Generating functions in algebraic complexity A criterion for VNP-completeness

N. de Rugy-Altherre

January 13, 2015

A graph property is a set of graphs closed by isomorphism.

Definition

Let R be a graph, \mathcal{P} a graph property and $\omega:V_E\to\mathcal{V}\cup\mathbb{Q}$ a weight function. The *generating function* on these parameters is:

$$\mathrm{GF}_{\omega}(\mathcal{P},R) = \sum_{\substack{E \subset E_R \ (V_E,E) \in \mathcal{P}}} \prod_{e \in E} \omega(e)$$

$$\mathrm{FG}_{\mathcal{V}^d}(\mathcal{P},R) = \sum_{\substack{E \subset E_R \\ (V_E,E) \in \mathcal{P}}} \prod_{\langle i,j \rangle \in E} x_{\langle i,j \rangle} \text{ and } \mathrm{FG}_{\mathcal{V}}(\mathcal{P},R) = \sum_{\substack{E \subset E_R \\ (V_E,E) \in \mathcal{P}}} \prod_{(i,j) \in E} x_{(i,j)}$$

Let \mathcal{PM} the property of being a perfect matching: every connected component has exactly two vertices. Let $k_{n,n}$ the complete balanced bipartite graph. The

$$\operatorname{FG}_{\mathcal{V}^d}(K_{n,n},\mathcal{PM})=\operatorname{\mathsf{per}}^*$$

Where

$$\operatorname{\mathsf{per}}_n^* = \sum_{\substack{\pi: [n] \to [n] \\ \operatorname{\mathsf{partial bijection}}} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} x_{i,\pi(i)}$$

A clique C in a graph R is a subset of its vertices such that its induced subgraph is complete. Let \mathcal{C} the property of being a clique (i.e. of being complete). Then the family,

$$(\operatorname{FG}_{\mathcal{V}}(\mathcal{C},K_n))_{n\in\mathbb{N}}$$

is VNP-complete

A complete bipartite graph G is a graph which vertices can be split into two subsets $V_1 \cup V_2 = E_G$ and which edges are $V_1 \times V_2$. Let BIPCOMP the property of being a bipartite complete graph. Then the family

$$(GF(BipComp, K_n))_{n\in\mathbb{N}}$$

is VNP-complete.

Proposition (Valiant criterion)

If \mathcal{P} is a graph property such that the test of knowing is a graph G is in \mathcal{P} is in P/poly, then the family of generating functions $(GF(\mathcal{P}, K_n))_{n \in \mathbb{N}}$ is in VNP.

conjecture (Lyaudet)

If the property $\mathcal P$ can be written in a logic $\mathcal L$, then the generating function of $\mathcal P$ is VNP-complete if and only if $\mathcal P$ satisfies a condition $\mathcal C$.

A property \mathcal{P} is *homomorphisable* is there is a graph H such that for any graph G,

 $G \in \mathcal{P}$ if and only if G is homomorphic to H

Theorem

If \mathcal{P} is a property homomorphisable, then the family $(\mathrm{FG}_{\mathcal{V}}(\mathcal{P},K_n))_{n\in\mathbb{N}}$ is VNP -complete.

Corollary

- Let Col_k the property of being k-colourable. Then the family $(FG_{\mathcal{V}}(Col_n, K_n))_{n \in \mathbb{N}}$ is VNP-complete for any k > 1.
- Let Bip the property of being a bipartite graph, then the family $(FG_{\mathcal{V}}(Bip, K_n))_{n \in \mathbb{N}}$ is VNP-complete for any k > 1.

Definition

Let $\ensuremath{\mathcal{P}}$ be a graph property. The $\ensuremath{\textit{enumarating function}}$ associate to this property is

$$\mathrm{EF}(\mathcal{P},n) = \sum_{G \in \mathcal{P}, |G| = n} \prod_{e \in E_G} x_e$$

Let \mathcal{PM} the property of being a perfect matching. Then $\mathrm{EF}(\mathcal{PM},n)=\mathrm{per}_n.$

$$G=(V_G,E_G)$$

 (V_E, E) is a perfect matching and is in $GF(\mathcal{PM}, K_n)$

 (V_G, E) is not a perfect matching and is not in $EF(\mathcal{PM}, n)$

A *cut* in a graph G is a partition of its vertices $A \cup B = V_G$. A graph is a cut if its vertices can be split into a partition $A \cup B = V_G$ and its directed edges are $A \times B$.

Proposition

Let Cut the property of being a cut. Then the family

$$\mathrm{EF}(\mathrm{Cut},n))_{n\in\mathbb{N}}$$

is VNP-complete.

Theorem (Bürgisser)

Over \mathbb{F}_2 , the family $(\mathrm{EF}(\mathrm{Cut}, n))_{n \in \mathbb{N}})_{n \in \mathbb{N}}$ is neither in VP nor VNP -complete, provided that $\mathrm{Mod}_2\mathrm{NP} \not\subseteq P/\mathrm{Poly}$.

Theorem (Engels 2014)

For a graph H and a class of graphs \mathcal{E} , let $\mathcal{P}(H,\mathcal{E})$ the property of being homomorphic to H and in \mathcal{E} . Then for \mathcal{E} the set of cycles, of cliques, of trees, of outerplanar graphs, of planar graphs or of graph of genus k, the family

$$(\mathrm{GF}(\mathcal{P}(H,\mathcal{E}),K_n)_{n\in\mathbb{N}}$$

is VNP-complete in most of the cases.

Definition

Let $\mathcal C$ be a class of circuit, $(f_n)_{n\in\mathbb N}$ and $(g_n)_{n\in\mathbb N}$ two families of polynomials. We say that $(f_n)_{n\in\mathbb N}$ is a $\mathcal C$ of $(g_n)_{n\in\mathbb N}$ if there exists a family of circuit $\mathcal C_n$ of polynomial size such that:

- C_n is in C
- C_n use oracle gates g_n
- C_n computes f_n .

For examples, classical *c*-reductions are VP-reductions. Projections are VP_{depth2} -reduction (the set of circuit of depth 2).

Merci!