Structural aspects of tilings

Alexis Ballier

Laboratoire d'Informatique Fondamentale de Marseille
CNRS \& Université de Provence

May 9th 2007

Plan de l'exposé

Introduction and definitionsExample
CombinatoricsMinimal elementMaximal element
Topology
Links...Only countably many tilings...
Conclusion

Context

\Rightarrow Focus : structure of discrete tilings
\Rightarrow Tileset: "Local rules"
\Rightarrow Tiling (produced by a tileset) : "Infinite object that respects local rules"

Context

\Rightarrow Focus : structure of discrete tilings
\Rightarrow Tileset: "Local rules"
\Rightarrow Tiling (produced by a tileset) : "Infinite object that respects local rules"
\Rightarrow Several equivalent definitions

Configurations and patterns

Discrete tilings of the plane $\left(\mathbb{Z}^{2}\right)$
Set of states Q
Definition. (Configuration)
Configuration : element of $Q^{Z^{2}}$
Definition. (Pattern)
$V \subset \mathbb{Z}^{2}, V$ finite
Pattern: $P \in Q^{V}$

Tileset and tilings

Definition. (Tileset)
Tileset $\tau=\left(Q, \mathcal{P}_{\tau}\right) . \mathcal{P}_{\tau}$: finite set of patterns.
w.l.o.g: $\mathcal{P}_{\tau} \subseteq Q^{V}$ (patterns have the same domain)

Definition. (Tiling)
$c \in Q^{\mathbb{Z}^{2}}$ is a tiling by τ if it contains only allowed patterns.
i.e., $\forall x \in \mathbb{Z}^{2},\left.c\right|_{V+x} \in \mathcal{P}_{\tau}$

Forbidden patterns: $\mathcal{F}_{\tau}=Q^{V} \backslash \mathcal{P}_{\tau}$
Set of Tilings (SFT) by $\tau: \mathcal{T}_{\tau}$

Allowed patterns: \mathcal{P}_{τ}

Produced tilings : \mathcal{T}_{τ}

Produced tilings : \mathcal{T}_{τ}

Introduction and definitions
Combinatorics
Topology
Links...
Only countably many tilings...
Conclusion

Produced tilings : \mathcal{T}_{τ}

Produced tilings : \mathcal{T}_{τ}

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element
Maximal element
Topology
Links...
Only countably many tilings...

Conclusion

Pre-order

$x, y \in Q^{\mathbb{Z}^{2}}$
Definition.
$x \preceq y$ iff any pattern that appears in x also appears in
y.

The order

Introduction and definitions Combinatorics

Topology
Links...
Only countably many tilings...
Conclusion

The order

Minimal element?

Theorem (minimal elements)
For a given tileset, the corresponding set of tilings contains a minimal element for \prec.

Proof.

B. Durand (or Birkhoff in a topological context)

Such a minimal class contains only quasiperiodic tilings.

Maximal element

Theorem

For a given tileset, the corresponding set of tilings contains a maximal element.

Proof: Prove that each increasing chain C has an upper bound.
\Rightarrow Let $P_{1}, P_{2}, P_{3}, \ldots$ be the patterns that appear in some C_{i}.
\Rightarrow Build an increasing chain of patterns Q_{k} such that Q_{k} contains all patterns $P_{1} \ldots P_{k}$
$\Rightarrow Q_{k}$ appears in some C_{i}
\Rightarrow The "limit" $Q=\lim Q_{k}$ contains all patterns.

Note

\Rightarrow This is still valid if Q or \mathcal{F}_{τ} are countably infinite...
\Rightarrow We do not know if a minimal always exists if Q is (countably) infinite

Plan de l'exposé

Introduction and definitions

 Example
Combinatorics

Minimal element
Maximal element
Topology
Links...
Only countably many tilings...
Conclusion

Basic definitions

- Q : discrete topology
- $Q^{\mathbb{Z}^{2}}$: Product topology
- Topology basis : \mathcal{O}_{P}, P a pattern

Basic definitions

- Q : discrete topology
$\Rightarrow Q^{\mathbb{Z}^{2}}$: Product topology
- Topology basis : \mathcal{O}_{P}, P a pattern

Properties: It is a Cantor space

- Compact
- Metrizable : $d\left(c, c^{\prime}\right)=2^{-\min \left\{i \mid l, c(i) \neq c^{\prime}(i)\right\}}$
- 0-dimensional (\mathcal{O}_{P} clopens)

Topological derivation

$S \subseteq Q^{\mathbb{Z}^{2}}, x \in S$
x isolated in $S \Leftrightarrow \exists P$ pattern, $\mathcal{O}_{P} \cap S=\{x\}$

Definition.

$S \rightarrow S^{\prime}=$ Set of non isolated points in S
S subshift $\left(S=\mathcal{I}_{\tau}, \mathcal{F}_{\tau}\right.$ not necessary finite $) \Rightarrow S_{\bar{\equiv}}^{\prime}$ sųbibshift

Cantor-Bendixson rank

$\Rightarrow S^{(0)}=S$
$\Rightarrow S^{(\alpha+1)}=\left(S^{(\alpha)}\right)^{\prime}$
$\Rightarrow S^{(\lambda)}=\bigcap_{\alpha<\lambda} S^{(\alpha)}$

Example

Basic properties of C-B rank

- $\exists \lambda$ countable, $S^{(\lambda)}=S^{(\lambda+1)}$ (At most countably many finite patterns)
- Least such ordinal : Cantor-Bendixson rank of S
\Rightarrow Least ordinal λ s.t. $c \notin S^{(\lambda)}=\rho(c)$

Interesting property

Lemma

\mathcal{I}_{τ} countable $\Leftrightarrow \forall x \in \mathcal{I}_{\tau}, \exists \lambda, \rho(x)=\lambda$.

Interesting property

Lemma

\mathcal{I}_{τ} countable $\Leftrightarrow \forall x \in \mathcal{I}_{\tau}, \exists \lambda, \rho(x)=\lambda$.

Proof.

\Leftarrow : Cantor-Bendixson rank of \mathcal{I}_{τ} countable $\Rightarrow: \mathcal{T}_{\tau}{ }^{(\lambda)}=\mathcal{I}_{\tau}^{(\lambda+1)}, \mathcal{T}_{\tau}^{(\lambda)}$ perfect thus uncountable if non empty (Baire)

Cardinality of \mathcal{I}_{τ}

Theorem

\mathcal{I}_{τ} is either finite, countable or has the cardinality of continuum.

Proof.
Compact, 0-dimensional.

Plan de l'exposé

Introduction and definitions

Example

Combinatorics

Minimal element
Maximal element
Topology

Links...

Only countably many tilings...
Conclusion

Pre-order

C-B ranks

First remark

x, y ranked by ρ
Lemma
$x \prec y \Rightarrow \rho(x)>\rho(y)$

First remark

x, y ranked by ρ
Lemma
$x \prec y \Rightarrow \rho(x)>\rho(y)$
Theorem
If \mathcal{T}_{τ} is countable, there exists no infinite increasing chain for \prec

Proof.

This would give an infinite decreasing chain of ordinals.

Preliminary result

Theorem
S subshift that contains only periodic configurations \Rightarrow S finite

Proof.

S infinite then we'll construct a sequence M_{i} of patterns s.t. :
$\Rightarrow M_{i}$ square pattern centered at 0
$\Rightarrow M_{i}$ subpattern of M_{i+1}
$\Rightarrow \forall i,\left\{x \in \mathcal{T}_{\tau}, M_{i} \in x\right\}$ is infinite
$\Rightarrow M_{i} \in x \Rightarrow x$ has a period greater than i

Construction

- $M_{0}=\emptyset$
$\Rightarrow M_{i}$: size $a \times a$
- C : patterns of size $(a+2(i+1)) \times(a+2(i+1))$ with M_{i} at their center and that are not $i+1$ periodic.
\Rightarrow Infinitely many $x \in S$ that contains a pattern of C (if a configuration does not contain an element of C, it is at most $i+1$ periodic)
- $M_{i+1} \in C$ s.t. there are infinetely many elements of S that contains it.

Plan de l'exposé

Introduction and definitions
Example
Combinatorics
Minimal element
Maximal element
Topology
Links...
Only countably many tilings...
Conclusion

Non minimal tiling

Corollary.

When \mathcal{I}_{τ} is countable, there exists a non minimal tiling.

And now?

Question.

What are the other tilings of \mathcal{I}_{τ} ?

And now?

Question.

What are the other tilings of \mathcal{T}_{τ} ?
Theorem
There exists a tiling c with exactly one direction of periodicity.

Sketch of the proof

\Rightarrow There exists a tiling which is not minimal.
\Rightarrow There exists a tiling c which is at level 1 , that is such that all tilings less than c are minimal.
\Rightarrow Such a tiling has exactly one direction of periodicity.

Rank of \mathcal{I}_{τ}

Lemma

$\rho\left(\mathcal{I}_{\tau}\right)$ cannot be the successor of a limit ordinal.
Proof.
Cannot be a limit ordinal : compactness

Continuation of the proof...

Proof.
$\Rightarrow \rho\left(\mathcal{T}_{\tau}\right)=\beta+1, \beta=\bigcup_{i<\omega} \beta_{i}$
$\Rightarrow \mathcal{T}_{\tau}{ }^{(\beta)}$ finite thus only contains periodic tilings (period p)
$\Rightarrow x_{i} \in \mathcal{T}_{\tau}{ }^{\left(\beta_{i}\right)} \backslash \mathcal{I}_{\tau}{ }^{\left(\beta_{i+1}\right)}$
\Rightarrow w.l.o.g. x_{i} is not p periodic "at its center"
$\Rightarrow \lim x_{i} \in \mathcal{T}_{\tau}{ }^{(\beta)} \ldots$

Tiling at level 1

Corollary.

There exists a tiling c at level 1.

Proof.

$\mathcal{T}_{\tau}^{(\beta-1)}$ infinite $\Rightarrow c \in \mathcal{T}_{\tau}^{(\beta-1)}, c$ non periodic thus non minimal
But $x \prec y \Rightarrow \rho(x)>\rho(y)$, thus c is at level 1 .

Stucture of c

Lemma

Any pattern that appears in c appears infinitely many times.

Proof.

P pattern that appears only once in c
$\forall x, x \prec c, P \notin x$
Patterns of c of size $2 p \times 2 p$ not p periodic appears arbitrary far from P ? No : extraction

| |
| :--- | :--- |
| |

| |
| :--- | :--- |

Introduction and definitions

Only countably many tilings...
Conclusion

To finish our proof

Theorem

There exists a tiling c with exactly one direction of periodicity.

Proof.

P isolates c in $\mathcal{T}_{\tau}^{(\beta-1)}$, appears twice, $c=\sigma(c)$.

Plan de l'exposé

Introduction and definitions

Example

Combinatorics

Minimal element
Maximal element
Topology
Links...
Only countably many tilings...
Conclusion

Conclusion

\Rightarrow Different points of view : Combinatorial vs. topological

- Interesting links

Questions remain :
\Rightarrow Characterize τ s.t. \mathcal{I}_{τ} is countable

- \mathcal{I}_{τ} countable $\Rightarrow \rho\left(\mathcal{T}_{\tau}\right)$ finite ?

Proof of cardinality result

Theorem

A perfect, compact, 0-dimensional space P has cardinality of continuum.

Proof.

Any non empty clopen can be split in two non empty clopen :
C clopen, $x \neq y \in C \Rightarrow P \in x, y \notin \mathcal{O}_{P}$
$C_{1}=C \cap \mathcal{O}_{P}, C_{2}=C \backslash C_{1}$.

Proof of cardinality result

Proof of cardinality result

Proof.

u_{n} "increasing" sequence of words of length $n\left(u_{n}\right.$ is prefix of u_{n+1}).
$C_{u_{n+1}} \subseteq C_{u_{n}}, \bigcap_{n \in \mathbb{N}} C_{u_{n}} \neq \emptyset$ (compactness, $\left.\forall n, C_{u_{n}} \neq \emptyset\right)$.

