21

LCS, Relaxed

Def: Given an alphabet X, 3CN, sequences S, S, € 2*,0 = 0,
LCSs(S¢, S,) is a sequence W such that:
1) Vi l<is<|W|-1,
dj,j:1<j<j’=<|S Ak Kk:1=<k<k’<|S,|such
that:

WIi] = S,[1] = S,[k] = &,
and
Wit1]=S,["] = S,[k’] &,
withO<e<9;
2) —3AWEE*: (1) and Y(My:, Sy, S;) > Y(My, Sy, Sy),
where:

17/12/02 WSCS Lyon 22

LCS, Relaxed

VS,, S,, WEX*,
Mw(Sys S)):={(, k) | 1sj=| S|, 1= k<| S,|, Ji: 1< i<|W] st:
WIi]=S,[j]= S,[k] = &, withO=<e=<0;
and
if1 =i=<|W[-1,
then 3j’: 1< j’<| S|, dk’: 1=k’<| S,| such that:
(WIi+1]= $,[71= Sylk'] = €) A (°>) A (k>K),
withO<e=<9;}
and where: y(M, S, S,):=_; \y emc0st(S[jl, SIk]);
and cost(a, b):=1-|a-b|, with a, b €X.

17/12/02 WSCS Lyon

23

LCS (Relaxed), an example

Si:

5 2 2 9 3 8 2 7 1 & 3
5 1 2 6 8 2 6 1 8 3

S,:

LCS(S,.S,):

Lempel-Ziv complexity

L. & Z. propose as a complexity measure of a sequence the
minimum number of steps needed to produce it from its
prefixes using copy and paste operations

L. & Z. give an algorithm to compute the above measure

 The complexity notion defined by L. & Z. is compatible
with the algorithmic complexity theory (Kolmogorov,
Chaitin)

17/12/02 WSCS Lyon 25

Lempel-Ziv Algorithm
INPUT: SE=*; OUTPUT: w={Q €2* | i, j: S[i:j]=Q};

W = ¢;
w:=wU {e};
curr :=1;
while curr < [S| do
begin
S’ := S[curr:n] s.t. S’ € w and S’°S[n+1] & w;
w:=w U {S°°S[n+1] };
curr := n+2;

end

NOTE: S[i:j]= ¢ for j<i

17/12/02 WSCS Lyon

26

Lempel-Ziv -Trees

 The vocabulary w obtained can be organized in a
hierarchical (tree) structure through the prefix relation:

prefix := { (u, v) | u, vEw and 3i: u=v[1:i] };

 Every word in w (except €) can be obtained by adding a
single symbol to another word in w; hence, it can be
encoded through a pointer to its maximal prefix, plus the
last symbol

e LZCompl(S) :=|w|/|[S]

17/12/02 WSCS Lyon

27

Lempel-Ziv-Trees, an example

S = 5¢52+325]+31+511-

™~
- T >mI >
/m

17/12/02 WSCS Lyon

28

Lempel-Ziv-Trees, meaning

* Acquisition of knowledge about the regularity of
occurrence of symbol patterns in the sequence

* Structuring of knowledge so as to give a
representation of the sequence shortest than the
list of its symbols.

17/12/02 WSCS Lyon 29

Tree Compression, meaning

Reduction of redundancy in the tree structure

Minimization of hierarchical knowledge representations

Abstraction and generalization of the knowledge
empirically acquired

17/12/02 WSCS Lyon 31

Edit Distance between trees

Let T be a rooted labeled tree over a given alphabet X :
T=<V,E,r,lab: V=2 >

and let have the following operations on it :

 Insertion of an element: e—a, a&x;

« Deletion of an element: a—¢, a&x;

. Substitution of the label of an element: a—b, a, b €X;

17/12/02 WSCS Lyon

32

Edit Distance between trees

EditOps := {a—=b |a, b E 22U {e} }\{e—=¢};
Given the (metric) cost function :

v: EditOps — R™;

We define the cost of a sequence Sopc EditOps™ as
Y(SOp) - Zi=1,..,|Sop| Y(SOp[l]).

17/12/02 WSCS Lyon 33

Edit Distance between trees

Deft: Given two labeled trees T e T’, the edit distance
between them is defined by:

Edist(T, T”) =
min SopEEditOps* {Y(SOp) | 1= SOp(T) }

17/12/02 WSCS Lyon 34

Tree Compression, Algorithm

proc TreeCompr(tot ER, < &T, &Sop >) :

if(Vy=6)i
if (Edist(Tdx(ry), Tsx(r;)) < threshold) {
Prune(Tdx(r;));
TreeCompr(tot, < Tdx, SOpoSOPEdist(de(rT), Tsx(T)) ~);
} else {
TreeCompr(tot, < Tdx, Sop >);
TreeCompr(tot, < Tsx, Sop >);

}

17/12/02 WSCS Lyon

35

Tree Complexity

Def: given a tree T, let T’ and SopEEditOps the

results of the compression of T through
TreeCompr; the Tree Complexity of T is:

TC(T) =([T’[/|T])
+a-y(Sop)

where0<=soa =<1

17/12/02 WSCS Lyon

36

Tree Complexity

Teorema: The computation of the tree complexity ofa
tree T based on an Edit Distance Structure
Respecting has time complexity :

O(D*[T}?),
where D is the maximum degree of nodes in T.

17/12/02 WSCS Lyon 37

Application

Analysis of sequences of Interspike Intervals from
simultaneous recordings of talamic and cortical
cells populations.

Motivation: key role of talamocortical areas in the
elaboration of somatosensorial stimuli.

Goal: to discover rythmic correlations among cells
activities.

17/12/02 WSCS Lyon 38

NORM:

CClI:

17/12/02

Application, LCS

LCS-Corteccia LCS-Talaro LCS-TalCor

LCS-TalCar

WSCS Lyon

39

Application, LZ-Complexity

NORM: Ziv-Corteceia Ziv-Talano Ziv-TalCor

CCI : Ziv-Carteccia Ziv-Talamao Ziv-TalCar

WSCS Lyon

17/12/02

NORM:

CClI:

17/12/02

Applicazione, CplArb

Ca-Corteccia Ca-Talarmo Ca-TalCor

WSCS Lyon

41

Application, conclusions

The three kinds of di analysis help us to
enlightening different aspects of the process we are
observing:

* LCS Omogeneity
e Ziv-Tree Monotonicity

* Tree compression Fault Tolerance

17/12/02 WSCS Lyon 42

