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We work in the Cantor space 2ω, which is the set of infinite binary
sequences. We endow 2ω with the product topology, i.e. the
topology generated by the sets

[w ] = {α ∈ 2ω : w @ α} (where w ∈ 2∗)

Every open set U is of the form

U =
⋃

w∈A

[w ] (where A ⊆ 2∗)

If A is a computably enumerable, U is said to be effectively open
(or Σ0

1).

A set C is effectively closed (or Π0
1) if its complement is

effectively open.
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The arithmetic hierarchy.

We define inductively: a Σ0
n+1 is an effective union of Π0

n sets and
a Π0

n+1 is an effective intersection of Σ0
n sets.
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To specify a measure on 2ω, it suffices to specify the measure of
[w ] for all w ∈ 2∗ (Caratheodory’s extension theorem).

1
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Example of a measure
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To specify a measure on 2ω, it suffices to specify the measure of
[w ] for all w ∈ 2∗ (Caratheodory’s extension theorem).
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This allows us to define the notion of computable measure:

Definition

We say that µ is a computable measure if

w 7→ µ
(
[w ]

)
is a computable function.
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A central notion in probability theory: the equivalence of two
probability measures.

Definition

Two measures are equivalent if they have the same nullsets.

Classically, it is a usefull notion (e.g. the Radon-Nikodym
theorem).
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Theorem

The following are equivalent:

1 µ and ν are two equivalent measures

2 µ and ν have the same Gδ nullsets

3 µ and ν have the same closed nullsets

To what extent can this theorem be effectivized?
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... at least part of it can be!

Theorem

Two computable measures are equivalent iff they have the same
Π0

2 nullsets.
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Proof. One direction is trivial. For the other one, suppose that µ
and ν are not equivalent i.e. there exists X ⊆ 2ω such that, for
example, µ(X ) ≥ m > 0 and ν(X ) = 0.

This means that for all n there exists an open set Un ⊆ X such
that µ(Un) ≥ m and ν(Un) < 2−n.

Hence, there exists Vn finitely generated such that
µ(Vn) ≥ m − 2−n and ν(Vn) < 2−n. And such a Vn can be found
effectively.

Then, consider the Π0
2 set

G =
⋂
k

⋃
n≥k

Vn

One has µ(G ) ≥ m and ν(G ) = 0.
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This leaves the second part open:

Question

If two computable measures have the same Π0
1 nullsets, are they

necessarily equivalent?

L. Bienvenu, W. Merkle Effective randomness for computable probability measures



The Cantor space: topology, measures, computability
Our toolbox
Main result

Martingales
Effective randomness and Kolmogorov complexity

Outline

1 The Cantor space: topology, measures, computability

2 Our toolbox
Martingales
Effective randomness and Kolmogorov complexity

3 Main result

L. Bienvenu, W. Merkle Effective randomness for computable probability measures



The Cantor space: topology, measures, computability
Our toolbox
Main result

Martingales
Effective randomness and Kolmogorov complexity

We begin with the notion of martingale, inspired by the
corresponding notion in classical probability theory:

Definition

A µ-martingale is a function d : 2∗ → R+ such that for all w ∈ 2∗:

µ(w)d(w) = µ(w0)d(w0) + µ(w1)d(w1)

1

0.8 0.2

0.5 0.3 0.1 0.1

measure μ

1

0.5 3
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μ-martingale

L. Bienvenu, W. Merkle Effective randomness for computable probability measures



The Cantor space: topology, measures, computability
Our toolbox
Main result

Martingales
Effective randomness and Kolmogorov complexity

Definition

A martingale succeeds on a sequence α ∈ 2ω if

supn d(α0...αn) = +∞

L. Bienvenu, W. Merkle Effective randomness for computable probability measures



The Cantor space: topology, measures, computability
Our toolbox
Main result

Martingales
Effective randomness and Kolmogorov complexity

Theorem (Ville’s inequality)

Let d be a µ-martingale. For all k > 0:

µ
(
{α ∈ 2ω : sup

n
d(α0...αn) ≥ k}

)
≤ 1/k

Corollary

Let d be a µ-martingale.

µ
(
{α ∈ 2ω : d succeeds on α}

)
= 0
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There exists a very close correspondence between measures and
martingales:

Theorem

For all (computable) measures µ and ν, ν
µ is a (computable)

µ-martingale.

Conversely, every (computable) µ-martingale d can be written as
d = ν

µ for some (computable) measure ν.

Theorem

Two measures µ and ν are equivalent iff:

µ
(
{α :

µ

ν
succeeds on α}

)
= 0

ν
(
{α :

ν

µ
succeeds on α}

)
= 0
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The goal of algorithmic randomness (or effective randomness) is to
define what is means for an individual sequence to be random.

The theory started in 1919, with R. von Mises and his notion of
kollektiv, which turned out to be too weak a notion of randomness.

The first satisfactory (and the best up till now) approach was given
by Kolmogorov-Chaitin-Solomonov for finite objects, and by
Martin-Löf for infinite ones.
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Definition

A Π0
2 is a µ-Martin-Löf nullset if it is the effective intersection of

Σ0
1 sets {Un : n ∈ N} such that µ(Un) ≤ 2−n.

Definition

A sequence α ∈ 2ω is µ-Martin-Löf random if it belongs to no
µ-Martin-Löf nullset.
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A weaker notion of randomness....

Definition (Kurtz)

A sequence α ∈ 2ω is µ-weakly random if it belongs to no Π0
1 set

of µ-measure 0.

Proposition

Two computable measures µ and ν have the same Π0
1 nullsets iff

they have the same weakly random sequences.
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The following theorem characterizes weak randomness by means of
martingales:

Theorem (Wang)

A sequence α is not µ-weakly random if there exists a µ-martingale
d and a computable order h such that d(α0...αn) ≥ h(n) for all n.
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Definition

Let w ∈ 2∗. The Kolmogorov complexity of w , denoted by C (w) is
the length of the shortest program which outputs w .

Notice that, up to a fixed additive constant, C (w) ≤ |w |.

Also, C is approximable from above but non-computable.
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Theorem (Miller-Yu)

A sequence α is Martin-Löf random iff for every computable
function f : N → N such that

∑
2−f (n) < +∞

C (α0...αn) ≥ n − f (n) + O(1)

Theorem (Miller-Nies-Stephan-Terwijn)

A sequence α is ∅′-Martin-Löf random iff

∃∞n C (α0...αn) ≥ n − O(1)
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Theorem (Miller-Yu)

A sequence α is λ-Martin-Löf random iff for every computable
function f : N → N such that

∑
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C ∗(α0...αn) ≥ n − f (n) + O(1)
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The idea is to construct a measure µ such that

λ
µ succeeds on a set S such that λ(S) > 0

λ
µ succeeds slowly on sequences in S (i.e. not faster than any
computable order)
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This brings us to the notion of hyperimmunity:

Definition

A sequence α ∈ 2ω has hyperimmune degree if it Turing-computes
a function f : N → N such that

∀g computable f ≤/ g

Definition

... equivalently, α has hyperimmune degree if it computes an order
h : N → N such that

∀g computable order g ≤/ h
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Good news...

Theorem (Martin)

λ
(
{α ∈ 2ω : α has hyperimmune degree }

)
= 1

Bad news...

Theorem (Kurtz)

There exists no operator h such that hα is a slow (in the sense
above) order for almost all α.
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We need a more constructive version:

Theorem (Nies-Stephan-Terwijn)

Every λ-∅′-Martin-Löf random sequence α has hyperimmune
degree.

Proof. Suppose that C ∗(α0...αn) ≥ n − c for infinitely many n’s.
Then the function

h : n 7→ #{k ≤ n : C ∗(α0...αk) ≥ k − c}

is a slow order.
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We are ready for the construction of a computable measure µ with
the desired properties.

Recall that

λ− ∅′ −MLR = {α : ∃c ∃∞n C ∗(α0...αn) ≥ n − c}

Thus, there must be a c0 > 0 such that

λ{α : ∃∞n C ∗(α0...αn) ≥ n − c0} > 0

This will be our set S!
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Verification.

In S , all the elements are λ-∅′-MLR, hence λ-WR.

On these elements, µ
λ decreases slowly (and tends to 0) hence λ

µ
increases slowly and tends to +∞.

λ
µ is basically the best computable µ-martingale against λ-random
elements. Hence, every other computable µ-martingale succeeds as
slowly as it on elements of S .

Hence, all elements of S are µ-WR.

Outside S , µ and λ are equal up to a multiplicative constant,
hence for all α ∈ S : α ∈ λ-WR ⇔ α ∈ µ-WR.
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Hence, all elements of S are µ-WR.

Outside S , µ and λ are equal up to a multiplicative constant,
hence for all α ∈ S : α ∈ λ-WR ⇔ α ∈ µ-WR.

L. Bienvenu, W. Merkle Effective randomness for computable probability measures
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We have seen how the theory of algorithmic randomness can be
used to solve which have a priori nothing to do with it. Other
questions arise from what we have seen. For example:

Question

One can define a new equivalence relation between computable
measures:

µ ≡ ν iff µ−MLR = ν −MLR

How does this new relation compare to the classical one?

This question is adressed in: L. Bienvenu, W. Merkle. Effective
randomness for computable probability measures. Electronic Notes
in Theoretical Computer Science 167, pp 117-130 (2007).
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THANK YOU
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