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Two examples of optimization problems:

Traveling salesman Graph coloring

N cities
+ distances
between cities

Tour =

visit of every city
once and return to
initial city

Shortest tour?

European
union

non planar
graphs?



Relationship with statistical physics 1. Equilibrium

O minimum of a cost function = ground state of a classical Hamiltonian
(quasi-solutions = excited states ...)

O distribution of instances = quenched disorder in interactions

Q list of problems:
traveling salesman (non Euclidean)
graph partitioning
optimal matching
neural networks

O extremal distribution of correlated variables? Replicas ...

Example . Edwards-Anderson model on square lattice:

2N correlated energy levels!

N spins S, _ A
2 ZS\?;ZZd(l)m couplings J H[J’ S] T £ JU 5 Sj low temperature :
PHE L) distribution of minimum,

quasi-minima ...



Relationship with statistical physics 11, Dynamics

O Algorithm = sequence of computation rules © dynamical evolution of the instance

Example : 61 ¢
sorting 1’ 2’

O Analysis = calculation of the running time

Nb. of comparisons to find min of k numbers = k-1
Nb. of comparisons = (N-1)+(N-2)+...+1 = N(N-1)/2

O Different classes of optimization algorithms:

Q local search
similarity with physical dynamics (Monte Carlo, simulated annealing, ... cf. vitreous transition)
incomplete (cannot prove the absence of solution)

Q global search

no physical origin (designed by computer scientists to be complete)
non Markovian (memory effects), non local (jumps in phase space)



What is the Satisfiability problem?

CAN'T GET NO SATISEACTION

Brian Hayes

ou are chiel of protocol for the embassy

I ball. The crown prince instructs you ei-
ther to invite Peru or to exclude Clatar.

The gueen asks you to invite either Qlatar or Ro-
mania or both. The king, in a spiteful mood,

wants to snub either Bomania or Peru ar both. Is
there a guest list that will satisfy the whims of

the entire roval family?

This contrived little puzzle is an instance of a
problemn that lies near the root of thearetical com-
puter science. It is called the satisfiability problem,
or SAT, and it was the first mermber of the notorious
class known as NP-complete problems. These are
compuitational tasks that seermn intrinsically hard,
but after 25 years of effort no one has yet proved
that they are necessarily difficult. It remains possi-
ble (though unlikely) that we are simply attacking
themn by clumsy methods, and if we could dream
up a clever algorithim they would all turmn out to be
easy. Settling this guestion is the most conspicuous
open challenge in the theory of computation.

SAT also has practical importance. In artificial
intelligence various methods of logical deduction
and theorem-proving are related to SAT. And
similar issues arise in computer software for

one phase almost all the propositions can be sat-
isfied, but in another phase almost none can. The
cases that are hardest to resolve lie near the tran-
sition between these regimes.

The connection between SAT and the physics
of phase transitions strikes me as a surprising
one—a classic who'd-have-thunk-it result. We
are accustomed o using mathemaltics as a tool
for interpreting the physical world, but not the
other way around. And yet the phase-transition
model of SAT works so well that it cannot be a
mere metaphor, much less a coincidence.

F and NP
The problemn of the embassy ball is small enough
to be solved by even the most plodding of meth-

ods. The problem is represented by the formula:

(p OR ~g) AND {g OR 1] AND (~r OR ~pj

Here p, g and r are Boolean variables, whose only
possible values are triwe or Glse The ~ symbol indi-
cates negation, so that ~pis read "not p.” The logi-
cal o operation is defined so that {(p or g has the
value true ifl either por g is troe, whereas (p anD g
evaluates to true only if both p and g are troe
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p = true if
Peru ambassador
1S invited,

false otherwise



Satisfiability of (random) Boolean constraints

(w or NOTXx or V)

and 3-SAT NP-complete
d>3
(NOTw or x or z) ‘) (and >3)
and ).SAT P

(x or y or NOTz)

nb. of clauses

o = :
nb. of variables



fraction of satisfiable instances P{c)
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Rigorous results .

a. > 3.26
a. < 4.51

* transition region width — 0

10

o-~4.3

phase transition!



Dictionary

K-SAT

statistical physics

= +7, 7

% = True |, False

BEoolean wariable

Clauseas

Mumber of clauses violated by =
logical configuration

some examples:

25AT ®oor oy
[#ar 1.T] and[; or z)
35AT :x:n:\r].r_n:rz

Minimal number of violated clauses

satisfiable

The problem i=s

not satisfiable

King spin 5
X

Couplings and Helds acting ok spins

Energy E ofthe spins configuration

E=Tits,)id+s,)

4
Titrs Hi+sy) + 4It1+s,;!tf-s,.r}

E
4

E=1ds, )t+s, NI ;)

-]

Ground state anergy

Ground state anergy =10

Ground state energy =0
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Multi-spins interactions (K-SAT = K-body)
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