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Outline

e Review of previous work on the 2D and 3D diameter
problems.

e Q(nlogn) lower bound for computing the diameter of a
3D convex polytope.

e Reduction from Hopcroft’s problem to the diameter
problem for point sets in R”.
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Previous wor k
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Thediameter problem

e INPUT: a set P of n points in R,
e OUTPUT: diam(P) := max{d(z,y) | z,y € P}.
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Thediameter problem
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Decision problem

e We will give lower bounds for the decision problem
associated with the diameter problem.

e INPUT: a set P of n points in R

e OUTPUT:
. NO if diam(P) > 1
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Observation

e P lies In the intersection of the two balls with radius
d(p,p’) centered at p and p’.
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Thediameter problem

e P lies between two parallel hyperplanes through p and
p’. We say that (p, p’) is an antipodal pair.
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Thediameter problem
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e Any antipodal pair (and therefore any diametral pair)
lies on the convex hull CH(P) of P.
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Finding the antipodal pairs

e The rotating calipers technique.

g/
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Finding the antipodal pairs

e The rotating calipers technique.
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Computing thediameter of a 2D-point set

e Compute the convex hull CH(P) of P.
o O(nlogn) time.
e Find all the antipodal pairs on CH(P).

o There are at most n such pairs in non—degenerate
cases.

« O(n) time using the rotating calipers technique.

e Find the diametral pairs among the antipodal pairs.
o O(n) time by brute force.

e Conclusion:
o The diameter of a 2D-point set can be found in
O(nlogn) time
o The diameter of a convex polygon can be found in
O(n) time.
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Diameter in R’ and higher dimensions

e Randomized O(nlogn) time algorithm in R3
(Clarkson and Shor, 1988).

o Randomized incremental construction of an
Intersection of balls and decimation.

e Deterministic O(nlogn) time algorithm in R3
(E. Ramos, 2000).

e In RY, algorithm in n2-2/([d/21+1) 15,0
(Matousek and Schwartzkopf, 1995).
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L ower bound on the diameter

e Q(nlogn) lower bound in R?.

« Reduction from Set Disjointness.
Given A, B C R, decide if AN B = (.

A

wel
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Diameter of a polytope

e The diameter of a convex polygon in R? can be found
In O(n) time.

e Can we compute the diameter of a convex 3D-polytope
In linear time?

« NoO, we give an Q(nlogn) lower bound.

Lower Bounds for Geometric Diameter Problems — p. 19/48



M odel of computation

Lower Bounds for Geometric Diameter Problems — p. 20/48



Real-RAM

Real Random Access Machine.

Each registers stores a real number.
Access to registers in unit time.

Arithmetic operation (+, —, x, /) In unit time.
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Algebraic computation tree

e INput: z = (x1,29,...,x,) € R".
e Output: YES or NO

e Itis a dag with 3 types of nodes

o Computation nodes:
e a real constant,
e SOMe input number z;, or
e an operation {+, —, x, /,+/-} performed on
ancestors of the current node.

. arranged In a tree: compares with
0 the value obtained at a computation node that is
an ancestor of the current node.

e Leaves: YES or NO
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Algebraic computation tree: example




Algebraic computation tree (ACT)

e We say that an ACT decides S C R" if
o Y(x1,...,x,) € S, Itreaches a leaf labeled YES, and
o Y(x1,...,x,) ¢ S, It reaches a leaf labeled NO.

e The ACT model is stronger than the real-RAM model.

e To get a lower bound on the worst-case running time of
a real-RAM that decides S, it suffices to have a lower
bound on the depth of all the ACTs that decide S

Theorem (Ben-Or). Any ACT that decides S has depth

(2(log(number of connected components of 5)).
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L ower bound for 3D convex
polytopes
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Problem statement

We are given a convex 3-polytope P with n vertices.

P Is given by the coordinates of its vertices and its

combinatorial structure:

o All the Iinclusion relations between Its vertices,

edges and faces.

« The cyclic ordering of the edges of each face.
Remark: the combinatorial structure has size O(n).

Problem: we want to decide whether diam(P) < 1.

We show an Q(nlogn) lower bound. Our approach:
« We define a family of convex polytopes.
o We show that the sub-family with diameter < 1 has

nf¥n) connected components.
« We apply Ben-Or’s bound.
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Polytopes P(()

e The family of polytopes is parametrized by 3 € R?"1,

e When n is fixed, only the 2n — 1 blue points change
with 3.
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Notation

Example where n = 3.

| ba(fB)

Lower Bounds for Geometric Diameter Problems — p. 29/48



Notation

a:= (A_p,_pt1...,ap).
A:={{a_pn,0_pt1,...,apn}.

B L= (ﬁ—n#—l: ‘e aﬁn—l)-

B(ﬁ) = (b—n—i—l(ﬁ—nA—l)a SR 7bn—1<ﬁn—1))-

B(ﬁ) = {b—n+1(ﬁ—n—|—1)a SR bn—l(ﬁn—l)}-

—~._ (.—1 -1 —1 1 1 1
. -1 —1 —1 1 1 1

P(3) := CH(AU B(3) U O).
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Point sets A and ('
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AZ

e The blue region is parallel to Ozx=.

e J€|—a,q]
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Coordinates of pointsin A, B(3) and C

( %(1 — cos(i7)) )
a; =1 0
%Sil’l(i’y)
r COS ((z + %) w)
c; = rsin((i+%) @D)
%soz
cos(jt) — 4(1 — cos )
bj(B) == | sin(j2)
L sin(9)
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©=1/4n

o 1S small.

b =p/n
v =a/n

Parameters

Lower Bounds for Geometric Diameter Problems — p. 34/48



Pr oof

e Notation: diam(F, F) := max{d(e, f) | (e, f) € E x F}.
Lemma 1. The set

10(8) | 6 € [=a, o] and diam(A, 1b;(6)}) < 1}

has at least 2n connected components.
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Pr oof

e Proof of Lemma 1: Calculations, until the second-order

terms.
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Pr oof

Lemma 2. The combinatorial structureof CH(A U B(G) U C) IS
independent of 3.

e We denote P(3) = CH(AU B(B)uUC).

Lemma 3. diam(A U B(3) U C) = diam(A, B(0)).
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)| B €l-a,a]™ 1}
) | B € [—a,a]* 1 and diam(P(5)) < 1}

Ol

Sn — {(C_La B(B),
gn — {(C_L, 6(6)7
Notice that &, C S,, C R**".

Restriction to S,, is easy.

Lemmad4. Theset S,, can be decided by an ACT with depth
O(n).

Decinding &,, over S, Is hard.
Lemma 5. Any ACT that decides &,, has depth 2(n logn).

Proof: By lemmas 1 and 3, &, has at least (2n)?"~!
connected components. Apply Ben-Or’s bound.

Ol
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End of the proof

Theorem. Assume that an algebraic computation tree 73, decides
whether the diameter of a 3-polytope issmaller than 1. Then T,

has depth 2(n logn).

e Let d, be the depth of 7;,. The computation tree 7;, can
be transformed into T, of depth d,, + O(n) which
decides &, over S,,. Thus T, has depth A(nlogn) and
the same holds for 7,.

Lower Bounds for Geometric Diameter Problems — p. 39/48



Related wor k

e (Chazelle) The convex hull of two 3-polytopes can be
computed in linear time.

e (Chazelle et al.) It is not known whether the convex
hull of a subset of the vertices of a 3-polytope can be
computed in linear time.

e (Chazelle et al.) However, we can compute in linear
time the Delaunay triangulation of a subset of the
vertices of a Delaunay triangulation.
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Diameter isharder than Hopcroft’s
problem



Hopcroft's problem

e P is a set of n points in R?.

e Lisasetofn linesin R?.
e Problem: decide whether 4(p,¢) € P x L : p € ¢.
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Complexity of Hopcroft’s problem

e An o(n*?3logn) algorithm is known. (Matousek).
e No o(n*?) algorithm is known.

e Erickson gave an Q(n*/3) lower bound in a weaker
model.

« Partitioning algorithms, based on a
divide-and-conquer approach.
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From Hopcroft’s problem to Diameter

e We give a linear-time reduction from Hopcroft's
problem to the diameter problem in R’.

» Known upper bound: n1¢10g®W) n.

e We first give a reduction to the red-blue diameter
problem in R%: compute diam(E, F) when E and F are
n-point sets in RY.
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0(x,y, 2z

) :

|

Pr oof

T 22 L2t 2

Note that ||0(z, y, 2)|| = 1.

Forl <
o pi = (wi,vi, 1)

1<n

(:CQ) y27 227 \/§£Cy, \/§y2, \/5233)

o U; = (ui, Vi, wz) IS the line ¢; : u;x + v;y +w; = 0.
Let p; := 0(p;) and (% = 0(¢;).

We get

Ip; — G117

Ipil1 + 165117 — 2 < i, £ >

2—2

<p@',€j >2

Ipill[1€511°
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Pr oof

Note that p; € ¢; Iff < p;,¢; >= 0.

Thus, there exists 7, ;7 such that p; € ¢; if and only If
diam(0(P),0(L)) = 2.

9(P) and 9(L) are n-point sets in RS,

Similarly, we can get a reduction from Hopcroft's

problem to the diameter problem in R7, using this
linearization:

_ 1
0(x,y,z) = ( (2%, 9%, 2,V 2xy, V2uyz, V221), il)

T2 4 y2 + 22
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Related wor k

e The red-blue diameter in R* can be computed in

O(n*/3polylog n) (Matoudek and Scharzkopf). It would
be interesting to get a reduction from Hopcroft’s
problem.

e Erickson gave reduction from Hopfcroft problem to
other computational geometry problems.

« Ray shooting in polyhedral terrains,

» Halfspace emptyness in R°
are harder than Hopcroft's problem.
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