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Partitioning a planar graph into 3 forests of equitable
size
Communicated by L. Esperet.

A partition (V1,..., V) is equitable if |[V; — V;| < 1forall 1 < i,j < k. A
k-colouring of a graph is a partition into k stable sets.

Theorem 1 (Hajnal, Szemerédi [7]). If k > A(G) + 1, then G admits an equitable
k-colouring.

A natural question is whether for some graph class G, there exists a constant ¢ such
that every graph G € G has an equitable k-colouring for all £ > c¢. However, this does
not work for most graph classes. It is already false for stars, because every k-colouring
of a star of size at least 2k + 2 is not equitable (the centre forms a colour class of size
1).

However it turns out to be true for forest partitions and planar graphs. An forest
k-partition is a partition (V1, ..., V}) of G such that G(V;) is a forest forall 1 < ¢ < k.

Theorem 2 (Esperet, Lemoine, and Maffray [5]). For all k > 4, and every planar
graph G, there is an equitable forest k-partition of G.

The proof starts by considering an acyclic 5-colouring of a planar graph, which
exists by a celebrated theorem of Borodin [4]. Recall that an acyclic colouring of a
graph is a partition into stable sets such that the union of any two parts induces a forest.
In fact, we just need a partition in 5 sets such that the union of any two induces a forest.
The parts being stable sets is useless.

Problem 3. Does every planar graph admit a forest 3-partition ?
Another natural question is the following ?

Problem 4. Does there exists a constant ¢ such that, for all k& > ¢, every planar graph
admits an equitable acyclic k-colouring ?

Does there exists a constant ¢ such that, for all £ > ¢, every planar graph admits an
equitable forest k-partition ?



Clique cover of claw-free graph

Communicated by P. Charbit.

A claw in a graph is an induced subgraph isomorphic to Ky 3. A graph is claw-free
if it contains no claw.
cc(@) is the minimum number of cliques to cover all edges of a given graph.

Problem 5. Is it true that for every claw-free graph cc(G) < |V(G)| ?
It is not even known for graphs with stability 2, which are peculiar claw-free graphs.
Problem 6. Is it true that if o(G) < 2, then cc(G) < |V(G)| ?

It is not difficult to prove that cc(G) < 2|V(G)| when o(G) < 2. One can then
derive cc(G) < 3|V(G)| when G is claw-free.

A quasi-line graph is a graph such that the neighborhood of every vertex can be
covered by two cliques. Quasi-line graph are claw-free. For such graphs the answer is
known.

Theorem 7. If G is a quasi-line graph, then cc(G) < |V(G)].

Disjoint directed cycles of different lengths

Communicated by A. Harutyunyan.

Conjecture 8 (Bermond and Thomassen [2]). If 67 (D) > 2k — 1, then D has at least
k disjoint directed cycles.

Alon [1] proved that it holds if §* (D) > 64k. Bessy, Lichiardopol and Sereni [3]
also proved it for tournaments.

Conjecture 9 (Lichiardopol [9]). There is a function g such that if 5+ (D) > g(k),
then D contains k disjoint cycles of different lengths.

We know that if g exists, then g(k) > %2 Lichiardopol [9] proved that g(2) = 4.
The conjecture also holds for tournaments. Consider a multipartite digraphs obtained
by blowing up a directed 3-cycle. Bensmail, Harutyunyan and Le proved the conjecture
for k2 /2-diregular digraphs (i.e. d*(v) = d~(v) = k?/2 for all vertex v).

Covering regular graphs by few disjoints paths

Communicated by S. Thomassé.

Conjecture 10 (Magnant and Martin [10]). If G is d-regular, then V (G) can be cov-

ered by at most 7 disjoint paths.



The number 7 is sharp because of the union of disjoint Kq1.

As shown by Feige, Ravi and Singh [6] is intersecting for TSP. They proved that if
G is d-regular, then V() can be covered by at most % disjoint paths.

Seymour posed the following question.

Problem 11. What happens when d = en ? The answer should be : if G is en-regular,
then V(@) can be covered by at most | 1| disjoint paths.

Using the following result of Jackson, we can prove that it holds for e > 13.

Theorem 12 (Jackson [8]). If G is d-regular, with d > n/3, and 2-connected, then G
has a hamiltonian cycle.

Corollary 13. If G is d-regular, with d > n/3, then V(G) can be covered by at most
2 disjoint paths.
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