Problem Session – STINT Meeting – January 2017

January 26, 2017

Problems on theta-free graphs

Communicated by N. Trotignon

A *theta*-free graph is a graph with no induced subdivision of $K_{2,3}$.

Take any problem which has a positive answer for claw-free graphs and prove or disprove that the same holds for theta-free graphs. For example, recognizing claw-free graphs is polynomial-time solvable (trivially) and it is also the case for theta-free graphs (proved by Chudnovsky and Seymour). It is still open for χ -boundedness by a polynomial.

Problem 1. Is there a polynomial f such that every theta-free graph G satisfies $\chi(G) \leq f(\omega(G))$?

Another example would be to prove Erdős-Hajnal Conjecture.

Problem 2. Is there a positive constant c such that every theta-free graph on n vertices has either a clique of size n^c or a stable set of size n^c ?

If the above fails one may still try it for even-hole-free graphs (which form a subclass of theta-free graphs).

Recall that $\alpha(G)$ denotes the maximum size of a stable set in the graph G.

Problem 3. Can $\alpha(G)$ be computed in polynomial time for all theta-free graph G?

Radovanović, Trotignon and Vušković proved that recognizing (theta, wheel)-free graphs can be done in polynomial time. Their proof uses a decomposition theorem where the basic graphs are graphs whose vertex-set can be partitioned into a complete graph and a line-graph with additional properties. The following natural question arises.

Problem 4. Can we decide in polynomial time whether a graph can be partitioned into a complete graph and a line-graph ?

A *jellyfish* is the union of a cycle C and three disjoints paths P_1 , P_2 , and P_3 that attach on the cycle (i.e. their intersection with the cycle is one of their ends). The *extremities* of the jellyfish are the ends of the P_i not in C if P_1 has length at least 1, and the vertex of P_i otherwise.

The problem 3-IN-A-JELLYFISH is: given a graph G and three vertices a, b, c of G, is there an induced jellyfish with extremities a, b, c in G?

Problem 5. Can 3-IN-A-JELLYFISH be solved in polynomial time ?

If yes, this would prove that deciding whether a graph has an induced subdivision of K_4 is polynomial-time solvable. This latter fact was recently proved by Le.

Dichromatic number of digraphs with no induced subdigraphs

Communicated by Pierre Aboulker

A *k*-dicolouring of a digraph is a partition of its vertex set into *k* acyclic subdigraphs. The dichromatic number of a digraph *D*, denoted by $\vec{\chi}(D)$, is the minimum *k* such that *D* has a *k*-dicolouring.

Harutyunyan and Mohar proved the existence of digraphs with arbitrarily large girth and dichromatic number, by means of probabilistic arguments. What about explicit constructions? [Note: the *girth* is that of the underlying undirected graph.]

Conjecture 6 (Neumann-Lara & Erdős, 1980). There exists an integer L such that every graph G with chromatic number greater than L admits an orientation D such that $\vec{\chi}(D) \ge 3$.

Given a sequence S of digraphs, we define Forb(S) to be the class of all digraphs that do not contain any member of S as an induce subdigraph. We say that Forb(S) has bounded dichromatic number if every digraph in Forb(S) has bounded dichromatic number.

We denote by $\vec{C}_{\geq k}$ the set of directed cycles of length at least k. We let TT_k be the transitive tournament on k vertices.

Conjecture 7. Forb $(TT_3, \vec{C}_{>4})$ has bounded dichromatic number.

A tournament *H* is a *hero* if every tournament with no subtournament isomorphic to *H* has bounded dichromatic number. Heroes have been characterized by Berger et al. We denote by \overleftarrow{K}_k the symmetric complete digraph on *k* vertices.

Conjecture 8 (Aboulker, Charbit, and Naserasr). For every hero H, Forb $(\overleftarrow{K}_2, H, K_1 + TT_2)$ has bounded dichromatic number.

Aboulker, Charbit, and Naserasr proved it for $H = TT_k$ and $H = \vec{C}_3$.

We denote by S_k the digraph with k vertices and no arcs.

Conjecture 9 (Aboulker, Charbit, and Naserasr). For every hero H, Forb $(\overleftarrow{K}_2, H, \vec{C}_3)$ has bounded dichromatic number.

Harutyunyan, Le, Newman, and Thomassé proved it for $H = \vec{C}_3$.

Conjecture 10. For every hero H and every oriented star S, $Forb(\overleftarrow{K}_2, H, \overrightarrow{S})$ has bounded dichromatic number.

This Conjecture has been verify for $H = \overline{C}_3$ by Kierstead and Rödl [2], and for $H = TT_3$ by Aboulker, Bang-Jensen, Bousquet, Charbit, Havet, Maffray and Zamora. In both case, it was actually proved that the chromatic number was bounded (recall that the chromatic number of a digraph is the chromatic number of its underlying graph) and the later authors proposed the following conjecture:

Conjecture 11 (Aboulker, Bang-Jensen, Bousquet, Charbit, Havet, Maffray, Zamora). If k is a positive integer and \vec{S} is an orientation of a star, then $Forb(TT_k, \vec{S})$ has bounded chromatic number.

Existence of subgraphs with large girth keeping some parameters large

Communicated by Patrice Ossona de Mendez

Recall that the *girth* of a graph is the length of a smallest cycle (or $+\infty$ if the graph is acyclic).

Conjecture 12 (Erdős and Hajnal). For every positive integers k and g, there exists a constant C such that every graph G with $\chi(G) \ge C$ has a subgraph H with girth g and chromatic number at least k.

This conjecture is true for g = 4, i.e. there exists f(k) s.t. every graph with chromatic number at least f(k) has a triangle-free subgraph with chromatic number at least k (Rödl).

Conjecture 13 (Thomassen). For every positive integers k and g, there exists a constant C such that every graph G with $\delta(G) \ge C$ has a subgraph H with girth g and minimum degree at least k.

Observe that taking a maximum bipartite subgraph, we only have to care about odd-length cycles. True for $g \le 6$ (Kühn and Osthus).

An $(\leq s)$ -subdivision of a graph G is a graph that can be obtained from G by replacing each edge by a path of length at most s + 1.

Conjecture 14 (Nešetřil and Ossona de Mendez). There exists *s* such that for every *k* and *g*, there exists a constant *C* such that every graph *G* with $\delta(G) \ge k$ has a subgraph *H* which is an $(\le s)$ -subdivision of a graph *H'* with $\delta(H') = c$ and girth at least *g*.

There exists f such that if $\delta(G) \ge f(k)$, then G contains a (≤ 1) -subdivision of a graph with chromatic number k.

χ -boundedness of graph with no hole of length at least 5

Communicated by Frédéric Maffray

Vaidy Sivaraman showed that if a graph G has no hole of length at least 5 then $\chi(G) \leq 2^{2^{\omega(G)}}$, and claimed that Paul Seymour can prove $\chi(G) \leq 2^{\omega(G)^2}$.

Problem 15 (Sivaraman, [5]). Is the following true: if a graph G has no hole of length at least 5 then $\chi(G) \leq \omega(G)^2$?

Taking products of complements of C_7 , Scott and Seymour [4] proved that there exists such graph with $\chi(G) \ge \omega(G)^c$ for some 1 < c < 2.

Problem 16 (Sivaraman [5]). Prove that every planar graph can be partitioned into two perfect graphs without using the Four-Colour Theorem.

Splitting into subgraphs with positive genus

Communicated by Lucas Pastor

A cycle is *splitting* if its separates a graph into two subgraphs of positive genus.

Conjecture 17 (Barnette, 1982, [3] p. 166). Every triangulation of a surface of genus at least 2 has a splitting cycle.

Conjecture 18. If a graph has sufficiently large genus, there is a partition of its edge set into two subgraphs with positive genus.

Conjecture 19 (Balanced version, would imply the previous one). If a graph has sufficiently large genus g, there is a partition of its edge set into two subgraphs with genus at least $\lfloor g/2 \rfloor$.

Hamiltonian subgraphs with large chromatic number

Communicated by Stéphan Thomassé

A graph is Hamiltonian (resp. traceable) if it has a Hamiltonian cycle (resp. path).

Problem 20 (Thomassé). Does there exist f(k) such that every graph with chromatic number at least f(k) has a Hamiltonian (or traceable) subdigraph with chromatic number at least k?

Colouring Jordan curves

Communicated by Louis Esperet

A family of Jordan curves is *simple* if any two of its members intersect at most once. The family is *k*-touching if no point of the plane belongs to more than *k* of these curves.

Conjecture 21 (Esperet, Gonçalves, Labourel [1]). There exists a constant c such that any simple and k-touching family of Jordan curves can be coloured with at most k + c colours.

A proof, a conjecture and a decision

Collegial work

Recall that the following question was raised at the STINT meeting in Vercors.

Question 1. Is the recipe of chocolate mousse by Aurélie's mother really delicious ?

During the meeting, Aurélie made the demonstration that it is indeed delicious. All the participants tasted it and everyone was convinced. The following decision was then unanimously made.

Decision 1. A chocolate mousse must be prepared (by Aurélie) at every STINT meeting.

However, Pierre Aboulker claimed that his recipe is even more delicious. He made the following conjecture.

Conjecture 22 (Aboulker). There is a better chocolate mousse than the one of Aurélie's mother. In particular, Aboulker's recipe is a lot better.

Unfortunately, he gave no evidence for this unbelievable conjecture. We hope that he could provide some in the near future.

References

- [1] L. Esperet, D. Gonalves and A. Labourel, Coloring non-crossing strings, *Electronic Journal of Combinatorics* 23(4) (2016), #P4.4
- [2] H. A. Kierstead and V. Rödl. Applications of hypergraph colouring to colouring graphs that do not induce certain trees. *Discrete Math.*, 150:187–193, 1996.
- [3] B. Mohar and C. Thomassen. *Graphs on Surfaces*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2001.
- [4] A. Scott, P. Seymour, Induced subgraphs of graphs with large chromatic number.I. Odd holes, *J. Combin. Theory Ser. B* 121 (2016), 68–84.
- [5] V. Sivaraman, Some problems on induced subgraphs, arXiv:1612.09349 [math.CO], 2016.