Typical resolution complexity of 3-SAT

easy-hard-less hard pattern

- linear if $\alpha \ll \alpha_{C}$

Rigorous results

- exponential if $\alpha>\alpha_{C}$
- "time" $<1.51^{\mathrm{N}}$

How to solve 3-SAT?

"Branch \& bound" search algorithm

$$
\begin{aligned}
& w \vee \bar{x} \vee y \\
& \bar{w} \vee x \vee \frac{z}{w} \vee \frac{y}{x} \\
& \bar{w} \vee \frac{x}{x} \vee \frac{y}{x} \\
& x \vee y \vee \frac{1}{2}
\end{aligned}
$$

1
split: $\quad w=T$ $\frac{x}{x} \vee \frac{z}{y}$
$\frac{x}{x} \vee \frac{y}{z}$
split :

$$
\mathrm{x}=\mathrm{T}
$$

$$
\overline{\mathrm{y}}
$$

$$
y
$$

propagation: $\quad y=F, y=T$ contradiction
backtracking to stage 1 : $x=F$

$$
y \vee \frac{z}{z}
$$

propagation: $\quad \mathrm{z}=\mathrm{T}, \mathrm{y}=\mathrm{T}$
solution : $w=\mathbf{T}, x=\mathbf{F}, \mathrm{y}=\mathrm{T}, \mathrm{z}=\mathbf{T}$

Backtrack algorithm, search tree and heuristic

Davis-Putnam algorithm $=$ heuristic + backtracking

search tree

A satisfiable instance (easy)
B unsatisfiable instance (hard)
C satisfiable instance (hard)

- Unit-Clause (UC): pick variable in 1-clause if any, or any unset variable
- Generalized unit-clause (GUC): pick variable in shortest clause
- Shortest Clause With Majority (SC_{1}): pick most frequent variable in 3-clauses

Trajectories and the $2+\mathrm{p}$-SAT problem

clauses with 3 var.
α
"dynamics" of
clauses with 2 or 3 var.

$$
\alpha, p
$$

phase diagram of the $2+p-S A T$ model

Monasson, Zecchina, Kirpatrick, Selman, Troyansky '99
Achlioptas, Kirousis, Kranakis, Krizanc '01

Satisfiable and easy instances $\alpha<3.003$

Unsatisfiable, hard instances $\alpha>4.3$

DPLL induces a non Markovian evolution of the search tree

Imaginary, and parallel building up of the search tree

The search for solutions, a growth process

one branch: $p(t), \alpha(t) \longrightarrow$ many branches: $\omega(p, \alpha, t)$

Comparison to numerical experiments

$$
\mathrm{Q}=2^{\mathrm{N} \omega}
$$

	Initial	Experiments		Theory
	Ratio α_{0}	$\log _{2} Q$	$\log _{2} B$	$\hat{\omega}$
	20	0.0153 ± 0.0002	0.0151 ± 0.0001	0.0152
unsat	15	0.0207 ± 0.0002	0.0206 ± 0.0001	0.0206
	10	0.0320 ± 0.0005	0.0317 ± 0.0002	0.0319
	7	0.0482 ± 0.0005	0.0477 ± 0.0005	0.0477
	4.3	0.089 ± 0.001	0.0895 ± 0.001	0.0875
sat	3.5	0.034 ± 0.003		0.035
	G	0.040 ± 0.002	0.041 ± 0.003	0.044
		(nodes)	(leaves)	

$$
\omega=\frac{3+\sqrt{5}}{6 \ln 2}\left[\ln \left(\frac{1+\sqrt{5}}{2}\right)\right]^{2} \frac{1}{\alpha} \approx \frac{0.292}{\alpha}
$$

Satisfiable, hard instances $3.003<\alpha<4.3$

(which could made be easier?)

The complexity of 3-SAT solving is strongly affected by the phase transitions of $2+p-S A T$!

The polynomial/exponentiel crossover

$\begin{array}{lll}U C & : & 2.667 \\ \\ G U C & : & 3.003\end{array} \quad$ but

"dynamical" transition (depends on the heuristic)

$$
\mathrm{p}_{\mathrm{T}}=\frac{2}{5}, \alpha_{\mathrm{T}}=\frac{5}{3}
$$

T is largely heuristic independent (and close to tricritical point!)

Application
 I. Search heuristic and backbone

Heuristic to assign variables :
Pick up variable that eliminates the largest number of clauses.

Dubois,
 Dequen '00

Choose a variable likely to be in the backbone

Application II. Fluctuations and restarts

Histograms of solving times
$\alpha=3.5$

Exponential regime Complexity $=2^{0.035 \mathrm{~N}}$

Resolution through systematic stop-and-restart of the search:

- stop algorithm after time N ;
- restart until a solution is found.

Conclusions

- Computational problems can be studied with statistical physics concepts and techniques
(replica method, phase diagram, dynamical trajectories, growth processes,)
- General framework for the probabilistic analysis of hard decision or optimization problems for both static and dynamic properties (Traveling Salesman Problem, Vertex Cover, Graph Coloring, ...)
- Open Issues:
- robustness to instance perturbation
(replica symmetry breaking vs. droplet theory)
- study of approximation algorithm
- question of probabilistic analysis (in physics too?)
* more realistic distributions
* analysis of algorithm for a given instance (thermal vs. quenched disorder)

