GPAC, Analyse récursive et fonctions
R-récursives
Trois modeles équivalents de calcul sur les
réels.

Emmanuel Hainry

LORIA/INPL, Nancy, France

1/45

Discrete Case

» There are several models for computation over integers
» Recursive functions

Turing machines

Circuits

A-calculus

vy v VvYyy

» But those models are “equivalent”.

Church-Turing thesis

All reasonable powerful enough discrete models of computation
compute exactly the same functions.

2/45

Approaches to analog computation

Several different devices
» Differential analyzer [Bush 31]
» Neural networks [Hopefield 84]
» Operational Amplifiers
> ...
Several different models:
» General Purpose Analog Computer (GPAC) [Shannon 41]
» Computable Analysis [Turing 36]
» BSS model [Blum Shub Smale 89]
> ...

However, contrarily to the digital case, few connections between
these models are known.

3/45

Linking models of “real” computation

» The models of computable analysis and R-recursive functions
deal with similar functions but lack relations between their
classes.

» Investigating such links can help giving an analog
characterization of what may be considered reasonable in
computation over the reals.

> A step towards a Church Thesis for computation over the
reals?

» A way to characterize the algorithmic complexity of some
problems on dynamical systems?

4/45

“Real-time” computing yields unreasonable results

Zeno paradox (Z1fvov 6 Eledtng)

At any time between its launch and arrival, an arrow has first to
cover one half of the distance towards its goal.

5/45

“Real-time” computing yields unreasonable results

Zeno paradox (Z1fvov 6 Eledtng)

At any time between its launch and arrival, an arrow has first to
cover one half of the distance towards its goal.

A
y
3
y
3

\ 4

1/2 1/4 1/8

Accelerating Turing machine

An ATM achieves its first computing step in time % its second
step in time %, its n-th step in time 2—1,,
At time 1, this machine has done an infinity of computation steps.

5/45

Zeno phenomenon in signal machines

Signal machines [Durand-Lose 03] are a continuous counterpart to
cellular automata:

[N/

6/45

Zeno phenomenon in signal machines (2)

It is possible to reduce the time taken to do a computation by
changing the slopes of the signals:

/

7/45

Setting

Circuit GPAC

1 T2 x3

Turing Machine: Recursive analysis:
BT T T I/l f2 /T T T
JoJe[ol TTTTTT - O/ TTTTITT
Recursive functions: R-recursive functions:

[0, S, U; COMP, REC, 1] [0,1, U; COMP, INT, yg]

8/45

Recursive and Sub-recursive functions

Rec(N) = [0,S,U; COMP,REC,]

)

PR(N) = [0,S,U; COMP, REC]

)

En(N) = [0,S,U,8, E,_1; COMP, BY., BI|
o)

&(N)=£&(N) = [0,S,U,e; COMP, BY., BI]

9/45

Recursive and Sub-recursive functions

Rec(N)
Ut
PR(N)
Ut
En(N)
Ut

&(N) = &(N)

Turing machines
For programs (no while)

Grzegorczyk's hierarchy

Time bounded by a 22"

9/45

Recursive analysis: type 2 machines

Xi
CIITTITLITTITITTITTTITTITTT

/

Xz
CLITTPITTTITITTITTTITITTT

F——

@'—;—‘

\ (X1 X2)

A tape represents a real
number

Let vg be a representation of the
rational numbers.
(xn) ~ x iff Vi, |x — vg(x;)] < %

M behaves like a Turing
machine

Write-only one-way output tape.

10/45

Computable functions

Definition [Computable functions]

A function f : [a, b] — R with a, b € Q is computable (resp:
elementarily computable) iff there exists ¢ : NN — NN recursive
(resp: elementary) such that

VX ~ x, (0(X)) ~ f(x).

11/45

Examples of recursively computable functions

Most usual functions are recursively computable:
» Polynomials, exp, sin, cos are in Rec(R)
» Euler's T

Mx) = / " le tdt
0
is in Rec(R)

All functions defined through recursive analysis are continuous.

12/45

Differential analyzers/GPAC

1876 William Thomson (Lord Kelvin) first thought of
interconnecting mechanical integrators to compute.

1931 A differential was built by Vannevar Bush at MIT.

1941 Claude Shannon modelized the differential analyzer as a
GPAC.

13/45

Differential analyzer

http://www.meccano.us/differential_analyzers/robinson_da/

14/45

http://www.meccano.us/differential_analyzers/robinson_da/

Mechanical integrator

CARRIAGE
SETTIHE-AR

HINGE
MOLNTING

L o — DRIVE
CONSTANT SPEED
AT

15/45

The GPAC

GPAC [Shannon 41] consists in circuits interconnecting the
following components:

b3 T e+l fwdgw)
A — A

29+ Frfty

$1 x Frxg

There can be loops in the circuit.

16/45

Examples

Example (Computing exp with a GPAC)

(VoL

17/45

Features of the GPAC

Claim [Shannon 41]

Functions generated by GPAC are the differentially algebraic
functions.
Differentially algebraic functions are the solutions of

P (t,y,y’, ...,y(")) =0.

The proof was corrected in [Pour-El 74] then [Lipshitz Rubel 87]
and [Graga Costa 03].

Theorem [Gragca Costa 03]

A scalar function f : R — R is generated by a GPAC iff it is a
component of the solution of a system

y' = p(t,y), (1)
where p is a vector of polynomials.

18/45

Previous results on the GPAC

It can be shown that:

» The GPAC computes most usual functions (polynomials,
trigonometric functions...)

» The Gamma function I'(x) = [, t*"'e~'dt and Riemann’s
zeta function ((x) = Y72 ; L cannot be computed by a
GPAC

The latter result seems to indicate that the GPAC is less powerful
than recursive analysis since [and ¢ are computable according to
Computable Analysis.

19/45

R-recursive functions [Moore 96]

G = [0,1, U; COMP, INT, 1ig]

REC :f,g+—h INT:f,g—h
h(x,0) = f(x) h(x,0) = f(x)
h(x, S(n)) = g(x,n,h(x,n)) Gy (x,y) = g(x,y, h(x,y))

20/45

Problems with §

» Not always well defined (0 x +00 = 0, non integrable
functions).
» [Mycka Costa 04] presents well-defined operator (differential

recursion and infinite limits) that have the same power as G.

» Presents time compression phenomenon (Zeno's paradox).

» Contains unwanted functions (in particular xq or functions
that decide the halting problem of Turing machines).

21/45

Xhat € G

» There exists f : R3 — R3 simulating a Turing machine:
Vm,n,q € N3, (m',n’,q') = f(m, n, q) is the next
configuration (m, n represent the tape, g the state).

> lIteration can be simulated in G. F(t, mg, no, qo) represents
the configuration after t steps.

» M halts iff 3t € N such that (_, , gr) = F(t, mo, no, qo)

» in other terms, M if and only if the smallest root of

(us(F(tan(z),...)) — gr)(z — 7/2)

is not /2.

22/45

Setting

GPAC
Recursive analysis

We have seen that I belongs to Rec(R) but is not generable by
GPAC.

23/45

GPAC with limit

The notions of computability in the GPAC and in Computable
Analysis are very distinct: “real time" computation versus limit
procedure

1. Use initial settings on integrators to represent the initial input
x € R" (the other initial settings must be computable reals).

2. Use the usual input as a time variable t

3. Then f : R" — R is GPAC-computable if there is a GPAC
with two outputs g(x, t) and &(x, t) satisfying:

> limi_ le(x, t)]| = 0;
> llg(x, 1) = F(x)Il < e(x, t)

24/45

How to compute [with a GPAC

» This notion can be expected to match more closely
Computable Analysis.

» In [Graga 04] it is shown that I and ¢ are GPAC-computable.

» But no exact characterization of the class of functions
obtained by the previous notion was previously given.

25/45

Result

Theorem [with Bournez Campagnolo Graca]

Let f : [a, b] — R be a real function. Then f is recursively
computable iff it is GPAC-computable.

26/45

recursively computable = GPAC-computable

We use results from [Branicky 95] and

[Graga Campagnolo Buescu 05] to build a GPAC that simulates

robustly a Turing machine.

; Discretize }T’{ M ‘

sgn(k,n)| 1abs(k,n)

b (k.
(1 -2 x sgn(k,n))“ 55")

g(z,t);e(@,t)

. Compute an integer k from

x and n such that
|k/2m(m) — x| < 1/2m();

. Compute sgn(k, n) and

abs(k, n);
(1—2sgn(k,n))abs(k,n)

. Compute o

and memorize the result till
another cycle is completed;

. Take n = n+1 and restart

the cycle.

27/45

Simulating the discrete part

» We would like to take k = |x2™(") |, but the discrete function
“integer part” |-| cannot be obtained by a GPAC

» Our solution is to use three functions r;(t) and three
“detecting functions” w; such that wj(t) # 0 iff ri(t) € N

Yo Wkilmx)s

Y7o wi,i(nx)

y

28/45

Recursively computable implies GPAC-computable

29/45

Setting

Recursive analysis
Type-2 machines
R-recursive functions

G, L H

We know that DP(L) = £(N).
To characterize in an algebraic way the real recursive functions, we
will define a zero-finding operator and a limit operator.

30/45

R-recursive functions [Campagnolo Moore Costa 00]

Definition [£]

£=1[0,1,-1,m, U,603; COMP,LI]

With
» U : projections
> 03 : { R = R
x +— max(0,x3)
» COMP: composition
» LI: given g, h. f = LI(g, h) is the maximal solution of

f(X,0) = g(x)
EXy) = (X, y)f(X,y)

31/45

Properties of L

For a class F of functions R — R, DP(F) is the set of functions
N — N that have an extension in F.

Theorem [Campagnolo Moore Costa 00]

DP(L) = &(N)

Theorem [Campagnolo Moore Costa 00]

32/45

Extension to recursive functions

» This result gives a characterization of £(N) (and has been
extended to all levels of the Grzegorczyk hierarchy).

» We introduce an operator UMU to obtain

DP(L + UMU) = Rec(N).

33/45

A real 1 operator

Remark: A naive “return the smallest root” operator yields
unwanted functions (see [Moore 96]).

Definition

Given f : D x T C R*t1 — R differentiable such that:
» VX € D, the function g% : y — f(X,y) is non decreasing,
» g has a unique root y» € 7,
> (X, yz) > 0.

RF — R

—

UMU(f) = { +— y such that f(X,y) =0

34/45

H =L+ UMU

Definition [H]

H = 10,1, U, 03, COMP, CLI, UMU]

H =L+ UMU

Proof:
» —1=UMU(x — x+1)
> x o iy = UMU (x,y — (1 +x3)y — 1);
arctan(0) = 0 and arctan’(x) = 1+1X2;
7 = 4arctan(1)

35/45

Result: DP(H) = Rec(N)

Theorem

DP(H) = Rec(N)

Where Rec(N) denotes the set of discrete partial recursive
functions.

Proof: we have to demonstrate both directions.

» DP(H) C Rec(N) comes from the fact that UMU preserves
computability (in the sense of recursive analysis).

» Rec(N) C DP(H) can be proven using a normal form theorem
in Rec(N) and translating the discrete p into our UMU.

36/45

Consequences

Corollary

LCH

==

Theorem [Normal Form]
A function from H can be written with at most 3 nested UMU.

We may need 2 UMU to obtain 7 and —1. The other UMU comes
from the simulation of the discrete .

37/45

Characterizing computable analysis classes

» Previous results give analog characterizations of £(N) and
Rec(N).

» With a limit operator, we can extend those characterizations
to obtain characterizations of £(R) and Rec(R).

H + LIM = Rec(R)

» From [Mycka Costa 04], we know that a natural limit operator
is as powerful as Moore's ug.

38/45

Operator LIM

Given f : R x D c Rk 5 R/,
» if there are K : D — R and 3 : D — R polynomials such that

— — of — — —
VXV 2 X 5t X)) < K(X) exp(=t5(X)),

> if X — lime o F(t, X) is C2.
Then, F = LIM(f, K, 3) is defined by

F(X) = Jim f(,%).

39/45

Theorems

We will write C* where C = [F; O] to denote the class [F; O, LIM].

For functions of class C? defined on a compact domain,

£* = E(R).

40/45

Theorems

For functions of class C? defined on a compact domain,

H* = Rec(R).

41/45

Consequences

Theorem [Normal Form]

A function from £* or H* can be written with at most 2 nested
LIM

One limit to obtain 1/x and another from the limit mechanism.
Proposition

Let D =[0,1, -1, U; COMP, /].

(D + 63)* 2 PR(R).

42/45

Results

GPAC-computable < Recursively computable

43/45

Results

» Machine-independent characterizations of classes from
Recursive analysis.

» Equivalence between what can be computed by a GPAC and
by recursive analysis.

» Can we label Rec(R) as what is reasonable?

44/45

Perspectives

» Understand what complexity means in those models
» [Ko 91] studies complexity for Recursive Analysis
> Classes of complexity a la Bellantoni & Cook can be defined as
R-recursive functions
» Complexity in GPAC?
» Extend classical results to H*
» Universal function(s)
» Fixpoint theorem
> s theorem

» Study robustness to perturbations.

45/45

	Introduction
	Context
	Problématique

	Models
	Recursive analysis
	GPAC
	R-recursive functions

	GPAC compared to recursive analysis
	Extending the GPAC
	Recursively computable implies GPAC computable

	R-recursive functions compared with Recursive analysis
	Preliminary
	zero-finding operator
	Limit operator

	Conclusion

