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Outline

Review of previous work on the 2D and 3D diameter
problems.

Ω(n log n) lower bound for computing the diameter of a
3D convex polytope.

Reduction from Hopcroft’s problem to the diameter
problem for point sets in R

7.
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Previous work
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The diameter problem

P

INPUT: a set P of n points in R
d.

OUTPUT: diam(P ) := max{d(x, y) | x, y ∈ P}.
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The diameter problem

p′

p

P

diam(P ) = d(p, p′).

Lower Bounds for Geometric Diameter Problems – p. 5/48



Decision problem

We will give lower bounds for the decision problem
associated with the diameter problem.

INPUT: a set P of n points in R
d.

OUTPUT:
YES if diam(P ) < 1

NO if diam(P ) > 1
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Observation

P

p′

p

P lies in the intersection of the two balls with radius
d(p, p′) centered at p and p′.
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The diameter problem

P

p′

p

` `′

P lies between two parallel hyperplanes through p and
p′. We say that (p, p′) is an antipodal pair .
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The diameter problem

P

p′

p

` `′

Any antipodal pair (and therefore any diametral pair)
lies on the convex hull CH(P ) of P .
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Finding the antipodal pairs

The rotating calipers technique.

`

`′
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Finding the antipodal pairs

The rotating calipers technique.
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Finding the antipodal pairs

The rotating calipers technique.
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Finding the antipodal pairs

The rotating calipers technique.
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Computing the diameter of a 2D-point set

Compute the convex hull CH(P ) of P .
O(n log n) time.

Find all the antipodal pairs on CH(P ).
There are at most n such pairs in non–degenerate
cases.
O(n) time using the rotating calipers technique.

Find the diametral pairs among the antipodal pairs.
O(n) time by brute force.

Conclusion:
The diameter of a 2D-point set can be found in
O(n log n) time
The diameter of a convex polygon can be found in
O(n) time.
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Diameter in R
3 and higher dimensions

Randomized O(n log n) time algorithm in R
3

(Clarkson and Shor, 1988).
Randomized incremental construction of an
intersection of balls and decimation.

Deterministic O(n log n) time algorithm in R
3

(E. Ramos, 2000).

In R
d, algorithm in n2−2/(dd/2e+1) logO(1) n

(Matoušek and Schwartzkopf, 1995).
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Lower bound on the diameter

Ω(n log n) lower bound in R
2.

Reduction from Set Disjointness.
Given A,B ⊂ R, decide if A ∩B = ∅.

Ã

B̃
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Diameter of a polytope

The diameter of a convex polygon in R
2 can be found

in O(n) time.

Can we compute the diameter of a convex 3D-polytope
in linear time?

No, we give an Ω(n log n) lower bound.
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Model of computation
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Real-RAM

Real Random Access Machine.

Each registers stores a real number.

Access to registers in unit time.

Arithmetic operation (+,−,×, /) in unit time.
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Algebraic computation tree

Input: x̄ = (x1, x2, . . . , xn) ∈ R
n.

Output: YES or NO

It is a dag with 3 types of nodes
Computation nodes:

a real constant,
some input number xi, or
an operation {+,−,×, /,√·} performed on
ancestors of the current node.

Branching nodes arranged in a tree: compares with
0 the value obtained at a computation node that is
an ancestor of the current node.
Leaves: YES or NO
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Algebraic computation tree: example

no

no

yes

yes

no yes

> 0

+ ×

×

+×
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y zx

+

> 0

NY
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Algebraic computation tree (ACT)

We say that an ACT decides S ⊂ R
n if

∀(x1, . . . , xn) ∈ S, it reaches a leaf labeled YES, and
∀(x1, . . . , xn) /∈ S, it reaches a leaf labeled NO.

The ACT model is stronger than the real–RAM model.

To get a lower bound on the worst-case running time of
a real-RAM that decides S, it suffices to have a lower
bound on the depth of all the ACTs that decide S

Theorem (Ben-Or). Any ACT that decides S has depth

Ω(log(number of connected components of S)).
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Lower bound for 3D convex
polytopes
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Problem statement

We are given a convex 3-polytope P with n vertices.

P is given by the coordinates of its vertices and its
combinatorial structure:

All the inclusion relations between its vertices,
edges and faces.
The cyclic ordering of the edges of each face.

Remark: the combinatorial structure has size O(n).

Problem: we want to decide whether diam(P ) < 1.

We show an Ω(n log n) lower bound. Our approach:
We define a family of convex polytopes.
We show that the sub-family with diameter < 1 has
nΩ(n) connected components.
We apply Ben-Or’s bound.
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Polytopes P (β̄)

The family of polytopes is parametrized by β̄ ∈ R
2n−1.

When n is fixed, only the 2n− 1 blue points change
with β̄.
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Notation

Example where n = 3.
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Notation

ā := (a−n, a−n+1 . . . , an).

A := {a−n, a−n+1, . . . , an}.

β̄ := (β−n+1, . . . , βn−1).

b̄(β̄) := (b−n+1(β−n+1), . . . , bn−1(βn−1)).

B(β̄) := {b−n+1(β−n+1), . . . , bn−1(βn−1)}.

c̄ := (c−1
−n, c

−1
−n+1, . . . , c

−1
n−1, c

1
−n, c

1
−n+1, . . . , c

1
n−1).

C := {c−1
−n, c

−1
−n+1, . . . , c

−1
n−1, c

1
−n, c

1
−n+1, . . . , c

1
n−1}.

P (β̄) := CH(A ∪B(β̄) ∪ C).
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Point sets A and C
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Point bj(βj)

z

O
(1, 0, 0) x

y bj(β)

β

1

2

jψ
(cos(jψ), sin(jψ), 0)

The blue region is parallel to Oxz.

β ∈ [−α, α]
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Coordinates of points in A, B(β̄) and C

ai :=







1
2(1 − cos(iγ))

0
1
2 sin(iγ)







csi :=







r cos
((

i+ 1
2

)

ψ
)

r sin
((

i+ 1
2

)

ψ
)

1
2sα







bj(β) :=







cos(jψ) − 1
2(1 − cos β)

sin(jψ)
1
2 sin(β)






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Parameters

h

r

1

2
ψ

r t t

1

e
g

f

ϕ = 1/4n

α is small.

ψ = ϕ/n

γ = α/n
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Proof

Notation: diam(E,F ) := max{d(e, f) | (e, f) ∈ E × F}.

Lemma 1. The set

{bj(β) | β ∈ [−α, α] and diam(A, {bj(β)}) < 1}

has at least 2n connected components.

a
−3

a3

a2

a1

a0

bj(β)

< 1

< 1
> 1

a
−2

a
−1
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Proof

Proof of Lemma 1: Calculations, until the second-order
terms.

x

0,150,1-0,05

0,99999

-0,1

1

0,05-0,15

0,99998

0

1,00001

Lower Bounds for Geometric Diameter Problems – p. 36/48



Proof

Lemma 2. The combinatorial structure of CH(A ∪B(β̄) ∪ C) is
independent of β̄.

We denote P (β̄) = CH(A ∪B(β̄) ∪ C).

Lemma 3. diam(A ∪B(β̄) ∪ C) = diam(A,B(β̄)).
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Proof

Definitions:

Sn = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1}
En = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1 and diam(P (β̄)) < 1}

Notice that En ⊂ Sn ⊂ R
24n.

Restriction to Sn is easy.

Lemma 4. The set Sn can be decided by an ACT with depth
O(n).

Decinding En over Sn is hard.

Lemma 5. Any ACT that decides En has depth Ω(n log n).

Proof: By lemmas 1 and 3, En has at least (2n)2n−1

connected components. Apply Ben-Or’s bound.
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End of the proof

Theorem. Assume that an algebraic computation tree Tn decides
whether the diameter of a 3-polytope is smaller than 1. Then Tn

has depth Ω(n log n).

Let dn be the depth of Tn. The computation tree Tn can
be transformed into T̃n of depth dn +O(n) which
decides En over Sn. Thus T̃n has depth Ω(n log n) and
the same holds for Tn.
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Related work

(Chazelle) The convex hull of two 3-polytopes can be
computed in linear time.

(Chazelle et al.) It is not known whether the convex
hull of a subset of the vertices of a 3-polytope can be
computed in linear time.

(Chazelle et al.) However, we can compute in linear
time the Delaunay triangulation of a subset of the
vertices of a Delaunay triangulation.
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Diameter is harder than Hopcroft’s
problem

Lower Bounds for Geometric Diameter Problems – p. 41/48



Hopcroft’s problem

P is a set of n points in R
2.

L is a set of n lines in R
2.

Problem: decide whether ∃(p, `) ∈ P × L : p ∈ `.
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Complexity of Hopcroft’s problem

An o(n4/3 log n) algorithm is known. (Matoušek).

No o(n4/3) algorithm is known.

Erickson gave an Ω(n4/3) lower bound in a weaker
model.

Partitioning algorithms, based on a
divide-and-conquer approach.
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From Hopcroft’s problem to Diameter

We give a linear-time reduction from Hopcroft’s
problem to the diameter problem in R

7.

Known upper bound: n1.6 logO(1) n.

We first give a reduction to the red-blue diameter
problem in R

6: compute diam(E,F ) when E and F are
n-point sets in R

6.
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Proof

θ(x, y, z) :=
1

x2 + y2 + z2
(x2, y2, z2,

√
2xy,

√
2yz,

√
2zx).

Note that ‖θ(x, y, z)‖ = 1.

For 1 6 i 6 n

pi = (xi, yi, 1)

`i = (ui, vi, wi) is the line `i : uix+ viy + wi = 0.

Let p′i := θ(pi) and `′j = θ(`j).

We get

‖p′i − `′j‖2 = ‖p′i‖2 + ‖`′j‖2 − 2 < p′i, `
′
j >

= 2 − 2
< pi, `j >

2

‖pi‖2‖`j‖2
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Proof

Note that pi ∈ `j iff < pi, `j >= 0.

Thus, there exists i, j such that pi ∈ `j if and only if
diam(θ(P ), θ(L)) = 2.

θ(P ) and θ(L) are n-point sets in R
6.

Similarly, we can get a reduction from Hopcroft’s
problem to the diameter problem in R

7, using this
linearization:

θ̃(x, y, z) :=

(

1

x2 + y2 + z2
(x2, y2, z2,

√
2xy,

√
2yz,

√
2zx),±1

)
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Related work

The red-blue diameter in R
4 can be computed in

O(n4/3polylog n) (Matoušek and Scharzkopf). It would
be interesting to get a reduction from Hopcroft’s
problem.

Erickson gave reduction from Hopfcroft problem to
other computational geometry problems.

Ray shooting in polyhedral terrains,

Halfspace emptyness in R
5

are harder than Hopcroft’s problem.
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