
GPAC, Analyse récursive et fonctions
R-récursives

Trois modèles équivalents de calcul sur les
réels.

Emmanuel Hainry

LORIA/INPL, Nancy, France

1/45

Discrete Case

I There are several models for computation over integers
I Recursive functions
I Turing machines
I Circuits
I λ-calculus
I ...

I But those models are “equivalent”.

Church-Turing thesis

All reasonable powerful enough discrete models of computation
compute exactly the same functions.

2/45

Approaches to analog computation

Several different devices

I Differential analyzer [Bush 31]

I Neural networks [Hopefield 84]

I Operational Amplifiers

I ...

Several different models:

I General Purpose Analog Computer (GPAC) [Shannon 41]

I Computable Analysis [Turing 36]

I BSS model [Blum Shub Smale 89]

I ...

However, contrarily to the digital case, few connections between
these models are known.

3/45

Linking models of “real” computation

I The models of computable analysis and R-recursive functions
deal with similar functions but lack relations between their
classes.

I Investigating such links can help giving an analog
characterization of what may be considered reasonable in
computation over the reals.

I A step towards a Church Thesis for computation over the
reals?

I A way to characterize the algorithmic complexity of some
problems on dynamical systems?

4/45

“Real-time” computing yields unreasonable results

Zeno paradox (Z non å Ele�thc)

At any time between its launch and arrival, an arrow has first to
cover one half of the distance towards its goal.

1/2 1/4 1/8

Accelerating Turing machine

An ATM achieves its first computing step in time 1
2 , its second

step in time 1
4 , its n-th step in time 1

2n .
At time 1, this machine has done an infinity of computation steps.

5/45

“Real-time” computing yields unreasonable results

Zeno paradox (Z non å Ele�thc)

At any time between its launch and arrival, an arrow has first to
cover one half of the distance towards its goal.

1/2 1/4 1/8

Accelerating Turing machine

An ATM achieves its first computing step in time 1
2 , its second

step in time 1
4 , its n-th step in time 1

2n .
At time 1, this machine has done an infinity of computation steps.

5/45

Zeno phenomenon in signal machines

Signal machines [Durand-Lose 03] are a continuous counterpart to
cellular automata:

6/45

Zeno phenomenon in signal machines (2)

It is possible to reduce the time taken to do a computation by
changing the slopes of the signals:

→

7/45

Setting

Circuit gpac
x1 x2 x3

¬ ∧ ∧

∨ ¬

∨

∫ ∫ ×t

−1

y1

y2
y3

Turing Machine: Recursive analysis:

M

0 1 3

0 1 6 9

M

3 / 1] 2 2 / 7

9 / 1]

Recursive functions: R-recursive functions:
[0,S ,U;COMP,REC , µ] [0, 1,U;COMP, INT, µR]

8/45

Recursive and Sub-recursive functions

Rec(N) = [0,S ,U;COMP,REC , µ]
(

PR(N) = [0,S ,U;COMP,REC]

(

En(N) = [0,S ,U,	,En−1;COMP,BΣ,BΠ]

(

E3(N) = E(N) = [0,S ,U,	;COMP,BΣ,BΠ]

9/45

Recursive and Sub-recursive functions

Rec(N) ∼ Turing machines

(
PR(N) ∼ For programs (no while)

(

En(N) Grzegorczyk’s hierarchy

(

E3(N) = E(N) ∼ Time bounded by a 222···
n

9/45

Recursive analysis: type 2 machines

A tape represents a real
number

Let νQ be a representation of the
rational numbers.
(xn) x iff ∀i , |x − νQ(xi)| < 1

2i

M behaves like a Turing
machine

Write-only one-way output tape.

10/45

Computable functions

Definition [Computable functions]

A function f : [a, b]→ R with a, b ∈ Q is computable (resp:
elementarily computable) iff there exists φ : NN → NN recursive
(resp: elementary) such that

∀X x , (φ(X)) f (x).

11/45

Examples of recursively computable functions

Most usual functions are recursively computable:

I Polynomials, exp, sin, cos are in Rec(R)

I Euler’s Γ

Γ(x) =

∫ ∞

0
tx−1e−tdt

is in Rec(R)

All functions defined through recursive analysis are continuous.

12/45

Differential analyzers/GPAC

1876 William Thomson (Lord Kelvin) first thought of
interconnecting mechanical integrators to compute.

1931 A differential was built by Vannevar Bush at MIT.

1941 Claude Shannon modelized the differential analyzer as a
GPAC.

13/45

Differential analyzer

http://www.meccano.us/differential_analyzers/robinson_da/

14/45

http://www.meccano.us/differential_analyzers/robinson_da/

Mechanical integrator

15/45

The GPAC

gpac [Shannon 41] consists in circuits interconnecting the
following components:

g
f a +

∫ t
t0

f(u)dg(u)
∫ a

t0

λλ

f
g f + g+

f
g f × g×

There can be loops in the circuit.

16/45

Examples

Example (Computing exp with a GPAC)

∫ 1

0 expt

{
y ′ = y
y(0) = 1

Example (Computing cos and sin with a GPAC)

∫ ∫ ×t

−1

y1

y2
y3

y1(0) = 1
y2(0) = 0
y ′2 = y1
y ′1 = −y2

=⇒
{

y1 = sin
y2 = cos

17/45

Features of the GPAC

Claim [Shannon 41]

Functions generated by gpac are the differentially algebraic
functions.
Differentially algebraic functions are the solutions of
P

(
t, y , y ′, ..., y (n)

)
= 0.

The proof was corrected in [Pour-El 74] then [Lipshitz Rubel 87]
and [Graça Costa 03].

Theorem [Graça Costa 03]

A scalar function f : R→ R is generated by a GPAC iff it is a
component of the solution of a system

y ′ = p(t, y), (1)

where p is a vector of polynomials.

18/45

Previous results on the GPAC

It can be shown that:

I The GPAC computes most usual functions (polynomials,
trigonometric functions...)

I The Gamma function Γ(x) =
∫∞
0 tx−1e−tdt and Riemann’s

zeta function ζ(x) =
∑∞

n=1
1
nx cannot be computed by a

GPAC

The latter result seems to indicate that the gpac is less powerful
than recursive analysis since Γ and ζ are computable according to
Computable Analysis.

19/45

R-recursive functions [Moore 96]

Definition [G]

G = [0, 1,U;COMP, INT, µR]

REC : f , g 7→ h
h(x , 0) = f (x)

h(x ,S(n)) = g(x , n, h(x , n))

INT : f , g 7→ h
h(x , 0) = f (x)

∂h
∂y (x , y) = g(x , y , h(x , y))

20/45

Problems with G

I Not always well defined (0×+∞ = 0, non integrable
functions).

I [Mycka Costa 04] presents well-defined operator (differential
recursion and infinite limits) that have the same power as G.

I Presents time compression phenomenon (Zeno’s paradox).

I Contains unwanted functions (in particular χQ or functions
that decide the halting problem of Turing machines).

21/45

χhalt ∈ G

I There exists f : R3 → R3 simulating a Turing machine:
∀m, n, q ∈ N3, (m′, n′, q′) = f (m, n, q) is the next
configuration (m, n represent the tape, q the state).

I Iteration can be simulated in G. F (t,m0, n0, q0) represents
the configuration after t steps.

I M halts iff ∃t ∈ N such that (, , qf) = F (t,m0, n0, q0)

I in other terms,M if and only if the smallest root of

(u3(F (tan(z), ...))− qf)(z − π/2)

is not π/2.

22/45

Setting

gpac

Turing machines Recursive analysis

Recursive functions R-recursive functions

We have seen that Γ belongs to Rec(R) but is not generable by
GPAC.

23/45

GPAC with limit

The notions of computability in the GPAC and in Computable
Analysis are very distinct: “real time” computation versus limit
procedure

Definition

1. Use initial settings on integrators to represent the initial input
x ∈ Rn (the other initial settings must be computable reals).

2. Use the usual input as a time variable t

3. Then f : Rn → R is GPAC-computable if there is a GPAC
with two outputs g(x , t) and ε(x , t) satisfying:

I limt→∞ ‖ε(x , t)‖ = 0;
I ‖g(x , t)− f (x)‖ ≤ ε(x , t)

24/45

How to compute Γ with a GPAC

I This notion can be expected to match more closely
Computable Analysis.

I In [Graça 04] it is shown that Γ and ζ are gpac-computable.

I But no exact characterization of the class of functions
obtained by the previous notion was previously given.

25/45

Result

Theorem [with Bournez Campagnolo Graça]

Let f : [a, b]→ R be a real function. Then f is recursively
computable iff it is GPAC-computable.

26/45

recursively computable ⇒ gpac-computable

We use results from [Branicky 95] and
[Graça Campagnolo Buescu 05] to build a gpac that simulates
robustly a Turing machine.

Discretizex
t M

k

νQ

sgn(k, n) abs(k, n)

Memo

(1− 2× sgn(k, n)) abs(k,n)
2n

n← n + 1

g(x, t); ε(x, t)

1. Compute an integer k from
x and n such that∣∣k/2m(n) − x

∣∣ < 1/2m(n);

2. Compute sgn(k, n) and
abs(k, n);

3. Compute (1−2sgn(k,n))abs(k,n)
2n

and memorize the result till
another cycle is completed;

4. Take n = n + 1 and restart
the cycle.

27/45

Simulating the discrete part

I We would like to take k = bx2m(n)c, but the discrete function
“integer part” b·c cannot be obtained by a GPAC

I Our solution is to use three functions ri (t) and three
“detecting functions” ωi such that ωi (t) 6= 0 iff ri (t) ∈ N

-1 -0,5 0 0,5 1 1,5 2

-1

-0,5

0,5

1

1,5

y =

∑2
i=0 ωk,i (nx)si∑2
i=0 ωk,i (nx)

28/45

Recursively computable implies gpac-computable

Clock

M1

M2

M3 Memo

Memo

×÷

n + +x

t

g

n

n

x n

abs

sgn

29/45

Setting

Recursive analysis
Turing machines Type-2 machines

Recursive functions R-recursive functions
G, L, H

We know that DP(L) = E(N).
To characterize in an algebraic way the real recursive functions, we
will define a zero-finding operator and a limit operator.

30/45

R-recursive functions [Campagnolo Moore Costa 00]

Definition [L]

L = [0, 1,−1, π, U, θ3;COMP,LI]

With

I U : projections

I θ3 :

{
R → R
x 7→ max(0, x3)

I COMP: composition

I LI: given g , h. f = LI(g , h) is the maximal solution of
f (−→x , 0) = g(−→x)
∂f
∂y (−→x , y) = h(−→x , y)f (−→x , y)

31/45

Properties of L

For a class F of functions R→ R, DP(F) is the set of functions
N→ N that have an extension in F .

Theorem [Campagnolo Moore Costa 00]

DP(L) = E(N)

Theorem [Campagnolo Moore Costa 00]

DP(Ln) = En(N)

32/45

Extension to recursive functions

I This result gives a characterization of E(N) (and has been
extended to all levels of the Grzegorczyk hierarchy).

I We introduce an operator UMU to obtain

DP(L+ UMU) = Rec(N).

33/45

A real µ operator

Remark: A naive “return the smallest root” operator yields
unwanted functions (see [Moore 96]).

Definition

Given f : D × I ⊂ Rk+1 → R differentiable such that:

I ∀−→x ∈ D, the function g−→x : y 7→ f (−→x , y) is non decreasing,

I g−→x has a unique root y−→x ∈
◦
I,

I ∂f
∂y (−→x , y−→x) > 0.

UMU(f) =

{
Rk −→ R
−→x 7→ y such that f (−→x , y) = 0

34/45

H = L+ UMU

Definition [H]

H = [0, 1,U, θ3;COMP,CLI,UMU]

Proposition

H = L+ UMU

Proof:

I −1 = UMU(x 7→ x + 1)

I x 7→ 1
1+x2 = UMU

(
x , y 7→ (1 + x2)y − 1

)
;

arctan(0) = 0 and arctan′(x) = 1
1+x2 ;

π = 4arctan(1)

35/45

Result: DP(H) = Rec(N)

Theorem

DP(H) = Rec(N)

Where Rec(N) denotes the set of discrete partial recursive
functions.

Proof: we have to demonstrate both directions.

I DP(H) ⊂ Rec(N) comes from the fact that UMU preserves
computability (in the sense of recursive analysis).

I Rec(N) ⊂ DP(H) can be proven using a normal form theorem
in Rec(N) and translating the discrete µ into our UMU.

36/45

Consequences

Corollary

L (H

Theorem [Normal Form]

A function from H can be written with at most 3 nested UMU.

We may need 2 UMU to obtain π and −1. The other UMU comes
from the simulation of the discrete µ.

37/45

Characterizing computable analysis classes

I Previous results give analog characterizations of E(N) and
Rec(N).

I With a limit operator, we can extend those characterizations
to obtain characterizations of E(R) and Rec(R).

H+ LIM = Rec(R)

I From [Mycka Costa 04], we know that a natural limit operator
is as powerful as Moore’s µR.

38/45

Operator LIM

Definition

Given f : R×D ⊂ Rk+1 → Rl ,

I if there are K : D → R and β : D → R polynomials such that

∀−→x ,∀t ≥ ‖−→x ‖, ‖∂f

∂t
(t,−→x)‖ ≤ K (−→x) exp(−tβ(−→x)),

I if −→x 7→ limt→+∞ f (t,−→x) is C2.

Then, F = LIM(f ,K , β) is defined by

F (−→x) = lim
t→∞

f (t,−→x).

39/45

Theorems

We will write C? where C = [F ;O] to denote the class [F ;O,LIM].

Theorem

For functions of class C2 defined on a compact domain,

L? = E(R).

40/45

Theorems

Theorem

For functions of class C2 defined on a compact domain,

H? = Rec(R).

41/45

Consequences

Theorem [Normal Form]

A function from L? or H? can be written with at most 2 nested
LIM

One limit to obtain 1/x and another from the limit mechanism.

Proposition

Let D̄ = [0, 1,−1,U;COMP, Ī].

(D̄ + θ3)
∗ ⊇ PR(R).

42/45

Results

gpac-computable⇔ Recursively computable

Rec(R) = H?

PR(R) ⊆ (D̄ + θ3)
?

En(R) = L?
n

E(R) = L?

43/45

Results

I Machine-independent characterizations of classes from
Recursive analysis.

I Equivalence between what can be computed by a gpac and
by recursive analysis.

I Can we label Rec(R) as what is reasonable?

44/45

Perspectives

I Understand what complexity means in those models
I [Ko 91] studies complexity for Recursive Analysis
I Classes of complexity à la Bellantoni & Cook can be defined as

R-recursive functions
I Complexity in gpac?

I Extend classical results to H?

I Universal function(s)
I Fixpoint theorem
I sm

n theorem

I Study robustness to perturbations.

45/45

	Introduction
	Context
	Problématique

	Models
	Recursive analysis
	GPAC
	R-recursive functions

	GPAC compared to recursive analysis
	Extending the GPAC
	Recursively computable implies GPAC computable

	R-recursive functions compared with Recursive analysis
	Preliminary
	zero-finding operator
	Limit operator

	Conclusion

