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1 Summary of the proposal

Induced subgraphs play a central role in both structural and algorithmic
graph theory. A graph H is an induced subgraph of a graph G if one can
delete vertices of G to obtain H. This is the strongest notion of subgraph,
hence being H-free (that is not containing H as an induced subgraph) is
not a very restrictive requirement. Weaker notions of containment, like
for instance minors, are now well understood, and the next achievement in
Graph Theory should certainly be the understanding of forbidden induced
structures. We focus in this proposal on the following very general question:
Given a (possibly infinite) family ψ of graphs, what properties does a ψ-free
graph have?

This is the key question of many important and longstanding problems,
because many crucial graph classes are defined in terms of forbidden induced
subgraphs. This field is now quickly growing, and new techniques and tools
have been recently developed.

Our first goal is to establish bounds on some classical graph parameters
for ψ-free graphs, such as the clique number, the stability number and the
chromatic number. A second goal is to design efficient algorithms to rec-
ognize ψ-free graphs and to determine or approximate some parameters for
those graphs.

For this purpose, we plan to use and develop various proof techniques,
some of these being recently discovered, such as the structural description
of graph classes, the regularity lemma, graph limits, flag algebras, VC-
dimension, discharging method as well as computer-assisted proofs.
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and Petru Valicov.

In G-SCOP (Grenoble): Louis Esperet, Lætita Lemoine, Frédéric Maffray
and Matej Stehlik.

In I3S (Sophia Antipolis): Jean-Claude Bermond, David Coudert, Frédéric
Havet, Luc Hogie, Ana Karolinna Maia, Nicolas Nisse, Stéphane Pérennes
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2 Context

For more than a hundred years, the development of graph theory has been
inspired and guided by some important conjectures, the most prominent
one being the Four-Colour Conjecture. To attack these conjectures, graph
theorists have developed powerful new techniques. Some of them aim at
providing structural results on graphs; in other words, they are concerned
with establishing results that characterize various properties of graphs, and
use these theorems in the design of efficient algorithms and other applica-
tions. For example, one of the dramatic developments over the past thirty
years has been the creation of the theory of graph minors by Robertson and
Seymour. In a long series of deep papers, they revolutionized graph theory
by introducing original and incisive ways of viewing graph structures. This
theory was developed to tackle a famous conjecture of Wagner, and it did
solve it. In the process, it has led to the design of polynomial-time algo-
rithms for solving a variety of hitherto intractable problems, including that,
called Linkage, of finding a collection of pairwise-disjoint paths between pre-
scribed pairs of vertices. This theory gives in particular powerful tools to
design algorithms for families of graphs defined in terms of excluded minors.

However, it turns out that many interesting graph classes are not defined
in terms of forbidden graph minors but rather in terms of forbidden induced
subgraphs.

This is for example the case of line graphs (characterized by Beineke
[Bei66] and Bermond and Meyer [BeMe73] for multigraphs) or more gen-
erally claw-free graphs. But the best-known example of a class defined by
excluding induced subgraphs is certainly that of perfect graphs. In 1961,
Berge [Ber61] conjectured that a graph is perfect if and only if no induced
subgraph is a cycle of odd length at least 5 or the complement of such a
cycle. Today such graphs are called Berge graphs. This conjecture, known
as the Strong Perfect Graph Conjecture, was proved after four decades by
Chudnovsky et al. [CRST06]. All these results lead to the following very
general meta-question.

Given a (possibly infinite) family ψ of graphs, what properties does a
ψ-free graph have?

2.1 Objectifs et caractère ambitieux et novateur du projet /
Objectives, originality and novelty of the project

To understand the structure of ψ-free graphs, the best approach is to study
how classical graph parameters are affected by forbidden induced structures.
In particular, the clique number, the stability number and the chromatic
number, which are mutually but loosely dependent, are expected to become
more dependent when a given induced subgraph is forbidden. Our first aim
is to establish bounds on these parameters. Let us first give some formal
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definitions. A clique in a graph is a set of pairwise adjacent vertices, and
a stable set is a set of pairwise non-adjacent vertices graph. The size of a
largest clique in G is the clique number ω(G); the size of a largest stable set
in G is the stability number α(G). A (proper) k-colouring of a graph G is a
mapping f from its vertex set V (G) into {1, 2, . . . , k} such that c(u) 6= c(v)
for every edge uv of G. Equivalently, a k-colouring may be seen as a partition
of the vertex set of G into k disjoint stable sets S1, . . . Sk, where each Si is the
set of vertices coloured i. The chromatic number χ(G) of G is the smallest
integer k such that G admits a k-colouring. Graph colouring is a central area
in graph theory and many important conjectures deal with this parameter
(See [JeTo95]). It follows immediately from the definition of the chromatic
number that |V (G)|/α(G) ≤ χ(G) and ω(G) ≤ χ(G). However, these two
inequalities can be very loose. The disjoint union of a clique of size k and
a stable set of size k is an example of a graph G with |V (G)|/α(G) ≤ 2
and χ(G) = k. There are many families of graphs with clique number 2
(triangle-free graphs) and arbitrarily large chromatic number; the first one
was given by Zykov [Zyk49]. The gap between the chromatic number and
the clique number of a graph G can be seen as a measure of the (structural)
complexity of a graph G. So, for some appropriate families ψ, we would like
to show that the chromatic number of every ψ-free graph is bounded by a
function of its clique number. The maximum size of a clique or a stable set
is also strongly affected by forbidding an induced subgraph (see the Erdős-
Hajnal conjecture). Furthermore, the separation of cliques and stable sets is
a key-question in communication complexity and combinatorial optimization
(extended formulations of polytopes). Our second aim is to design efficient
algorithms for ψ-free graphs. In the first place, recognizing graphs that are
ψ-free is a natural problem. In the second place, for each graph parameter,
we would like to design efficient algorithms to determine the exact value of
the parameter or to approximate it. For example, if we show that every
graph G of some class Γ satisfies χ(G) ≤ c ·ω(G) for some absolute constant
c, and if the proof can be turned into a polynomial-time algorithm that
finds a colouring with at most c · ω(G) colours, then we have obtained a
c-approximation algorithm for colouring graphs in Γ.

A particular attention will be devoted to directed graphs (digraphs).
Even though digraph theory has numerous important applications, for var-
ious reasons undirected graphs have been studied much more extensively
than directed graphs. One of the reasons is that undirected graphs form
in a sense a special class of directed graphs (symmetric digraphs), hence
problems that can be formulated for both directed and undirected graphs
are often easier for the latter. Another reason is that basic digraph param-
eters are much more complicated than their undirected counterparts. For
instance, even the notion of (out)degree is not well understood. Under-
standing how forbidden induced subgraphs affect degrees is a major open
area.
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Advances in discrete structures are generally driven by difficult conjec-
tures. For instance, the Four-Colour conjecture gave rise to the Discharging
Method, Wagner’s conjecture gave tree-decompositions and extremal graph
problems gave the Regularity Lemma. Basically, the persistence of a hard
problem generally indicates that some key tools are missing in the theory.
Discovering these new tools is the real challenge hidden behind the open
questions. Let us mention here some conjectures which have resisted inves-
tigations for decades.

A combinatorial algorithm for perfect graph colouring A graph G
is perfect if every induced subgraph H of G satisfies χ(H) = ω(H). Chud-
novsky et al. [CRST06] proved that perfect graphs are exactly the Berge
graphs (those where no induced subgraph is a cycle of odd length at least
5 or the complement of such a cycle), thereby confirming the Strong Per-
fect Graph Conjecture of Berge [Ber61]. One of the main reasons for which
perfect graphs have fascinated researchers is that they are central subjects
in both graph theory and linear programming. The relation lies in the fact
that the facets of the stable set polytope of a perfect graph G correspond to
the cliques of G [Chv75]. Together with the ellipsoid method, this provides
a polynomial-time algorithm for several hard optimization problems, such
as finding the chromatic number (which equals the clique number) of any
perfect graph [GLS88]. The crucial point that is still lacking is that despite
the characterization of perfect graphs [CRST06], no combinatorial (or even
purely LP) algorithm is known for colouring perfect graphs.

χ-bounded classes – Gyárfás’ conjecture on trees In perfect graphs,
the chromatic number is equal to the clique number for every induced sub-
graph, and this property ensures that these NP-hard parameters are easy
to compute for this class. Gyárfás [Gya87] proposed the following general-
ization of perfect graphs: a graph G is χ-bounded by a function f if every
induced subgraph H of G satisfies χ(H) ≤ f(ω(H)). A class of graphs is
χ-bounded if there exists a function f such that every graph in the class
is χ-bounded by f . Thus, perfect graphs are precisely the graphs that are
χ-bounded by the identity function. The aforementioned construction of
Zykov [Zyk49] implies that the class of all graphs is not χ-bounded. One
of the most famous question here is Gyárfás’ conjecture on trees [Gya87],
which reads: for every tree T , the class of T -free graphs is χ-bounded. In-
tuitively forbidding a tree (or some other simple structure) must simplify
the structure of cliques and stable sets, hence allow colouring close to clique
number. Expressing this idea formally is a real challenge.

The Erdős-Hajnal conjecture One of the first results in random graph
theory is that the expected clique number (or stability number) in a (uni-
formly chosen) random graph with n vertices is O(log n). This essentially
says that in the class of all graphs, typical cliques and stable sets have log-
arithmic size. But random graphs are universal objects, in the sense that
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they contain all small graphs as induced subgraphs with high probability. So
a natural question arises here: in the class of H-free graphs, for some fixed
graph H, is the typical clique (or stability) number greater than O(log n)?
Erdős and Hajnal [ErHa89] conjectured that the answer is positive. Indeed
they even asked for a polynomial bound: For a fixed graph H, does there ex-
ist a positive constant c, depending on H only, such that every H-free graph
has a clique or a stable set of size nc? This question is still wide open for
most instances of the graph H, even with few vertices; for example for the
cycle on 5 vertices and for the path on 5 vertices. This conjecture is related
to Gyárfás’ conjecture, because if a class ψ of graphs is χ-bounded by a
polynomial function f , then ψ satisfies the Erdős-Hajnal conjecture. Again
this question strongly suggests that forbidding any induced graph simplifies
the structure of cliques and stable sets. A new tool is needed here to capture
this idea.

The Caccetta-Häggkvist conjecture undirected graphs and directed
graphs, which amounts to the complexity step between symmetric and gen-
eral binary relations. The particular case of classes of oriented graphs defined
by forbidden induced oriented graphs makes no exception to this difficulty
gap. This is one of the most intriguing open questions in graph theory
[CaHa78]: does every oriented graph with no (induced) directed cycle of
length 3 have a vertex with outdegree less than n/3? What is surprising
here is that the forbidden structure is extremely simple, and the conclu-
sion is easy to test — a degree condition is much simpler to check than the
clique number for instance. This indicates that even the notion of minimum
degree is not well understood for oriented graphs and, again, that our under-
standing is limited by dark zones in our current theory of induced forbidden
sub(di)graphs.

We could have expanded this list with dozens of other open problems.
Our goal in this proposal is certainly not to specifically solve one of these
but to develop tools which will be relevant for attacking these questions.

2.2 État de l’art / State of the art

We introduce in this part the main tools used so far to tackle the kind of
questions mentioned above. For each of them, we highlight in which case
it is particularly useful. The aim of this proposal is to use and develop
these tools to prove new results and to hopefully identify some new general
technique.

Structural description of classes
Key point: Completely describe a graph class using basic classes and

elementary operations.
The proof of the Strong Perfect Graph Conjecture follows from a decom-

position theorem for Berge graphs. More precisely, it is proved in [CRST06]
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that every Berge graph either belongs to one of a few well-understood fami-
lies of basic graphs or admits a decomposition among several decomposition
schemes known to preserve perfection. Theorems following the same general
paradigm are known for ψ-free graphs for other families ψ. Some of them
are easy — for example, it is almost immediate to see that if ψ consists of
a single graph that is an induced two-edge path, then every ψ-free graph is
either complete or disconnected. Others are difficult — e.g., if ψ is the set of
all even-length cycles, or the set of all cycles of odd length at least five (the
corresponding results being deep theorems of Conforti et al. [CCKV02] and
of Conforti, Cornuéjols, and Vušković [CCV04], respectively). One might
then ask whether a structural theorem of that kind exists for every family
ψ. Certainly, a significant part of this question is to have a meaningful
definition of the graphs that should be considered basic and of the kinds of
decompositions that should be allowed. However, it is of great interest to un-
derstand to what extent forbidding an induced subgraph in a graph impacts
the global structure of the graph. In the last few years, several researchers
have studied ψ-free graphs for different families ψ, in an attempt to obtain
some insight into this question. For example, Chudnovsky and Seymour,
in a series of five papers [ChSe07, ChSe08a, ChSe08b, ChSe08c, ChSe08d],
proved that every claw-free graph is either a basic graph or admits one
of a few decompositions. Chudnovsky [Chu12a, Chu12b] did the same for
bull-free graphs. One of the goals of this proposal is to find new such de-
composition theorems and try and emphasize the similarities among them
and the ones in the literature. An important feature of such theorems is
whether they can be “reversed”, that is whether they give a procedure for
building all graphs in the class under consideration, starting from some basic
pieces. If such is the case, then it is often a lot easier to use the theorem
for establishing properties of the graphs in the class. For example, the de-
composition theorem of claw-free graphs given by Chudnovsky and Seymour
can be reversed. But the decomposition theorem of Berge graphs by Chud-
novsky et al. [CRST06] cannot, and finding a reversible one is challenging
open problem.

To sum up, it seems today that the structural description of classes is
one of the main tools to tackle hard questions, and we plan to use it. The
tool is very powerful, but a problem is that for every particular class, all
the work must be restarted from scratch. We do not consider this feature
as unavoidable; on the contrary, developing generic tools is one of our goals.
Also, we find it strange that this technique is almost never used in the
realm of digraphs, so this is something we would like to change and better
comprehend.

Regularity lemma, graph limits, flag algebras
Key point: partite graphs. This allows statistical counting. Theories and

tools to deal with huge graphs and comprehend patterns arising in extremal
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graph theory.
We take a bird’s view at the domain of graph limits and graph regularity,

which provides theories and tools both for theoretical topics (extremal graph
theory, property testing) and more real-world problems (social networks).

A particularly timely challenge concerns huge graphs. Typically, we
mean here graphs that are too large to be stored in a computer (and which,
also, may dynamically change). Such graphs come from many real-world
situations (e.g., protein-protein interactions networks, web graphs and social
networks). How to answer questions about a huge graph?

A natural approach is to use sampling techniques: this supposes a way
to pick “randomly” (usually, uniformly) a certain number of nodes and an-
swer questions using this “sample”, that is, the subgraph induced by the
selected nodes. The question is then to know to which extent the sample
is representative of the whole graph. More precisely, if we fix a number k,
choose randomly k vertices of the huge graph and consider the subgraph in-
duced by the k chosen vertices, this yields a probability distribution on the
set of all non-isomorphic graphs on k vertices. These distributions capture
a number of essential properties of the huge graph. In the last six years, a
framework for studying such distributions has been developed. It is known
as graph limits. From a theoretical point of view, designing a concept of
limit for graphs is very natural if we consider the setting of extremal graph
theory.

Extremal graph theory is a deep field, the difficulty of which partly
comes from combinatorial explosion (e.g., there are more than one million
non-isomorphic graphs on ten vertices). This transpires, for instance, in
Ramsey theory: the Ramsey number R(5, 5) is unknown, and R(6, 6) may
stay unknown forever, as Erdős pointed out. On the other hand, many
extremal problems can be solved for graphs with a large number n of vertices.
This is because small graphs often exhibit peculiar behaviours (boundary
effects), while patterns start to appear for larger values of n. Consequently,
it is natural to try and give a meaning to “n goes to infinity” and, if possible,
drop the parameter n by defining and studying a limit-object.

To develop such a framework, one needs to introduce a notion of dis-
tance between graphs, which measures their “similarity”. Limit objects are
then obtained by a completion process (in which a limit point is added
for each Cauchy sequence of (hyper)graphs). Such a framework for dense
graphs, initiated mainly by Lovász and Szegedy (see [BCL+08, BCL+12]
and the recent book by Lovász [Lov12]), comprises a number of beautiful
results and is still widely open. Many fundamental questions about graph
limits are unanswered. There is not, also, one theory of graph limits, but
several different ones depending on the density of the considered graphs.
For instance, the aforementioned framework is of no use for sequences of
graphs (Gn) such that e(Gn) = o(n2); on the contrary, there is a specific
notion of convergence for graphs with bounded maximum degree (the local-
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global convergence [HLS], which extends the Benjamini-Schramm conver-
gence [BeSc01]). Aiming to unify Lovász-Szegedy and Benjamini-Schramm
notions of graph limits, Nešetřil and Ossona de Mendez [NeOs12a] pro-
posed a notion of ”structural limits”. In this setting, a sequence of graphs
is convergent if the probability that any fixed first-order formula is satisfied
by a random assignment of vertices to the free variables converges. The key
idea is to consider a functional analysis point of view: finite graphs define
continuous linear forms on some Banach space and are represented, in a
usual way, by a probability measure. Then, convergence of graphs corre-
spond to weak convergence of measures, which is well understood. Also, in
some cases, a representation of the limit as a measurable graph exists, which
extends the notion of ”graphing” used to represent limits of bounded degree
graphs.

Graph limits is a concrete field in which new methods and tools have
arisen. Of particular interest is the concept of flag algebras, developed by
Razborov [1] in the context of limits for sequences of dense (hyper)graphs.
Though it is an abstract and general framework, it can be described as
a systematic approach to counting arguments. In our scope, this mainly
boils down to exploiting correlations between the densities of fixed (small)
sized induced subgraphs to gain knowledge about the original graph. When
the size of the considered subgraphs is small, then the method is amenable
to computers, using in particular semi-definite program solvers. We point
out that, unlike some computer-aided proofs, the flag algebra computations
can be presented in a form that can be verified by hand, although very
tediously. The number of applications of flag algebras in extremal graph
theory is already impressive and it keeps growing with time. be solved.
For example, the most recent advances on Caccetta-Häggkvist Conjecture
use flag algebras [HKS09]. We found [KLS+] new and original uses of the
flag algebras formalism and the scope of applications goes beyond purely
extremal graph theory, as the method brought new results, for instance, in
discrete geometry [KMS12].

Another natural approach to the study of huge graphs is to design ran-
dom models. Indeed, maybe sampling k nodes is an expansive process or
there is no clear way how to set (or approach) a uniform distribution on
the vertex set of the huge graph, for instance. While the historical random
graph model of Erdős and Rényi provides a deep and useful theory, it does
not capture essential properties commonly observed in real-life networks
(e.g. clustering and scale invariance). This is why other models of random
graphs were developed (e.g. the preferential attachment model initiated by
Barabási and Albert and formally defined by Bollobás and Riordan). These
models are randomly growing random graphs. If the model is accurate,
then one can predict how the network may evolve or use the model to test
algorithms.

An often-used notion is that of pseudo-randomness. The idea is to find a
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set of (relevant) properties that are all fulfilled by random graphs (according
to the model in consideration) and such that, whenever a graph satisfies one
of these properties, then it satisfies all of them. The graphs satisfying these
properties are then called quasi-random. A well-known notion of quasi-
randomness for sequences of graphs is as follows. Consider a sequence (Gn)
of graphs such that V (Gn) = {1, ..., n}. (In particular, V (Gi) contains
V (Gj) if j ≤ i.) The sequence (Gn) is p-quasi-random if for every subset U
of V (Gn) the sequence defined by the number of edges in the subgraph of
Gn induced by U is p× |U |(|U | − 1)/2 + o(n2).

For large dense graphs — that is, with a quadratic number of edges — an
awesome approximation was found by Szemerédi [Sze78]. It allowed him to
generalize Roth’s theorem to arithmetic progressions of arbitrary lengths,
as conjectured by Erdős. The approximation, now known as Szemerédi’s
Regularity Lemma, had a tremendous impact in a number of areas of math-
ematics. Several new proofs were given — some are purely combinatorial
while other made use of ergodic theory — and extensions to hypergraphs
and to digraphs were found. Roughly, Szemerédi’s Regularity Lemma states
that every large graph can be well approximated by the union of a bounded
number of quasi-random bipartite graphs. This approximation is particu-
larly useful to obtain counting lemmas and removal lemmas, enabling us to
comprehend embeddings of sparse graphs into large dense graphs. There are
countless applications of regularity, counting and removal lemmas in graph
theory and in other fields, such as algebraic number theory.

We now point out an application of the directed Regularity Lemma,
established by Alon and Shapira [AlSh03], to the aforementioned Erdős-
Hajnal conjecture. To this end, we first reformulate this conjecture in terms
of digraphs (using the notion of induced subdigraph). A tournament is an
orientation of a complete graph. A tournament is transitive if it contains
no directed cycles (equivalently, if it contains no directed triangles). We
denote by α(T ) the largest integer k such that a tournament T contains
an induced transitive subdigraph on k vertices. Alon, Pach and Solymosi
[APS01] showed that the Erdős-Hajnal conjecture is equivalent to the fol-
lowing statement. For every tournament S, there exists a positive constant
δ(S) such that every S-free tournament T satisfies α(T ) ≥ |V (T )|δ(S). The
directed Regularity Lemma allowed Berger, Choromanski and Chudnovsky
[BCC] to construct an infinite family of prime tournaments with the Erdős-
Hajnal property. A tournament S has the Erdős-Hajnal property if every
S-free tournament T satisfies α(T ) ≥ |V (T )|δ(S). A tournament is prime
if it cannot be obtained from another tournament by the substitution op-
eration, which preserves the Erdős-Hajnal property. In contrast, no such
result is known for graphs: the largest prime graph known to satisfy the
Erdős-Hajnal property has five vertices.

Vapnik-Cervonenkis dimension
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Key point: Forbidding a bipartite structure is equivalent to bounding
the VC-dimension.

A natural structure to consider when dealing with a graph G is its neigh-
bourhood hypergraph, whose vertices are those of G and whose hyperedges
are the neighbourhoods of the vertices in G. This hypergraph reflects some
of the properties of G. In particular, one may consider a classical complexity
parameter of hypergraphs: the Vapnik-Cervonenkis dimension, a.k.a. VC-
dimension. One can easiliy checks that the neighborhood hypergraph of G
has bounded VC-dimension if and only if G does not contain any induced
subgraph in the closure of some fixed bipartite graph H. Here, the closure
of a bipartite graph H is the set of all graphs that can be obtained from
H by adding edges that join two vertices in the same part of the biparti-
tion of H. Having bounded VC-dimension is very restrictive, the major fact
being that usual graph parameters can generally be bounded in terms of
their fractional relaxation. This partly explains why forbidding the closure
of bipartite graph H is considerably stronger than only excluding H as an
induced subgraph. To illustrate this, observe that forbidding the closure of
a fixed complete bipartite graph Kt,t results in a class of sparse graphs —
that is, the number of edges is o(n2) — whereas a Kt,t-free graph can have
up to Ω(n2) edges. Let us mention some results that are nearly direct con-
sequences of bounded VC-dimension: we showed [LuTh] that triangle-free
graphs with minimum degree n/3 have bounded chromatic number. un-
bounded chromatic number and minimum degree c · n for any constant c
less than 1/3. We also showed [BoTh] that maximum triangle-free graphs
avoiding any induced subdivision of a fixed graph H have bounded chro-
matic number. More recently, we proved [BLT] that the class of H-free
graphs has the polynomial clique/stable set separation if H is a split graph
— i.e., the vertex set of H can be partitioned into a clique and a stable set.
This property, introduced by Yannakakis [Yan91], means that there exists a
polynomial number of bipartitions such that every pair composed of disjoint
clique and stable set is separated by one of these bipartitions.

The VC-dimension approach is both appealing — since we obtain sharp
results — and mysterious — since no structure of the graph is produced.
For instance even if we forbid a fixed randomly generated bipartite graph
H on 1010 vertices, we will keep some control on the class of H-free graphs,
even though no structural description of the class can be expected.

Nowhere-dense classes Key point: taxonomy of graph classes based on
structural and model theoretical properties; algorithmically efficient decom-
position and approximation of sparse structures.

Nešetřil and Ossona de Mendez introduced a taxonomy of graph classes,
which is based on the study of shallow minor densities [NeOs08b, NeOs10a,
NeOs10c, NeOs10d], which is the subject of the monograph [NeOs12b].
Our approach is very general, and applies to classical sparse classes de-
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fined through their geometric representations (like sphere packings [BeCu11,
BeSc01], meshes [MTTV98], or intersection graphs [NOW12]).

Although the three standard minor-like constructions (minors, topologi-
cal minors, immersions) behave very differently, their ”shallow” versions are
deeply related, and the main results obtained by the theory are independent
of the considered type of shallow minor. The topological resolution of a class
C of graphs is the monotone sequence of graph classes C0, . . . , Ct, . . . such
that Ct contains all those graphs H such that a subdivision of H with at
most 2t subdivision vertices per edges appears as a subgraph of a graph of
C. In other words, Ct is the class of all shallow topological minors of depth
t of graphs in C. A class C of graph is somewhere dense if there exists a
threshold t such that Ct contains all graphs (or, equivalently, such that the
clique number is unbounded on Ct). The class C is nowhere dense other-
wise. A nowhere dense class C has bounded expansion if, for every integer
t, not only the clique number is bounded on Ct, but so is the average degree
[NeOs06a] (or, equivalently, for every t the chromatic number is bounded
on Ct [NeOs10d]). The stability of this classification is not only witnessed
by the independence to the considered type of shallow minors, but also by
the diversity of the (non-obvious) equivalent characterizations, which can
be given in terms of subgraphs, minors, partitions, game theory, stability,
chromatic number, density, and homomorphism statistics. Nowhere dense
classes are also exactly those classes of graphs that are quasi-wide (notion
introduced by Dawar in the context of first-order model checking), as proved
in [NeOs10b]. Examples of nowhere dense classes are abundant. They in-
clude classes of graphs omitting a fixed graph as a minor (proper minor
closed classes), and classes of graphs omitting a fixed graph as a topological
minor (these classes include classes of bounded degree graphs). As (rather
non-trivial) examples consider:

• A d-dimensional mesh of aspect ratio bounded by a is the 1-skeleton
of a complex in which every d-simplex has aspect ratio at most a.
(This means that there are no “very flat” simplices.) Form the bounds
obtained in [PRS94] on the maximum order of a complete shallow
minor of depth r of a d-dimensional mesh of given aspect ratio, it
follows that every class of d-dimensional meshes with bounded aspect
ratio is nowhere dense.

• The class of the graphs whose girth is greater than the maximum
degree is nowhere dense (but has unbounded chromatic number).

From an algorithmic point of view, the following problem has been con-
sidered by several researchers, including Dawar-Kreutzer and Dvořák-Král’-
Thomas: Is it true that for every monotone class of graphs C first-order
model checking is fixed parameter tractable? Existence of a fixed parame-
ter linear-time algorithm for bounded expansion classes has been proved by
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Dvořák, Král’ and Thomas [DKT10]. They also obtained a nearly linear-
time algorithm for classes with local bounded expansion, which still form a
proper subset of nowhere dense classes.

In this context, it is natural to seek for a generalization of nowhere denses
classes that would be closed under model theoretical interpretations. Obvi-
ously, such a characterization could not rely on a parameter like the clique
number. However, it is plausible that the nowhere dense/somewhere dense
dichotomy may be related to the complexity of the admissible subgraphs in
terms of VC-dimension.

Classes C that are nowhere dense without having bounded expansion
have the property that for some integer t the graphs in Ct have both un-
bounded chromatic number and bounded clique number. This is why we
call such classes sparse Erdős classes. Structure and properties of sparse
Erdős classes are difficult and lead to some core problems of finite com-
binatorics (extremal problems and restricted Ramsey theorems); see e.g.
[NeRo77, CoGo10, KLR97, RoSc07]. The logical characterization of sparse
Erdős classes puts some of the old problems in new light. For example the
following problem was isolated recently by Nešetřil and Ossona de Mendez
in the context of characterization of bounded expansion classes by means of
their First-Order definable CSPs [NeOs]: Is it true that for every monotone
sparse Erdős class there exists an integer s such that the class includes s-
subdivisions of graphs with arbitrarily large chromatic number and odd-girth?
A positive answer to this question would follow from a positive answer to
any of the two following conjectures.

• The first conjecture has been proposed by Erdős and Hajnal [Erd69]:
Is it true that for all integers c, g there exists an integer f(c, g) such
that every graph G of chromatic number at least f(c, g) contains a
subgraph of chromatic number at least c and girth at least g? The case
g = 4 has been settled by Rödl [Rod77] and g > 4 remains open.

• The second conjecture has been proposed by Thomassen [Tho83]: Is
it true that for all integers c, g there exists an integer f(c, g) such that
every graph G of average degree at least f(c, g) contains a subgraph of
average degree at least c and girth at least g? This problem is linked
to the previous one by the fact that every graph with large minimum
degree contains the 1-subdivision of a graph with large chromatic num-
ber as a subgraph [Dvo08]. The case g = 6 has been settled by Kühn
and Osthus [KuOs04] and g > 6 remains open.

Unavoidable sets of induced subgraphs
Key point: Finding an appropriate unavoidable set of induced subgraphs

yields inductive proofs.
A common way to prove that every graph G in some class ψ has some

property P is to proceed by induction or, equivalently, by considering a
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minimum counterexample. The aim is to find an unavoidable set of reducible
configurations for ψ. The concept of configuration is very close to the concept
of induced subgraph. It is indeed an induced subgraph H of G together with
the edges between H and G−H. A configuration is reducible if it cannot be
a configuration of a minimum counterexample. A set U of configurations is
unavoidable (for ψ), if every graph G of ψ contains a configuration of U .

Unavoidable sets can be found by a process called the Discharging Method.
Its principle is as follows. We pick a graph G in ψ and assign charges to
elements (vertices, edges, faces . . . ) of G. Using properties of ψ, we show
that the total is a constant (generally negative). We then redistribute the
charges according to a certain number of discharging rules that we define, so
that the total charge remains unchanged. After this discharging phase, we
show that either the total charge is different (generally by proving that every
element has non-negative charge), which is impossible, or that G contains
an element of U . This process is nothing more than an ingenious and highly
effective way of averaging the charge of the elements.

For example, the Four-Colour Theorem was proved via the Discharging
Method. In the original proof, Appel and Haken [ApHa77] had a set of 1936
reducible configurations. Robertson et al. [RSST97], using more refined
techniques, constructed a smaller set, consisting of 633 reducible configura-
tions.

So far, in graph theory, the Discharging Method has mainly been used
to prove theorems on planar graphs. This is mainly due to the existence of
Euler’s Formula, which is useful to show that the initial charge is constant for
many charge functions: specifically, it allows us to translate a local property
(the charge of every vertex and face) into a global one (the total sum is
negative). The Discharging Method has also been successfully applied to
the more general case of graphs with bounded density. But ψ-free graph
classes do not have bounded density: in general the clique number, and
hence the density, can be arbitrarily large in such a family. However, we
believe that the Discharging Method could be applied on such classes, either
directly using ingenious charge functions — possibly using an infinite set of
values — or through an auxiliary graph. Let us point out here that the
Discharging Method has also been successfully used outside of graph theory,
for instance to the checker problem. Moreover, the Discharging Method
might well be useful to establish theorems on some ‘basic’ graph classes
needed in a decomposition theorem, thereby providing the starting point of
a generic inductive proof.

We also note that recent techniques used to prove that certain classes are
χ-bounded (for instance, the class of bull-free graphs), consist in assigning
charges to the vertices of the graphs in order to satisfy some local/global
property (i.e. if locally some condition is satisfied, then globally another
condition is satisfied). Even if there is no discharging here (charges are
static), the spirit is very close to what has been mentioned above.
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Computer-assisted proofs
Key point: Try to unify the discharging proofs and the methods of flag

algebras.
The use of computers has enabled new types of proof in combinatorics:

it is now possible to automatically verify a set of cases that is impossible
to handle manually. The increase in computing power is constantly pushing
the limits of the possible in the field. Half-theoretical, half-computational
methods helped answer questions, sometimes very old. Famous examples
are, once again, the proof of the Four-Colour Conjecture by Appel and
Haken [ApHa77], and the non-existence of a finite projective plane of order
10 by Lam [Lam91].

Although this approach is common in some areas of combinatorics (as
in combinatorics on words), it remains fairly unused in graph theory, de-
spite the interest it presents. This comes firstly from the scepticism of some
combinatorialists, especially in graph theory. For example, many combi-
natorialists doubted the original proof of Appel and Haken [ApHa77], and
another proof was later given by Robertson et al. in [RSST97]. This scepti-
cism may come from the fact that (general) graphs are somewhat complex
objects to handle by a computer program. A few lines of easily understand-
able code may suffice to disprove the existence of an infinite word avoiding
some factors (e.g., Abelian-squares in ternary words), but checking every
graph of a class requires more complex functions, such as isomorphism or
subgraph checks. Nevertheless, this way of thinking is changing. The second
proof the Four-Colour Theorem is now accepted by almost all the commu-
nity, even though it uses the computer more intensively. Paradoxically, this
technique clarified some points of the proof, especially the discharging pro-
cedure, concentrating the effort on the method and postponing the tedious
case analysis to the computer part.

We think that these computer-aided proofs will become more important
in the future. On the one hand, nowadays proofs tend to become more com-
plicated and sometimes require a long case analysis. Even if we can handle
them “by hand”, the probability that an error will slip through the attention
of the authors and reviewers increases with the complexity of the proof. On
the other hand, computers become more and more powerful, and most of
the researchers have access to a computing center. We can use a variety
of computer tools, such as high level languages which can handle complex
structures and software suites which bring together several combinatorial
libraries, like Sage. We have also now powerful proof assistants (e.g., the
Four-Colour Theorem has been proved in Coq by Gonthier in 2004).

We believe that the computerization of parts of the proofs via the Dis-
charging Method is possible. Currently, the discharging rules are found “by
hand”, and become increasingly complex and technical. Usually, when de-
veloping a discharging proof, ”problematic” configurations are given by the
tight inequalities of a linear program. Hence, a first idea is to use a kind
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of algebras, similar to some extent to flag algebras, in order to obtain a
contradiction to a linear system.

The names of the participants to this project, as well as the keys of their
publications, are in bold.
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