Structural aspects of tilings

Alexis Ballier

Laboratoire d'Informatique Fondamentale de Marseille CNRS & Université de Provence

May 9th 2007

イロト イヨト イヨト

Example

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element Maximal element

Topology

Links...

Only countably many tilings...

イロト イボト イヨト イヨト

Context

- ➡ Focus : structure of discrete tilings
- ➡ Tileset : "Local rules"
- ➡ Tiling (produced by a tileset) : "Infinite object that respects local rules"

Context

- ➡ Focus : structure of discrete tilings
- ➡ Tileset : "Local rules"
- ➡ Tiling (produced by a tileset) : "Infinite object that respects local rules"
- ➡ Several equivalent definitions

イロト イボト イヨト イヨト

Example

Configurations and patterns

Discrete tilings of the plane (\mathbb{Z}^2) Set of states Q

Definition. (Configuration)

Configuration : element of $Q^{\mathbb{Z}^2}$

Definition. (Pattern)

 $V \subset \mathbb{Z}^2$, V finite Pattern: $P \in \mathbf{Q}^V$

イロト イボト イヨト イヨト

Tileset and tilings

Definition. (Tileset)

Tileset $\tau = (Q, \mathcal{P}_{\tau})$. \mathcal{P}_{τ} : finite set of patterns.

w.l.o.g: $\mathcal{P}_{\tau} \subseteq \mathbf{Q}^{V}$ (patterns have the same domain)

Definition. (Tiling)

 $c \in Q^{\mathbb{Z}^2}$ is a tiling by τ if it contains only allowed patterns.

i.e.,
$$orall x \in \mathbb{Z}^2$$
, $c|_{V+x} \in \mathcal{P}_{ au}$

Forbidden patterns : $\mathcal{F}_{\tau} = Q^{V} \setminus \mathcal{P}_{\tau}$ Set of Tilings (SFT) by τ : \mathcal{T}_{τ}

イロト イボト イヨト イヨト

Combinatorics Topology Links... Only countably many tilings... Conclusion

Example

Allowed patterns : \mathcal{P}_{τ}

Combinatorics Topology Links... Only countably many tilings... Conclusion

Example

Produced tilings : \mathcal{T}_{τ}

Combinatorics Topology Links... Only countably many tilings... Conclusion

Example

Produced tilings : \mathcal{T}_{τ}

Combinatorics Topology Links... Only countably many tilings... Conclusion

Example

Produced tilings : T_{τ}

(日) (종) (종) (종)

Example

Produced tilings : \mathcal{T}_{τ}

・ロト ・四ト ・ヨト ・ヨト

-2

Minimal element Maximal element

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element Maximal element

Topology

Links...

Only countably many tilings... Conclusion

イロト イヨト イヨト

Minimal element Maximal element

Pre-order

$$x,y\in {oldsymbol Q}^{{\mathbb Z}^2}$$

Definition.

 $x \preceq y$ iff any pattern that appears in x also appears in y.

《曰》 《圖》 《注》 《注》

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

1

Minimal element Maximal element

The order

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

1

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

1

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

イロト イロト イヨト イヨト

1

Minimal element Maximal element

The order

590

Minimal element Maximal element

Minimal element?

Theorem (minimal elements)

For a given tileset, the corresponding set of tilings contains a minimal element for \prec .

Proof.

B. Durand (or Birkhoff in a topological context)Such a minimal class contains only quasiperiodic tilings.

Minimal element Maximal element

Maximal element

Theorem

For a given tileset, the corresponding set of tilings contains a maximal element.

Proof: Prove that each increasing chain C has an upper bound.

- → Let P_1, P_2, P_3, \ldots be the patterns that appear in some C_i .
- ➡ Build an increasing chain of patterns Q_k such that Q_k contains all patterns P₁...P_k
- $ightarrow Q_k$ appears in some C_i
- → The "limit" $Q = \lim Q_k$ contains all patterns.

Minimal element Maximal element

Note

- → This is still valid if Q or \mathcal{F}_{τ} are countably infinite...
- ➡ We do not know if a minimal always exists if Q is (countably) infinite

(日) (四) (三) (三)

Plan de l'exposé

Introduction and definitions Example

Combinatorics Minimal element Maximal element

Topology

Links...

Only countably many tilings... Conclusion

Basic definitions

- \Rightarrow Q : discrete topology
- → $Q^{\mathbb{Z}^2}$: Product topology
- ➡ Topology basis : \mathcal{O}_P , P a pattern

イロト イボト イヨト イヨト

Basic definitions

- \Rightarrow Q : discrete topology
- → $Q^{\mathbb{Z}^2}$: Product topology
- ➡ Topology basis : \mathcal{O}_P , P a pattern

Properties : It is a Cantor space

- ➡ Compact
- → Metrizable : $d(c, c') = 2^{-\min\{|i|, c(i) \neq c'(i)\}}$
- → 0-dimensional (\mathcal{O}_P clopens)

Topological derivation

 $S \subseteq Q^{\mathbb{Z}^2}, x \in S$ x isolated in $S \Leftrightarrow \exists P \text{ pattern}, \mathcal{O}_P \cap S = \{x\}$

Definition.

 $S \rightarrow S^{\,\prime} = Set$ of non isolated points in S

S subshift $(S = \mathcal{T}_{\tau}, \mathcal{F}_{\tau}$ not necessary finite) $\Rightarrow S'_{\pm}$ subshift

Cantor-Bendixson rank

$$\Rightarrow S^{(0)} = S$$

$$\bullet S^{(\alpha+1)} = (S^{(\alpha)})'$$

$$\Rightarrow S^{(\lambda)} = \bigcap_{\alpha < \lambda} S^{(\alpha)}$$

Example

-2

Basic properties of C-B rank

- → $\exists \lambda \text{ countable}, S^{(\lambda)} = S^{(\lambda+1)}$ (At most countably many finite patterns)
- \Rightarrow Least such ordinal : Cantor-Bendixson rank of S
- → Least ordinal λ s.t. $c \notin S^{(\lambda)} = \rho(c)$

イロト イボト イヨト イヨト

Interesting property

Lemma

 $\mathcal{T}_{\tau} \text{ countable } \Leftrightarrow \forall x \in \mathcal{T}_{\tau}, \exists \lambda,
ho(x) = \lambda.$

(日) (四) (三) (三)

Interesting property

Lemma

$$\mathcal{T}_{\tau} \ countable \Leftrightarrow orall x \in \mathcal{T}_{\tau}, \exists \lambda,
ho(x) = \lambda.$$

Proof.

 $\Leftarrow: \text{ Cantor-Bendixson rank of } \mathcal{T}_{\tau} \text{ countable} \\ \Rightarrow: \mathcal{T}_{\tau}^{(\lambda)} = \mathcal{T}_{\tau}^{(\lambda+1)}, \ \mathcal{T}_{\tau}^{(\lambda)} \text{ perfect thus uncountable if non } \\ \text{empty (Baire)} \end{cases}$

イロト イボト イヨト イヨト

Cardinality of \mathcal{T}_{τ}

Theorem

 \mathcal{T}_{τ} is either finite, countable or has the cardinality of continuum.

Proof. Compact, 0-dimensional.

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element Maximal element

Topology

Links...

Only countably many tilings... Conclusion

Pre-order

590

C-B ranks

First remark

x,y ranked by ρ

Lemma

 $x \prec y \Rightarrow \rho(x) > \rho(y)$

《曰》 《卽》 《注》 《注》

First remark

```
x,y ranked by \rho
```

Lemma

$$x \prec y \Rightarrow
ho(x) >
ho(y)$$

Theorem

If \mathcal{T}_{τ} is countable, there exists no infinite increasing chain for \prec

Proof.

This would give an infinite decreasing chain of ordinals.

Preliminary result

Theorem

S subshift that contains only periodic configurations \Rightarrow S finite

(日) (四) (三) (三)

Proof.

 ${\cal S}$ infinite then we'll construct a sequence M_i of patterns s.t. :

- \rightarrow M_i square pattern centered at 0
- → M_i subpattern of M_{i+1}
- $ightarrow orall i, \{x \in \mathcal{T}_{ au}, M_i \in x\}$ is infinite
- $ightarrow M_i \in x \Rightarrow x$ has a period greater than i

Construction

- \Rightarrow $M_0 = \emptyset$
- $ightarrow M_i$: size $a \times a$
- → C : patterns of size $(a+2(i+1)) \times (a+2(i+1))$ with M_i at their center and that are not i+1 periodic.
- → Infinitely many x ∈ S that contains a pattern of C (if a configuration does not contain an element of C, it is at most i + 1 periodic)
- → $M_{i+1} \in C$ s.t. there are infinetely many elements of S that contains it.

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element Maximal element

Topology

Links...

Only countably many tilings...

Conclusion

Non minimal tiling

Corollary.

When \mathcal{T}_{τ} is countable, there exists a non minimal tiling.

(日) (四) (三) (三)

And now ?

Question.

What are the other tilings of \mathcal{T}_{τ} ?

《曰》 《卽》 《注》 《注》

And now ?

Question.

What are the other tilings of \mathcal{T}_{τ} ?

Theorem

There exists a tiling c with exactly one direction of periodicity.

イロト イボト イヨト イヨト

Sketch of the proof

- \Rightarrow There exists a tiling which is not minimal.
- ➡ There exists a tiling c which is at level 1, that is such that all tilings less than c are minimal.
- ➡ Such a tiling has exactly one direction of periodicity.

Rank of \mathcal{T}_{τ}

Lemma

 $\rho(\mathcal{T}_{\tau})$ cannot be the successor of a limit ordinal.

Proof.

Cannot be a limit ordinal : compactness

イロト イボト イヨト イヨト

Continuation of the proof...

Proof.

- $\Rightarrow \rho(\mathcal{T}_{\tau}) = \beta + 1, \ \beta = \bigcup_{i < \omega} \beta_i$
- → $\mathcal{T}_{\tau}^{(\beta)}$ finite thus only contains periodic tilings (period p)
- $\twoheadrightarrow \ x_i \in \mathcal{T}_{\tau}^{(\beta_i)} \setminus \mathcal{T}_{\tau}^{(\beta_{i+1})}$
- \Rightarrow w.l.o.g. x_i is not p periodic "at its center"
- $\Rightarrow \lim x_i \in \mathcal{T}_{\tau}^{(\beta)}...$

Tiling at level 1

Corollary.

There exists a tiling c at level 1.

Proof.

 $\mathcal{T}_{ au}^{(eta-1)}$ infinite $\Rightarrow c \in \mathcal{T}_{ au}^{(eta-1)}$, c non periodic thus non minimal

But $x \prec y \Rightarrow \rho(x) > \rho(y)$, thus c is at level 1.

イロト イボト イヨト イヨト

-

Stucture of c

Lemma

Any pattern that appears in c appears infinitely many times.

Proof.

P pattern that appears only once in c $\forall x, x \prec c, P \notin x$ Patterns of c of size $2p \times 2p$ not p periodic appears arbitrary far from P? No : extraction

To finish our proof

Theorem

There exists a tiling c with exactly one direction of periodicity.

Proof.

P isolates *c* in $\mathcal{T}_{\tau}^{(\beta-1)}$, appears twice, $c = \sigma(c)$.

イロト イボト イヨト イヨト

Hidden tracks

Plan de l'exposé

Introduction and definitions Example

Combinatorics

Minimal element Maximal element

Topology

Links...

Only countably many tilings...

Conclusion

Conclusion

- ➡ Different points of view : Combinatorial vs. topological
- ➡ Interesting links

Questions remain :

- → Characterize τ s.t. T_{τ} is countable
- → \mathcal{T}_{τ} countable $\Rightarrow \rho(\mathcal{T}_{\tau})$ finite ?

Hidden tracks

Proof of cardinality result

Theorem

A perfect, compact, 0-dimensional space P has cardinality of continuum.

Proof.

Any non empty clopen can be split in two non empty clopen :

$$C ext{ clopen, } x
eq y \in C \Rightarrow P \in x, y
ot\in \mathcal{O}_P, C_1 = C \cap \mathcal{O}_P, C_2 = C \setminus C_1.$$

Hidden tracks

Proof of cardinality result

Hidden tracks

Proof of cardinality result

Proof.

 u_n "increasing" sequence of words of length n (u_n is prefix of u_{n+1}). $C_{u_{n+1}} \subseteq C_{u_n}, \bigcap_{n \in \mathbb{N}} C_{u_n} \neq \emptyset$ (compactness, $\forall n, C_{u_n} \neq \emptyset$).

イロト イボト イヨト イヨト