Lower Bounds for Geometric Diameter Problems

Hervé Fournier
University of Versailles St-Quentin en Yvelines

Antoine Vigneron
INRA Jouy-en-Josas

Outline

- Review of previous work on the 2D and 3D diameter problems.
- $\Omega(n \log n)$ lower bound for computing the diameter of a 3D convex polytope.
- Reduction from Hopcroft's problem to the diameter problem for point sets in \mathbb{R}^{7}.

Previous work

The diameter problem

- INPUT: a set P of n points in \mathbb{R}^{d}.
- OUTPUT: $\operatorname{diam}(P):=\max \{\mathrm{d}(x, y) \mid x, y \in P\}$.

The diameter problem

- $\operatorname{diam}(P)=\mathrm{d}\left(p, p^{\prime}\right)$.

Decision problem

- We will give lower bounds for the decision problem associated with the diameter problem.
- INPUT: a set P of n points in \mathbb{R}^{d}.
- OUTPUT:
- YES if $\operatorname{diam}(P)<1$
- NO if $\operatorname{diam}(P) \geqslant 1$

Observation

- P lies in the intersection of the two balls with radius $\mathrm{d}\left(p, p^{\prime}\right)$ centered at p and p^{\prime}.

The diameter problem

- P lies between two parallel hyperplanes through p and p^{\prime}. We say that $\left(p, p^{\prime}\right)$ is an antipodal pair.

The diameter problem

- Any antipodal pair (and therefore any diametral pair) lies on the convex hull $\mathrm{CH}(P)$ of P.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Computing the diameter of a 2D-point set

- Compute the convex hull $\mathrm{CH}(P)$ of P.
- $O(n \log n)$ time.
- Find all the antipodal pairs on $\mathrm{CH}(P)$.
- There are at most n such pairs in non-degenerate cases.
- $O(n)$ time using the rotating calipers technique.
- Find the diametral pairs among the antipodal pairs.
- $O(n)$ time by brute force.
- Conclusion:
- The diameter of a 2D-point set can be found in $O(n \log n)$ time
- The diameter of a convex polygon can be found in $O(n)$ time.

Diameter in \mathbb{R}^{3} and higher dimensions

- Randomized $O(n \log n)$ time algorithm in \mathbb{R}^{3} (Clarkson and Shor, 1988).
- Randomized incremental construction of an intersection of balls and decimation.
- Deterministic $O(n \log n)$ time algorithm in \mathbb{R}^{3} (E. Ramos, 2000).
- In \mathbb{R}^{d}, algorithm in $n^{2-2 /([d / 2\rceil+1)} \log { }^{O(1)} n$ (Matoušek and Schwartzkopf, 1995).

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^{2}.
- Reduction from Set Disjointness.

Given $A, B \subset \mathbb{R}$, decide if $A \cap B=\emptyset$.

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^{2}.
- Reduction from Set Disjointness.

Given $A, B \subset \mathbb{R}$, decide if $A \cap B=\emptyset$.

Diameter of a polytope

- The diameter of a convex polygon in \mathbb{R}^{2} can be found in $O(n)$ time.
- Can we compute the diameter of a convex $3 D$-polytope in linear time?
- No, we give an $\Omega(n \log n)$ lower bound.

Model of computation

Real-RAM

- Real Random Access Machine.
- Each registers stores a real number.
- Access to registers in unit time.
- Arithmetic operation $(+,-, \times, /)$ in unit time.

Algebraic computation tree

- Input: $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Output: YES or NO
- It is a dag with 3 types of nodes
- Computation nodes:
- a real constant,
- some input number x_{i}, or
- an operation $\{+,-, \times, /, \sqrt{\cdot}\}$ performed on ancestors of the current node.
- Branching nodes arranged in a tree: compares with 0 the value obtained at a computation node that is an ancestor of the current node.
- Leaves: YES or NO

Algebraic computation tree: example

Algebraic computation tree (ACT)

- We say that an ACT decides $S \subset \mathbb{R}^{n}$ if
- $\forall\left(x_{1}, \ldots, x_{n}\right) \in S$, it reaches a leaf labeled YES, and
- $\forall\left(x_{1}, \ldots, x_{n}\right) \notin S$, it reaches a leaf labeled NO.
- The ACT model is stronger than the real-RAM model.
- To get a lower bound on the worst-case running time of a real-RAM that decides S, it suffices to have a lower bound on the depth of all the ACTs that decide S

Theorem (Ben-Or). Any ACT that decides S has depth

$$
\Omega(\log (\text { number of connected components of } S)) .
$$

Lower bound for 3D convex polytopes

Problem statement

- We are given a convex 3-polytope P with n vertices.
- P is given by the coordinates of its vertices and its combinatorial structure:
- All the inclusion relations between its vertices, edges and faces.
- The cyclic ordering of the edges of each face.
- Remark: the combinatorial structure has size $O(n)$.
- Problem: we want to decide whether $\operatorname{diam}(P)<1$.
- We show an $\Omega(n \log n)$ lower bound. Our approach:
- We define a family of convex polytopes.
- We show that the sub-family with diameter <1 has $n^{\Omega(n)}$ connected components.
- We apply Ben-Or's bound.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2 n-1}$.
- When n is fixed, only the $2 n-1$ blue points change with $\bar{\beta}$.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2 n-1}$.
- When n is fixed, only the $2 n-1$ blue points change with $\bar{\beta}$.

Notation

- Example where $n=3$.

Notation

- $\bar{a}:=\left(a_{-n}, a_{-n+1} \ldots, a_{n}\right)$.
- $A:=\left\{a_{-n}, a_{-n+1}, \ldots, a_{n}\right\}$.
- $\bar{\beta}:=\left(\beta_{-n+1}, \ldots, \beta_{n-1}\right)$.
- $\bar{b}(\bar{\beta}):=\left(b_{-n+1}\left(\beta_{-n+1}\right), \ldots, b_{n-1}\left(\beta_{n-1}\right)\right)$.
- $B(\bar{\beta}):=\left\{b_{-n+1}\left(\beta_{-n+1}\right), \ldots, b_{n-1}\left(\beta_{n-1}\right)\right\}$.
- $\bar{c}:=\left(c_{-n}^{-1}, c_{-n+1}^{-1}, \ldots, c_{n-1}^{-1}, c_{-n}^{1}, c_{-n+1}^{1}, \ldots, c_{n-1}^{1}\right)$.
- $C:=\left\{c_{-n}^{-1}, c_{-n+1}^{-1}, \ldots, c_{n-1}^{-1}, c_{-n}^{1}, c_{-n+1}^{1}, \ldots, c_{n-1}^{1}\right\}$.
- $P(\bar{\beta}):=\mathrm{CH}(A \cup B(\bar{\beta}) \cup C)$.

Point sets A and C

Point $b_{j}\left(\beta_{j}\right)$

- The blue region is parallel to $O x z$.
- $\beta \in[-\alpha, \alpha]$

Coordinates of points in $A, B(\bar{\beta})$ and C

$$
\begin{gathered}
a_{i}:=\left(\begin{array}{l}
\frac{1}{2}(1-\cos (i \gamma)) \\
0 \\
\frac{1}{2} \sin (i \gamma)
\end{array}\right) \\
c_{i}^{s}:=\left(\begin{array}{l}
r \cos \left(\left(i+\frac{1}{2}\right) \psi\right) \\
r \sin \left(\left(i+\frac{1}{2}\right) \psi\right) \\
\frac{1}{2} s \alpha
\end{array}\right) \\
b_{j}(\beta):=\left(\begin{array}{l}
\cos (j \psi)-\frac{1}{2}(1-\cos \beta) \\
\sin (j \psi) \\
\frac{1}{2} \sin (\beta)
\end{array}\right)
\end{gathered}
$$

Parameters

- $\varphi=1 / 4 n$
- α is small.
- $\psi=\varphi / n$
- $\gamma=\alpha / n$

Proof

- Notation: $\operatorname{diam}(E, F):=\max \{\mathrm{d}(e, f) \mid(e, f) \in E \times F\}$.

Lemma 1. The set

$$
\left\{b_{j}(\beta) \mid \beta \in[-\alpha, \alpha] \text { and } \operatorname{diam}\left(A,\left\{b_{j}(\beta)\right\}\right)<1\right\}
$$

has at least $2 n$ connected components.

Proof

- Proof of Lemma 1: Calculations, until the second-order terms.

Proof

Lemma 2. The combinatorial structure of $\mathrm{CH}(A \cup B(\bar{\beta}) \cup C)$ is independent of $\bar{\beta}$.

- We denote $P(\bar{\beta})=\mathrm{CH}(A \cup B(\bar{\beta}) \cup C)$.

Lemma 3. $\operatorname{diam}(A \cup B(\bar{\beta}) \cup C)=\operatorname{diam}(A, B(\bar{\beta}))$.

Proof

- Definitions:

$$
\begin{aligned}
& \mathcal{S}_{n}=\left\{(\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in[-\alpha, \alpha]^{2 n-1}\right\} \\
& \mathcal{E}_{n}=\left\{(\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in[-\alpha, \alpha]^{2 n-1} \text { and } \operatorname{diam}(P(\bar{\beta}))<1\right\}
\end{aligned}
$$

- Notice that $\mathcal{E}_{n} \subset \mathcal{S}_{n} \subset \mathbb{R}^{24 n}$.
- Restriction to \mathcal{S}_{n} is easy.

Lemma 4. The set \mathcal{S}_{n} can be decided by an ACT with depth $O(n)$.

- Decinding \mathcal{E}_{n} over \mathcal{S}_{n} is hard.

Lemma 5. Any ACT that decides \mathcal{E}_{n} has depth $\Omega(n \log n)$.
Proof: By lemmas 1 and $3, \mathcal{E}_{n}$ has at least $(2 n)^{2 n-1}$ connected components. Apply Ben-Or's bound.

End of the proof

Theorem. Assume that an algebraic computation tree T_{n} decides whether the diameter of a 3-polytope is smaller than 1. Then T_{n} has depth $\Omega(n \log n)$.

- Let d_{n} be the depth of T_{n}. The computation tree T_{n} can be transformed into \tilde{T}_{n} of depth $d_{n}+O(n)$ which decides \mathcal{E}_{n} over \mathcal{S}_{n}. Thus \tilde{T}_{n} has depth $\Omega(n \log n)$ and the same holds for T_{n}.

Related work

- (Chazelle) The convex hull of two 3-polytopes can be computed in linear time.
- (Chazelle et al.) It is not known whether the convex hull of a subset of the vertices of a 3-polytope can be computed in linear time.
- (Chazelle et al.) However, we can compute in linear time the Delaunay triangulation of a subset of the vertices of a Delaunay triangulation.

Diameter is harder than Hopcroft's problem

Hopcroft's problem

- P is a set of n points in \mathbb{R}^{2}.
- L is a set of n lines in \mathbb{R}^{2}.
- Problem: decide whether $\exists(p, \ell) \in P \times L: p \in \ell$.

Hopcroft's problem

- P is a set of n points in \mathbb{R}^{2}.
- L is a set of n lines in \mathbb{R}^{2}.
- Problem: decide whether $\exists(p, \ell) \in P \times L: p \in \ell$.

Complexity of Hopcroft's problem

- An $o\left(n^{4 / 3} \log n\right)$ algorithm is known. (Matoušek).
- No $o\left(n^{4 / 3}\right)$ algorithm is known.
- Erickson gave an $\Omega\left(n^{4 / 3}\right)$ lower bound in a weaker model.
- Partitioning algorithms, based on a divide-and-conquer approach.

From Hopcroft's problem to Diameter

- We give a linear-time reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^{7}.
- Known upper bound: $n^{1.6} \log ^{O(1)} n$.
- We first give a reduction to the red-blue diameter problem in \mathbb{R}^{6} : compute $\operatorname{diam}(E, F)$ when E and F are n-point sets in \mathbb{R}^{6}.

Proof

- $\theta(x, y, z):=\frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}, y^{2}, z^{2}, \sqrt{2} x y, \sqrt{2} y z, \sqrt{2} z x\right)$.
- Note that $\|\theta(x, y, z)\|=1$.
- For $1 \leqslant i \leqslant n$
- $p_{i}=\left(x_{i}, y_{i}, 1\right)$
- $\ell_{i}=\left(u_{i}, v_{i}, w_{i}\right)$ is the line $\ell_{i}: u_{i} x+v_{i} y+w_{i}=0$.
- Let $p_{i}^{\prime}:=\theta\left(p_{i}\right)$ and $\ell_{j}^{\prime}=\theta\left(\ell_{j}\right)$.
- We get

$$
\begin{aligned}
\left\|p_{i}^{\prime}-\ell_{j}^{\prime}\right\|^{2} & =\left\|p_{i}^{\prime}\right\|^{2}+\left\|\ell_{j}^{\prime}\right\|^{2}-2<p_{i}^{\prime}, \ell_{j}^{\prime}> \\
& =2-2 \frac{<p_{i}, \ell_{j}>^{2}}{\left\|p_{i}\right\|^{2}\left\|\ell_{j}\right\|^{2}}
\end{aligned}
$$

Proof

- Note that $p_{i} \in \ell_{j}$ iff $<p_{i}, \ell_{j}>=0$.
- Thus, there exists i, j such that $p_{i} \in \ell_{j}$ if and only if $\operatorname{diam}(\theta(P), \theta(L))=2$.
- $\theta(P)$ and $\theta(L)$ are n-point sets in \mathbb{R}^{6}.
- Similarly, we can get a reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^{7}, using this linearization:

$$
\tilde{\theta}(x, y, z):=\left(\frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}, y^{2}, z^{2}, \sqrt{2} x y, \sqrt{2} y z, \sqrt{2} z x\right), \pm 1\right)
$$

Related work

- The red-blue diameter in \mathbb{R}^{4} can be computed in $O\left(n^{4 / 3}\right.$ polylog $\left.n\right)$ (Matoušek and Scharzkopf). It would be interesting to get a reduction from Hopcroft's problem.
- Erickson gave reduction from Hopfcroft problem to other computational geometry problems.
- Ray shooting in polyhedral terrains,
- Halfspace emptyness in \mathbb{R}^{5}
are harder than Hopcroft's problem.

