Combinatorial optimization, analysis of algorithms … … and statistical physics

Rémi Monasson

Univ. Louis Pasteur, Strasbourg

Collaborators :

Giulio Biroli
Simona Cocco
Scott Kirkpatrick
Bart Selman
Martin Weigt
Riccardo Zecchina

Rutgers + Saclay
Chicago + Strasbourg
IBM + H.U. Jerusalem
Cornell
Göttingen
ICTP, Trieste

Lyon, December 02
Two examples of optimization problems:

**Traveling salesman**
- **N cities** + distances between cities
- **Tour** = visit of every city once and return to initial city
- Shortest tour?

**Graph coloring**
- European union
- Non planar graphs?
Relationship with statistical physics  I. Equilibrium

- minimum of a cost function = ground state of a classical Hamiltonian
  \(\text{\it quasi-solutions} = \text{\it excited states} \ldots\)

- distribution of \textit{instances} = quenched disorder in interactions

- list of problems:
  - traveling salesman (non Euclidean)
  - graph partitioning
  - optimal matching
  - neural networks

- extremal distribution of correlated variables?  \text{\it Replicas} \ldots

\textit{Example:} Edwards-Anderson model on square lattice:

\[ H[J,S] = - \sum_{\langle i, j \rangle} J_{ij} S_i S_j \]

\(2^N\) correlated energy levels!

low temperature:

\[\text{distribution of minimum, quasi-minima} \ldots\]
Algorithm = sequence of computation rules \( \Rightarrow \) dynamical evolution of the instance

**Example**: 

\[
L = 6, 1, 18, 7, 10, 2, 3, 15 \\
1; 6, 18, 7, 10, 2, 3, 15 \\
1, 2; 6, 18, 7, 10, 3, 15 \\
\ldots.
\]

Analysis = calculation of the running time

*Nb. of comparisons to find min of \( k \) numbers = \( k-1 \)
*Nb. of comparisons = \( (N-1)+(N-2)+\ldots+1 = N(N-1)/2 \)

Different classes of optimization algorithms:

- **local search**
  
  similarity with physical dynamics (Monte Carlo, simulated annealing, … cf. vitreous transition)
  
  incomplete (cannot prove the absence of solution)

- **global search**
  
  no physical origin (designed by computer scientists to be complete)
  
  non Markovian (memory effects), non local (jumps in phase space)
What is the Satisfiability problem?

{

CAN’T GET NO SATISFACTION

Brian Hayes

You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?

This contrived little puzzle is an instance of a problem that lies near the root of theoretical computer science. It is called the satisfiability problem, or SAT, and it was the first member of the notorious class known as NP-complete problems. These are computational tasks that seem intrinsically hard, but after 25 years of effort no one has yet proved that they are necessarily difficult. It remains possible (though unlikely) that we are simply attacking them by clumsy methods, and if we could dream up a clever algorithm they would all turn out to be easy. Settling this question is the most conspicuous open challenge in the theory of computation.

SAT also has practical importance. In artificial intelligence various methods of logical deduction and theorem-proving are related to SAT. And similar issues arise in computer software for

one phase almost all the propositions can be satisfied, but in another phase almost none can. The cases that are hardest to resolve lie near the transition between these regimes.

The connection between SAT and the physics of phase transitions strikes me as a surprising one—a classic who’d-have-thunk-it result. We are accustomed to using mathematics as a tool for interpreting the physical world, but not the other way around. And yet the phase-transition model of SAT works so well that it cannot be a mere metaphor, much less a coincidence.

P and NP

The problem of the embassy ball is small enough to be solved by even the most plodding of methods. The problem is represented by the formula:

\[(p \lor \neg q) \land (q \lor r) \land (\neg r \lor \neg p)\]

Here p, q and r are Boolean variables, whose only possible values are true or false. The ~ symbol indicates negation, so that ~p is read “not p.” The logical OR operation is defined so that (p \lor q) has the value true if either p or q is true, whereas (p AND q) evaluates to true only if both p and q are true.

p = true if Peru ambassador is invited, false otherwise


http://www.amsci.org
Satisfiability of (random) Boolean constraints

\[(w \text{ or } \neg x \text{ or } y)\]
and
\[(\neg w \text{ or } x \text{ or } z)\]
and
\[(x \text{ or } y \text{ or } \neg z)\]

\(\alpha = \frac{\text{nb. of clauses}}{\text{nb. of variables}}\)

3-SAT \quad NP-complete
(and \(>3\))

2-SAT \quad P

Mitchell, Selman, Levesque ‘92
Crawford, Auton ‘93
Gent, Walsh ‘94

Chao, Franco ‘86, ‘90
Chvatal, Szmeredi ‘88
The Phase transition of 3-SAT

\[ \alpha_C \approx 4.3 \]

phase transition!

Rigorous results

- \( \alpha_C > 3.26 \)
- \( \alpha_C < 4.51 \)
- transition region width \( \rightarrow 0 \)
### Dictionary

<table>
<thead>
<tr>
<th>K-SAT</th>
<th>Statistical Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Boolean variable</strong> $k = \text{True}, \text{False}$</td>
<td>Ising spin $s = +1, -1$</td>
</tr>
<tr>
<td><strong>Clauses</strong></td>
<td>Couplings and fields acting on spins</td>
</tr>
<tr>
<td><strong>Number of clauses violated by a logical configuration</strong></td>
<td><strong>Energy $E$ of the spins configuration</strong></td>
</tr>
<tr>
<td>some examples:</td>
<td>$E = \frac{1}{4}(s_x + s_y)$</td>
</tr>
<tr>
<td>2 SAT $x \lor \overline{y}$</td>
<td>$E = \frac{1}{4}(s_x + s_y) + \frac{1}{4}(s_x + s_y)(s_x s_y)$</td>
</tr>
<tr>
<td>$(x \lor \overline{y}) \land (x \lor \overline{z})$</td>
<td>$E = \frac{1}{8}(s_x + s_y)(s_x s_y)(s_x s_z)$</td>
</tr>
<tr>
<td>3 SAT $x \lor y \lor z$</td>
<td><strong>Ground state energy</strong></td>
</tr>
<tr>
<td><strong>Minimal number of violated clauses</strong></td>
<td>$\text{Ground state energy} = 0$</td>
</tr>
<tr>
<td>The problem is</td>
<td>$\text{Ground state energy} &gt; 0$</td>
</tr>
</tbody>
</table>

**SAT, a disordered spin system (at zero temperature)**
Spin glasses on random graphs

* Ball problem

\[
(p \lor \neg q) \land (q \lor r) \land (\neg r \lor \neg p)
\]

\[
E = \frac{1}{4}(-S_p S_q + S_q S_r + S_r S_p + 3)
\]

|J| = \(N^{-1/2}\)

no geometry

|J| = 1

infinite D geometry

|J| = 1

finite D geometry

* Multi-spins interactions (K-SAT = K-body)