Effective randomness for computable probability measures

Laurent Bienvenu¹ Wolfgang Merkle²

¹Laboratoire d'Informatique Fondamentale Université de Provence Marseille, France

> ²Institut für Informatik Ruprecht-Karls-Universität Heidelberg, Germany

The Cantor space: topology, measures, computability Our toolhox Main result

Outline

1 The Cantor space: topology, measures, computability

2 Our toolbox

- Martingales
- Effective randomness and Kolmogorov complexity

3 Main result

The Cantor space: topology, measures, computability Our toolbox Main result

Outline

1 The Cantor space: topology, measures, computability

Our toolbox

- Martingales
- Effective randomness and Kolmogorov complexity

3 Main result

- 4 回 2 - 4 □ 2 - 4 □

$$[w] = \{ \alpha \in 2^{\omega} : w \sqsubset \alpha \}$$
 (where $w \in 2^*$)

$$[w] = \{ \alpha \in 2^{\omega} : w \sqsubset \alpha \}$$
 (where $w \in 2^*$)

Every open set ${\mathcal U}$ is of the form

$$\mathcal{U} = igcup_{w\in A}[w] \;\; (ext{where}\; A \subseteq 2^*)$$

$$[w] = \{ \alpha \in 2^{\omega} : w \sqsubset \alpha \}$$
 (where $w \in 2^*$)

Every open set \mathcal{U} is of the form

$$\mathcal{U} = \bigcup_{w \in A} [w] \; \; (ext{where } A \subseteq 2^*)$$

If A is a computably enumerable, \mathcal{U} is said to be **effectively open** (or Σ_1^0).

$$[w] = \{ \alpha \in 2^{\omega} : w \sqsubset \alpha \}$$
 (where $w \in 2^*$)

Every open set \mathcal{U} is of the form

$$\mathcal{U} = \bigcup_{w \in A} [w] \; \; (\text{where } A \subseteq 2^*)$$

If A is a computably enumerable, \mathcal{U} is said to be **effectively open** (or Σ_1^0).

A set ${\mathcal C}$ is effectively closed (or $\Pi^0_1)$ if its complement is effectively open.

The arithmetic hierarchy.

We define inductively: a Σ_{n+1}^0 is an effective union of Π_n^0 sets and a Π_{n+1}^0 is an effective intersection of Σ_n^0 sets.

The Cantor space: topology, measures, computability Our toolbox Main result

To specify a measure on 2^{ω} , it suffices to specify the measure of [w] for all $w \in 2^*$ (Caratheodory's extension theorem).

Example of a measure

The Cantor space: topology, measures, computability Our toolbox Main result

To specify a measure on 2^{ω} , it suffices to specify the measure of [w] for all $w \in 2^*$ (Caratheodory's extension theorem).

Lebesgue measure λ

This allows us to define the notion of **computable measure**:

Definition

We say that μ is a computable measure if

 $\pmb{w} \mapsto \mu\bigl([\pmb{w}]\bigr)$

is a computable function.

- 4 回 2 - 4 □ 2 - 4 □

A central notion in probability theory: the equivalence of two probability measures.

Definition

Two measures are equivalent if they have the same nullsets.

Classically, it is a usefull notion (e.g. the Radon-Nikodym theorem).

(4 同) (4 回) (4 回)

Theorem

The following are equivalent:

- **()** μ and ν are two equivalent measures
- **2** μ and ν have the same G_{δ} nullsets
- **③** μ and ν have the same closed nullsets

▲圖▶ ▲屋▶ ▲屋▶

Theorem

The following are equivalent:

- **(**) μ and ν are two equivalent measures
- **2** μ and ν have the same G_{δ} nullsets
- **(**) μ and ν have the same closed nullsets

To what extent can this theorem be effectivized?

... at least part of it can be!

Theorem

Two computable measures are equivalent iff they have the same Π^0_2 nullsets.

-

This means that for all *n* there exists an open set $U_n \subseteq X$ such that $\mu(U_n) \ge m$ and $\nu(U_n) < 2^{-n}$.

-

This means that for all *n* there exists an open set $U_n \subseteq X$ such that $\mu(U_n) \ge m$ and $\nu(U_n) < 2^{-n}$.

Hence, there exists \mathcal{V}_n finitely generated such that $\mu(\mathcal{V}_n) \ge m - 2^{-n}$ and $\nu(\mathcal{V}_n) < 2^{-n}$.

This means that for all *n* there exists an open set $U_n \subseteq X$ such that $\mu(U_n) \ge m$ and $\nu(U_n) < 2^{-n}$.

Hence, there exists \mathcal{V}_n finitely generated such that $\mu(\mathcal{V}_n) \ge m - 2^{-n}$ and $\nu(\mathcal{V}_n) < 2^{-n}$. And such a \mathcal{V}_n can be found effectively.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへの

This means that for all *n* there exists an open set $U_n \subseteq X$ such that $\mu(U_n) \ge m$ and $\nu(U_n) < 2^{-n}$.

Hence, there exists \mathcal{V}_n finitely generated such that $\mu(\mathcal{V}_n) \ge m - 2^{-n}$ and $\nu(\mathcal{V}_n) < 2^{-n}$. And such a \mathcal{V}_n can be found effectively.

Then, consider the Π_2^0 set

$$G=\bigcap_k\bigcup_{n\geq k}\mathcal{V}_n$$

One has $\mu(G) \ge m$ and $\nu(G) = 0$.

This leaves the second part open:

Question

If two computable measures have the same Π^0_1 nullsets, are they necessarily equivalent?

向下 イヨト イヨ

The Cantor space: topology, measures, computability Our toolbox Main result

Martingales Effective randomness and Kolmogorov complexity

Outline

The Cantor space: topology, measures, computability

2 Our toolbox

- Martingales
- Effective randomness and Kolmogorov complexity

3 Main result

- - 4 回 ト - 4 回 ト

The Cantor space: topology, measures, computability Our toolbox Main result

We begin with the notion of martingale, inspired by the corresponding notion in classical probability theory:

Definition

A μ -martingale is a function $d: 2^* \to \mathbb{R}_+$ such that for all $w \in 2^*$:

$$\mu(w)d(w) = \mu(w0)d(w0) + \mu(w1)d(w1)$$

Definition

A martingale succeeds on a sequence $\alpha \in 2^{\omega}$ if

Main result

$$\sup_n d(\alpha_0...\alpha_n) = +\infty$$

・ロン ・回 と ・ ヨ と ・ ヨ と

-21

Theorem (Ville's inequality)

Let d be a μ -martingale. For all k > 0:

$$\mu\Big(\{\alpha\in 2^{\omega}: \sup_{n} d(\alpha_{0}...\alpha_{n})\geq k\}\Big)\leq 1/k$$

Corollary

Let d be a μ -martingale.

$$\mu\Big(\{\alpha\in 2^{\omega}: d \text{ succeeds on } \alpha\}\Big)=0$$

イロン 不同と 不同と 不同と

There exists a very close correspondence between measures and martingales:

Theorem

For all (computable) measures μ and ν , $\frac{\nu}{\mu}$ is a (computable) μ -martingale.

Conversely, every (computable) μ -martingale d can be written as $d = \frac{\nu}{\mu}$ for some (computable) measure ν .

・ロン ・回 と ・ ヨ と ・ ヨ と

There exists a very close correspondence between measures and martingales:

Theorem

For all (computable) measures μ and ν , $\frac{\nu}{\mu}$ is a (computable) μ -martingale.

Conversely, every (computable) μ -martingale d can be written as $d = \frac{\nu}{\mu}$ for some (computable) measure ν .

Theorem

Two measures μ and ν are equivalent iff:

$$\mu\left(\left\{\alpha: \ \frac{\mu}{\nu} \text{ succeeds on } \alpha\right\}\right) = 0$$
$$\nu\left(\left\{\alpha: \ \frac{\nu}{\mu} \text{ succeeds on } \alpha\right\}\right) = 0$$

イロト イヨト イヨト イヨト

-2

The Cantor space: topology, measures, computability Our toolbox Main result

Martingales Effective randomness and Kolmogorov complexity

Outline

The Cantor space: topology, measures, computability

2 Our toolbox

- Martingales
- Effective randomness and Kolmogorov complexity

3 Main result

- - 4 回 ト - 4 回 ト

The goal of algorithmic randomness (or effective randomness) is to define what is means for an **individual** sequence to be random.

イロト イヨト イヨト イヨト

-

The goal of algorithmic randomness (or effective randomness) is to define what is means for an **individual** sequence to be random.

The theory started in 1919, with R. von Mises and his notion of *kollektiv*, which turned out to be too weak a notion of randomness.

- 4 同 6 4 日 6 4 日 6

The goal of algorithmic randomness (or effective randomness) is to define what is means for an **individual** sequence to be random.

The theory started in 1919, with R. von Mises and his notion of *kollektiv*, which turned out to be too weak a notion of randomness.

The first satisfactory (and the best up till now) approach was given by Kolmogorov-Chaitin-Solomonov for finite objects, and by Martin-Löf for infinite ones.

(4 同) (4 回) (4 回)

Definition

A Π_2^0 is a μ -Martin-Löf nullset if it is the effective intersection of Σ_1^0 sets $\{\mathcal{U}_n : n \in \mathbb{N}\}$ such that $\mu(\mathcal{U}_n) \leq 2^{-n}$.

Main result

Definition

A sequence $\alpha \in 2^{\omega}$ is μ -Martin-Löf random if it belongs to no μ -Martin-Löf nullset.

イロト イヨト イヨト イヨト

A weaker notion of randomness....

Definition (Kurtz)

A sequence $\alpha \in 2^{\omega}$ is μ -weakly random if it belongs to no Π_1^0 set of μ -measure 0.

Proposition

Two computable measures μ and ν have the same Π_1^0 nullsets iff they have the same weakly random sequences.

(4月) (4日) (4日)

The following theorem characterizes weak randomness by means of martingales:

Theorem (Wang)

A sequence α is not μ -weakly random if there exists a μ -martingale d and a computable order h such that $d(\alpha_0...\alpha_n) \ge h(n)$ for all n.

Definition

Let $w \in 2^*$. The Kolmogorov complexity of w, denoted by C(w) is the length of the shortest program which outputs w.

Notice that, up to a fixed additive constant, $C(w) \leq |w|$.

Also, C is approximable from above but non-computable.

Theorem (Miller-Yu)

A sequence α is Martin-Löf random iff for every computable function $f : \mathbb{N} \to \mathbb{N}$ such that $\sum 2^{-f(n)} < +\infty$

$$C(\alpha_0...\alpha_n) \ge n - f(n) + O(1)$$

Theorem (Miller-Nies-Stephan-Terwijn)

A sequence α is \emptyset' -Martin-Löf random iff

$$\exists^{\infty} n \ C(\alpha_0...\alpha_n) \geq n - O(1)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (Miller-Yu)

A sequence α is λ -Martin-Löf random iff for every computable function $f : \mathbb{N} \to \mathbb{N}$ such that $\sum 2^{-f(n)} < +\infty$

$$\boldsymbol{C}^*(\alpha_0...\alpha_n) \geq n - f(n) + O(1)$$

Theorem (Miller-Nies-Stephan-Terwijn)

A sequence α is \emptyset' - λ -Martin-Löf random iff

$$\exists^{\infty} n \ \mathbf{C}^*(\alpha_0...\alpha_n) \geq n - O(1)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Cantor space: topology, measures, computability Our toolbox Main result

Outline

The Cantor space: topology, measures, computability

Our toolbox

- Martingales
- Effective randomness and Kolmogorov complexity

3 Main result

- 4 回 2 - 4 □ 2 - 4 □

Theorem

Two measures μ and ν are equivalent if:

$$\mu\left(\left\{\alpha: \ \frac{\mu}{\nu} \text{ succeeds on } \alpha\right\}\right) = 0$$
$$\nu\left(\left\{\alpha: \ \frac{\nu}{\mu} \text{ succeeds on } \alpha\right\}\right) = 0$$

Proposition

Two computable measures μ and ν have the same Π_1^0 nullsets iff they have the same weakly random sequences.

Theorem

A sequence α is not μ -weakly random if there exists a μ -martingale d and a computable order h such that $d(\alpha_0...\alpha_n) \ge h(n)$ for all n.

A (1) > (1) > (1)

The idea is to construct a measure μ such that

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

∃ 990

The idea is to construct a measure μ such that

• $\frac{\lambda}{\mu}$ succeeds on a set S such that $\lambda(S) > 0$

イロン イヨン イヨン イヨン

The idea is to construct a measure μ such that

- $\frac{\lambda}{\mu}$ succeeds on a set *S* such that $\lambda(S) > 0$
- $\frac{\lambda}{\mu}$ succeeds slowly on sequences in *S* (i.e. not faster than any computable order)

- 4 同 6 4 日 6 4 日 6

This brings us to the notion of hyperimmunity:

Definition

A sequence $\alpha \in 2^{\omega}$ has hyperimmune degree if it Turing-computes a function $f : \mathbb{N} \to \mathbb{N}$ such that

 $\forall g \text{ computable } f \nleq g$

Definition

... equivalently, α has hyperimmune degree if it computes an order $h:\mathbb{N}\to\mathbb{N}$ such that

 $\forall g \text{ computable order } g \nleq h$

・ロン ・回 と ・ ヨ と ・ ヨ と

Good news...

Theorem (Martin)

$$\lambda \Big(\{ lpha \in 2^{\omega} : lpha \,$$
 has hyperimmune degree $\} \Big) = 1$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

3

Good news...

Theorem (Martin) $\lambda \Big(\{ \alpha \in 2^{\omega} : \alpha \text{ has hyperimmune degree } \} \Big) = 1$

Bad news...

Theorem (Kurtz)

There exists no operator \mathfrak{h} such that \mathfrak{h}^{α} is a slow (in the sense above) order for almost all α .

・ロン ・回 と ・ ヨ と ・ ヨ と

We need a more constructive version:

Theorem (Nies-Stephan-Terwijn)

Every λ - \emptyset -Martin-Löf random sequence α has hyperimmune degree.

Proof. Suppose that $C^*(\alpha_0...\alpha_n) \ge n - c$ for infinitely many *n*'s. Then the function

$$h: n \mapsto \#\{k \le n: C^*(\alpha_0...\alpha_k) \ge k - c\}$$

is a slow order.

We are ready for the construction of a computable measure $\boldsymbol{\mu}$ with the desired properties.

- 4 回 2 - 4 □ 2 - 4 □

-

We are ready for the construction of a computable measure μ with the desired properties.

Recall that

$$\lambda - \emptyset' - MLR = \{ \alpha : \exists c \exists^{\infty} n \ C^*(\alpha_0 ... \alpha_n) \ge n - c \}$$

Thus, there must be a $c_0 > 0$ such that

$$\lambda\{\alpha: \exists^{\infty} n \ C^*(\alpha_0...\alpha_n) \ge n - c_0\} > 0$$

This will be our set S!

(4 同) (4 回) (4 回)

The Cantor space: topology, measures, computability Our toolbox Main result

・ロ・・ (日・・ (日・・ (日・)

æ

In *S*, all the elements are λ - \emptyset '-*MLR*, hence λ -*WR*.

・ロト ・回ト ・ヨト ・ヨト

2

In *S*, all the elements are λ - \emptyset '-*MLR*, hence λ -*WR*.

On these elements, $\frac{\mu}{\lambda}$ decreases slowly (and tends to 0) hence $\frac{\lambda}{\mu}$ increases slowly and tends to $+\infty$.

In *S*, all the elements are λ - \emptyset '-*MLR*, hence λ -*WR*.

On these elements, $\frac{\mu}{\lambda}$ decreases slowly (and tends to 0) hence $\frac{\lambda}{\mu}$ increases slowly and tends to $+\infty$.

 $\frac{\lambda}{\mu}$ is basically the best computable μ -martingale against λ -random elements. Hence, every other computable μ -martingale succeeds as slowly as it on elements of *S*.

In *S*, all the elements are λ - \emptyset '-*MLR*, hence λ -*WR*.

On these elements, $\frac{\mu}{\lambda}$ decreases slowly (and tends to 0) hence $\frac{\lambda}{\mu}$ increases slowly and tends to $+\infty$.

 $\frac{\lambda}{\mu}$ is basically the best computable μ -martingale against λ -random elements. Hence, every other computable μ -martingale succeeds as slowly as it on elements of *S*.

Hence, all elements of S are μ -WR.

(4 同) (4 回) (4 回)

In *S*, all the elements are λ - \emptyset '-*MLR*, hence λ -*WR*.

On these elements, $\frac{\mu}{\lambda}$ decreases slowly (and tends to 0) hence $\frac{\lambda}{\mu}$ increases slowly and tends to $+\infty$.

 $\frac{\lambda}{\mu}$ is basically the best computable μ -martingale against λ -random elements. Hence, every other computable μ -martingale succeeds as slowly as it on elements of *S*.

Hence, all elements of S are μ -WR.

Outside *S*, μ and λ are equal up to a multiplicative constant, hence for all $\alpha \in S$: $\alpha \in \lambda$ -*WR* $\Leftrightarrow \alpha \in \mu$ -*WR*.

We have seen how the theory of algorithmic randomness can be used to solve which have *a priori* nothing to do with it. Other questions arise from what we have seen. For example:

Question

One can define a new equivalence relation between computable measures:

$$\mu \equiv \nu$$
 iff $\mu - MLR = \nu - MLR$

How does this new relation compare to the classical one?

We have seen how the theory of algorithmic randomness can be used to solve which have *a priori* nothing to do with it. Other questions arise from what we have seen. For example:

Question

One can define a new equivalence relation between computable measures:

$$\mu \equiv \nu$$
 iff $\mu - MLR = \nu - MLR$

How does this new relation compare to the classical one?

This question is adressed in: L. Bienvenu, W. Merkle. Effective randomness for computable probability measures. Electronic Notes in Theoretical Computer Science 167, pp 117-130 (2007).

- 4 同 6 4 日 6 4 日 6

THANK YOU

L. Bienvenu, W. Merkle Effective randomness for computable probability measures

・ロト ・回ト ・ヨト ・ヨト

æ