Typical resolution complexity of 3-SAT

easy-hard-less hard pattern

- linear if $\alpha \ll \alpha_{\rm C}$
- exponential if $\alpha > \alpha_C$
- "time" < 1.51^N
- **Rigorous results**

How to solve 3-SAT?
"Branch &
bound"
search
algorithm

Davis, Putnam '60

step	clauses	search tree
0	$ \begin{array}{c} \mathbf{w} \lor \overline{\mathbf{x}} \lor \mathbf{y} \\ \overline{\mathbf{w}} \lor \overline{\mathbf{x}} \lor \mathbf{z} \\ \overline{\mathbf{w}} \lor \overline{\mathbf{x}} \lor \overline{\mathbf{y}} \\ \overline{\mathbf{w}} \lor \overline{\mathbf{x}} \lor \overline{\mathbf{y}} \\ \overline{\mathbf{w}} \lor \overline{\mathbf{x}} \lor \mathbf{y} \\ \overline{\mathbf{x}} \lor \mathbf{y} \lor \overline{\mathbf{z}} \end{array} $	
1	split : w = T	_•
2	$ \begin{array}{c} x \lor z \\ \overline{x} \lor \overline{y} \\ \overline{x} \lor \overline{y} \\ x \lor y \\ x \lor y \lor \overline{z} \end{array} $	
3	split : $x = T$	_ * *
4	у У	
5	propagation : $y = F, y = T$ contradiction	c ···
6	backtracking to stage 1 : x = F	e C
7	$\frac{z}{z}$	
8	propagation : $z = T$, $y = T$ solution : $w = T$, $x = F$, $y = T$, $z = T$	c s

Backtrack algorithm, search tree and heuristic

- A satisfiable instance (easy)
- **B** unsatisfiable instance (hard)
- **C** satisfiable instance (hard)
- Unit-Clause (UC): pick variable in 1-clause if any, or any unset variable
- Generalized unit-clause (GUC): pick variable in shortest clause
- Shortest Clause With Majority (SC1): pick most frequent variable in 3-clauses

Chao, Franco '86, '90

Trajectories and the 2+p-SAT problem

Monasson, Zecchina, Kirpatrick, Selman, Troyansky '99 Achlioptas, Kirousis, Kranakis, Krizanc '01

Satisfiable and easy instances $\alpha < 3.003$

Unsatisfiable, hard instances $\alpha > 4.3$

The search for solutions, a growth process

one branch: p(t), $\alpha(t)$ \longrightarrow many branches: $\omega(p, \alpha, t)$

$$\frac{\partial \omega}{\partial t} = \mathcal{H}\left[p, \alpha, \frac{\partial \omega}{\partial p}, \frac{\partial \omega}{\partial \alpha}, t\right]$$

Comparison to numerical experiments

$$Q = 2^{N\omega}$$

	Initial	Experiments		Theory
	Ratio α_0	$\log_2 Q$	$\log_2 B$	$\hat{\omega}$
unsat	20	0.0153 ± 0.0002	0.0151 ± 0.0001	0.0152
	15	0.0207 ± 0.0002	0.0206 ± 0.0001	0.0206
	10	0.0320 ± 0.0005	0.0317 ± 0.0002	0.0319
	7	0.0482 ± 0.0005	0.0477 ± 0.0005	0.0477
sat	4.3	0.089 ± 0.001	0.0895 ± 0.001	0.0875
	3.5	0.034 ± 0.003		0.035
	G	0.040 ± 0.002	0.041 ± 0.003	0.044
		(nodes)	(leaves)	

$$\omega = \frac{3 + \sqrt{5}}{6 \ln 2} \left[\ln \left(\frac{1 + \sqrt{5}}{2} \right) \right]^2 \frac{1}{\alpha} \approx \frac{0.292}{\alpha}$$

Beame, Karp, Pitassi, Saks '98

Satisfiable, hard instances $3.003 < \alpha < 4.3$ *(which could made be easier?)*

The complexity of 3-SAT solving is strongly affected by the phase transitions of 2+p-SAT !

The polynomial/exponentiel crossover

T is largely heuristic independent (and close to tricritical point!)

Application *I. Search heuristic and backbone*

Heuristic to assign variables :

Pick up variable that eliminates the largest number of clauses.

Dubois, Dequen '00

Choose a variable likely to be in the backbone

Application II. Fluctuations and restarts

Resolution through systematic stop-and-restart of the search:

- stop algorithm after time N;
- restart until a solution is found.

Time of resolution :

 $2^{0.035}$ N

Cocco, R.M. Montanari, Zecchina '01

? 0.011 N

Conclusions

• Computational problems can be studied with statistical physics concepts and techniques

(replica method, phase diagram, dynamical trajectories, growth processes,)

• General framework for the probabilistic analysis of hard decision or optimization problems for both static and dynamic properties *(Traveling Salesman Problem, Vertex Cover, Graph Coloring, ...)*

• Open Issues:

- robustness to instance perturbation
 - (replica symmetry breaking vs. droplet theory)
- study of approximation algorithm
- question of probabilistic analysis (in physics too?)
 - * more realistic distributions
 - * analysis of algorithm for a given instance (thermal vs. quenched disorder)