Lower Bounds for Geometric Diameter Problems

Hervé Fournier University of Versailles St-Quentin en Yvelines

> Antoine Vigneron INRA Jouy-en-Josas

> > Lower Bounds for Geometric Diameter Problems – p. 1/48

Outline

- Review of previous work on the 2D and 3D diameter problems.
- Ω(n log n) lower bound for computing the diameter of a 3D convex polytope.
- Reduction from Hopcroft's problem to the diameter problem for point sets in \mathbb{R}^7 .

Previous work

The diameter problem

- INPUT: a set P of n points in \mathbb{R}^d .
- OUTPUT: diam $(P) := \max\{d(x, y) \mid x, y \in P\}.$

The diameter problem

• diam
$$(P) = d(p, p')$$
.

Decision problem

- We will give lower bounds for the *decision problem* associated with the diameter problem.
- INPUT: a set P of n points in \mathbb{R}^d .
- OUTPUT:
 - YES if $\operatorname{diam}(P) < 1$
 - NO if $\operatorname{diam}(P) \ge 1$

Observation

• *P* lies in the intersection of the two balls with radius d(p, p') centered at *p* and *p'*.

The diameter problem

• *P* lies between two parallel hyperplanes through *p* and *p'*. We say that (p, p') is an *antipodal pair*.

The diameter problem

• Any antipodal pair (and therefore any diametral pair) lies on the convex hull CH(P) of P.

Computing the diameter of a 2D-point set

- Compute the convex hull CH(P) of P.
 - $O(n \log n)$ time.
- Find all the antipodal pairs on CH(P).
 - There are at most *n* such pairs in non–degenerate cases.
 - O(n) time using the rotating calipers technique.
- Find the diametral pairs among the antipodal pairs.
 - O(n) time by brute force.
- Conclusion:
 - The diameter of a 2D-point set can be found in $O(n \log n)$ time
 - The diameter of a convex polygon can be found in O(n) time.

Diameter in \mathbb{R}^3 **and higher dimensions**

- Randomized $O(n \log n)$ time algorithm in \mathbb{R}^3 (Clarkson and Shor, 1988).
 - Randomized incremental construction of an intersection of balls and decimation.
- Deterministic O(n log n) time algorithm in ℝ³ (E. Ramos, 2000).
- In ℝ^d, algorithm in n^{2-2/([d/2]+1)} log^{O(1)} n
 (Matoušek and Schwartzkopf, 1995).

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^2 .
 - Reduction from Set Disjointness. Given $A, B \subset \mathbb{R}$, decide if $A \cap B = \emptyset$.

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^2 .
 - Reduction from Set Disjointness. Given $A, B \subset \mathbb{R}$, decide if $A \cap B = \emptyset$.

Diameter of a polytope

- The diameter of a convex polygon in \mathbb{R}^2 can be found in O(n) time.
- Can we compute the diameter of a convex 3D-polytope in linear time?
 - No, we give an $\Omega(n \log n)$ lower bound.

Model of computation

Real-RAM

- Real Random Access Machine.
- Each registers stores a *real* number.
- Access to registers in unit time.
- Arithmetic operation $(+, -, \times, /)$ in unit time.

Algebraic computation tree

- Input: $\bar{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.
- Output: YES or NO
- It is a dag with 3 types of nodes
 - Computation nodes:
 - a real constant,
 - some input number x_i , or
 - an operation $\{+, -, \times, /, \sqrt{\cdot}\}$ performed on ancestors of the current node.
 - Branching nodes arranged in a tree: compares with 0 the value obtained at a computation node that is an ancestor of the current node.
 - Leaves: YES or NO

Algebraic computation tree: example

Algebraic computation tree (ACT)

- We say that an ACT decides $S \subset \mathbb{R}^n$ if
 - $\forall (x_1, \ldots, x_n) \in S$, it reaches a leaf labeled YES, and
 - $\forall (x_1, \ldots, x_n) \notin S$, it reaches a leaf labeled NO.
- The ACT model is stronger than the real-RAM model.
- To get a lower bound on the worst-case running time of a real-RAM that decides S, it suffices to have a lower bound on the *depth* of all the ACTs that decide S

Theorem (Ben-Or). *Any ACT that decides S has depth*

 $\Omega(\log(number of connected components of S)).$

Lower bound for 3D convex polytopes

Problem statement

- We are given a convex 3-polytope P with n vertices.
- *P* is given by the coordinates of its vertices and its combinatorial structure:
 - All the inclusion relations between its vertices, edges and faces.
 - The cyclic ordering of the edges of each face.
- Remark: the combinatorial structure has size O(n).
- Problem: we want to decide whether diam(P) < 1.
- We show an $\Omega(n \log n)$ lower bound. Our approach:
 - We define a family of convex polytopes.
 - We show that the sub-family with diameter < 1 has $n^{\Omega(n)}$ connected components.
 - We apply Ben-Or's bound.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2n-1}$.
- When *n* is fixed, only the 2n 1 blue points change with $\bar{\beta}$.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2n-1}$.
- When *n* is fixed, only the 2n 1 blue points change with $\bar{\beta}$.

Notation

• Example where n = 3.

Notation

•
$$\bar{a} := (a_{-n}, a_{-n+1}, \dots, a_n).$$

• $A := \{a_{-n}, a_{-n+1}, \dots, a_n\}.$
• $\bar{\beta} := (\beta_{-n+1}, \dots, \beta_{n-1}).$
• $\bar{b}(\bar{\beta}) := (b_{-n+1}(\beta_{-n+1}), \dots, b_{n-1}(\beta_{n-1})).$
• $B(\bar{\beta}) := \{b_{-n+1}(\beta_{-n+1}), \dots, b_{n-1}(\beta_{n-1})\}.$
• $\bar{c} := (c_{-n}^{-1}, c_{-n+1}^{-1}, \dots, c_{n-1}^{-1}, c_{-n}^{1}, c_{-n+1}^{1}, \dots, c_{n-1}^{1}).$
• $C := \{c_{-n}^{-1}, c_{-n+1}^{-1}, \dots, c_{n-1}^{-1}, c_{-n}^{1}, c_{-n+1}^{1}, \dots, c_{n-1}^{1}\}.$

• $P(\beta) := CH(A \cup B(\beta) \cup C).$

Point sets A and C

Point $b_j(\beta_j)$

- The blue region is parallel to Oxz.
- $\beta \in [-\alpha, \alpha]$

Coordinates of points in A, $B(\beta)$ and C

 $a_i := \begin{pmatrix} \frac{1}{2}(1 - \cos(i\gamma)) \\ 0 \\ \frac{1}{2}\sin(i\gamma) \end{pmatrix}$

$$c_i^s := \begin{pmatrix} r \cos\left(\left(i + \frac{1}{2}\right)\psi\right) \\ r \sin\left(\left(i + \frac{1}{2}\right)\psi\right) \\ \frac{1}{2}s\alpha \end{pmatrix}$$

$$b_j(\beta) := \begin{pmatrix} \cos(j\psi) - \frac{1}{2}(1 - \cos\beta) \\ \sin(j\psi) \\ \frac{1}{2}\sin(\beta) \end{pmatrix}$$

Parameters

- $\varphi = 1/4n$
- α is small.
- $\psi = \varphi/n$ $\gamma = \alpha/n$

• Notation: diam $(E, F) := \max\{d(e, f) \mid (e, f) \in E \times F\}.$

Lemma 1. The set

 $\{b_j(\beta) \mid \beta \in [-\alpha, \alpha] \text{ and } \operatorname{diam}(A, \{b_j(\beta)\}) < 1\}$

has at least 2n connected components.

Proof of Lemma 1: Calculations, until the second-order terms.

Lemma 2. The combinatorial structure of $CH(A \cup B(\overline{\beta}) \cup C)$ is independent of $\overline{\beta}$.

• We denote $P(\bar{\beta}) = CH(A \cup B(\bar{\beta}) \cup C)$.

Lemma 3. diam $(A \cup B(\overline{\beta}) \cup C) = \text{diam}(A, B(\overline{\beta})).$

• Definitions:

$$\mathcal{S}_n = \{ (\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in [-\alpha, \alpha]^{2n-1} \}$$

$$\mathcal{E}_n = \{ (\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in [-\alpha, \alpha]^{2n-1} \text{ and } \operatorname{diam}(P(\bar{\beta})) < 1 \}$$

- Notice that $\mathcal{E}_n \subset \mathcal{S}_n \subset \mathbb{R}^{24n}$.
- Restriction to S_n is easy.

Lemma 4. The set S_n can be decided by an ACT with depth O(n).

• Decinding \mathcal{E}_n over \mathcal{S}_n is hard.

Lemma 5. Any ACT that decides \mathcal{E}_n has depth $\Omega(n \log n)$.

Proof: By lemmas 1 and 3, \mathcal{E}_n has at least $(2n)^{2n-1}$ connected components. Apply Ben-Or's bound.

End of the proof

Theorem. Assume that an algebraic computation tree T_n decides whether the diameter of a 3-polytope is smaller than 1. Then T_n has depth $\Omega(n \log n)$.

• Let d_n be the depth of T_n . The computation tree T_n can be transformed into \tilde{T}_n of depth $d_n + O(n)$ which decides \mathcal{E}_n over \mathcal{S}_n . Thus \tilde{T}_n has depth $\Omega(n \log n)$ and the same holds for T_n .

Related work

- (Chazelle) The convex hull of two 3-polytopes can be computed in linear time.
- (Chazelle et al.) It is not known whether the convex hull of a subset of the vertices of a 3-polytope can be computed in linear time.
- (Chazelle et al.) However, we can compute in linear time the Delaunay triangulation of a subset of the vertices of a Delaunay triangulation.

Diameter is harder than Hopcroft's problem

Hopcroft's problem

- P is a set of n points in \mathbb{R}^2 .
- L is a set of n lines in \mathbb{R}^2 .
- Problem: decide whether $\exists (p, \ell) \in P \times L : p \in \ell$.

Hopcroft's problem

- P is a set of n points in \mathbb{R}^2 .
- L is a set of n lines in \mathbb{R}^2 .
- Problem: decide whether $\exists (p, \ell) \in P \times L : p \in \ell$.

Complexity of Hopcroft's problem

- An $o(n^{4/3} \log n)$ algorithm is known. (Matoušek).
- No $o(n^{4/3})$ algorithm is known.
- Erickson gave an $\Omega(n^{4/3})$ lower bound in a *weaker model*.
 - Partitioning algorithms, based on a divide-and-conquer approach.

From Hopcroft's problem to Diameter

• We give a linear-time reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^7 .

• Known upper bound: $n^{1.6} \log^{O(1)} n$.

 We first give a reduction to the *red-blue diameter* problem in R⁶: compute diam(E, F) when E and F are n-point sets in R⁶.

•
$$\theta(x,y,z) := \frac{1}{x^2 + y^2 + z^2} (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}zx).$$

- Note that $\|\theta(x, y, z)\| = 1$.
- For $1 \leqslant i \leqslant n$

•
$$p_i = (x_i, y_i, 1)$$

• $\ell_i = (u_i, v_i, w_i)$ is the line $\ell_i : u_i x + v_i y + w_i = 0$.

• Let
$$p'_i := \theta(p_i)$$
 and $\ell'_j = \theta(\ell_j)$.

• We get

$$\begin{aligned} \|p'_i - \ell'_j\|^2 &= \|p'_i\|^2 + \|\ell'_j\|^2 - 2 < p'_i, \ell'_j > \\ &= 2 - 2 \frac{< p_i, \ell_j >^2}{\|p_i\|^2 \|\ell_j\|^2} \end{aligned}$$

- Note that $p_i \in \ell_j$ iff $\langle p_i, \ell_j \rangle = 0$.
- Thus, there exists i, j such that $p_i \in \ell_j$ if and only if $\operatorname{diam}(\theta(P), \theta(L)) = 2$.
- $\theta(P)$ and $\theta(L)$ are *n*-point sets in \mathbb{R}^6 .
- Similarly, we can get a reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^7 , using this linearization:

$$\tilde{\theta}(x,y,z) := \left(\frac{1}{x^2 + y^2 + z^2}(x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}zx), \pm 1\right)$$

Related work

- The red-blue diameter in R⁴ can be computed in O(n^{4/3}polylog n) (Matoušek and Scharzkopf). It would be interesting to get a reduction from Hopcroft's problem.
- Erickson gave reduction from Hopfcroft problem to other computational geometry problems.
 - Ray shooting in polyhedral terrains,
 - Halfspace emptyness in \mathbb{R}^5

are harder than Hopcroft's problem.