Decomposition of graphs in given factors

Martín Matamala

Departamento de Ingeniería Matemática & Centro de Modelamiento Matemático
Universidad de Chile, Santiago, Chile

22th January 2008
Collaborators.

- **José Correa**, School of Business, Universidad Adolfo Ibáñez, Santiago, Chile.
- **Flavio Guiñez**, Departement of Mathematical Engineering, Universidad de Chile, Santiago, Chile.
- **José Zamora**, Departement of Mathematical Engineering, Universidad de Chile, Santiago, Chile.
Content

1. Decomposition in factors
 - A family of games
 - Graph Setting
 - The problem

2. Computational Complexity
 - \(p = 2 \)
 - \(p \geq 3 \)

3. Scaled factors always exists
 - Motivation
 - Known results
 - Weighted version

4. Open Problems
 - \(\lambda \)-factors
 - Complete graphs and special \(A \)
Decomposition in factors
Computational Complexity
Scaled factors always exists
Open Problems

A family of games
Graph Setting
The problem

CELLST version 1.0 (1)

Martín Matamala
Factors
CELLST version 1.0 (1)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

Martín Matamala

Factors
Decomposition in factors

- **Computational Complexity**
 - Scaled factors always exist
- **Open Problems**

A family of games

- **Graph Setting**

The problem

CELLST version 1.0 (1)

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martín Matamala

Factors
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decomposition in factors
Computational Complexity
Scaled factors always exist
Open Problems

A family of games
Graph Setting
The problem

CELLST version 1.0 (2)

Martín Matamala
Factors
Decomposition in factors

Computational Complexity

Scaled factors always exist

Open Problems

A family of games

Graph Setting

The problem

CELLST version 1.0 (2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martín Matamala

Factors
CELLST version 1.0 (2)

1 2 3 3
1
2
3
3

1 2 3 3
1
2
3
3

1 2 3 3
1
2
3
3

1 2 3 3
1
2
3
3

1 2 3 3
1
2
3
3

1 2 3 3
1
2
3
3
Decomposition in factors
Computational Complexity
Scaled factors always exists
Open Problems

A family of games
Graph Setting
The problem

CELLST version 2.0

Martín Matamala
Factors
CELLST version 2.0

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Left Matrix:**

 - Top Left: 3
 - Top Middle: 1
 - Top Right: 2
 - Middle Left: 2
 - Middle Right: 3
 - Bottom Left: 1
 - Bottom Right: 3

- **Right Matrix:**

 - Top Left: 3
 - Top Middle: 1
 - Top Right: 2
 - Middle Left: 3
 - Middle Right: 1
 - Bottom Left: 2
 - Bottom Right: 1

- **Cells:**

 - Left Matrix: 1, 1, 3, 3
 - Right Matrix: 1, 1, 3, 3
Some cells are forbidden

Martín Matamala
Factors
Some cells are forbidden

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Factors

Martín Matamala
Three or more colors

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- Blue
- Red
- Green

A family of games

Graph Setting

The problem

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- Blue
- Red
- Orange

Open Problems

- Martín Matamala

Factors
Three or more colors

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Martín Matamala Factors
Tableaux → complete bipartite graph \((X \cup Y, E)\).
- Rows → \(X\); Columns → \(Y\).
- Cells → \(E\):
 - cell \((i, j)\) is the edge between vertex \(i \in X\) and vertex \(j \in Y\).

Input: A function \(a : X \cup Y \rightarrow \mathbb{N}\).
Output: A set \(F \subseteq E\) such that:

\[
\forall v \in X \cup Y, |\{e \in F : v \in e\}| = a(v)
\]

Number of edges of \(F\) incident with \(v\) are exactly \(a(v)\).
Tableaux → complete bipartite graph \((X \cup Y, E)\).
- Rows → \(X\); Columns → \(Y\).
- Cells → \(E\):
 cell \((i,j)\) is the edge between vertex \(i \in X\) and vertex \(j \in Y\).

Input: A function \(a : X \cup Y \to \mathbb{N}\).
Output: A set \(F \subseteq E\) such that:

\[
\forall v \in X \cup Y, |\{e \in F : v \in e\}| = a(v)
\]

Number of edges of \(F\) incident with \(v\) are exactly \(a(v)\).
Tableaux → complete bipartite graph \((X \cup Y, E)\).
- Rows → \(X\); Columns → \(Y\).
- Cells → \(E\):
 - cell \((i, j)\) is the edge between vertex \(i \in X\) and vertex \(j \in Y\).

Input: A function \(a : X \cup Y \to \mathbb{N}\).
Output: A set \(F \subseteq E\) such that:

\[\forall v \in X \cup Y, |\{e \in F : v \in e\}| = a(v)\]

Number of edges of \(F\) incident with \(v\) are exactly \(a(v)\).
Graphs setting

Definitions

Definition (Degree function)

Let $G = (V, E)$ be a graph. The function $a : V \to \mathbb{N}$ defined by

$$a(v) := |\{e \in E : v \in e\}|$$

is the degree function of G

- The degree function is denoted by d_G.
The degree function of the complete graph $K_n = (V, E)$ is $n - 1$, for each vertex in V.

The degree function of the complete bipartite graph $K_{n,m} = (X \cup Y, E)$ is m for vertex in X and n for vertex in Y.
The degree function of the complete graph $K_n = (V, E)$ is $n - 1$, for each vertex in V.

The degree function of the complete bipartite graph $K_{n,m} = (X \cup Y, E)$ is m for vertex in X and n for vertex in Y.

Martín Matamala
Graphs setting
Definitions

Definition (Factor)
Let \(G = (V, E) \) be a graph and \(a : V \rightarrow \mathbb{N} \).

A \(a \)-factor of \(G \) is a subgraph \((V, F) \) of \(G \) such that \(a \) is the degree function of \((V, F) \).

Remark
A subgraph \((V, F) \) is a \(a \)-factor of \((V, E) \) if and only if \((V, E \setminus F) \) is a \((d_G - a)\)-factor of \((V, E) \).
Graphs setting

Definitions

Definition (Factor)

Let $G = (V, E)$ be a graph and $a : V \rightarrow \mathbb{N}$.

- A a-factor of G is a subgraph (V, F) of G such that a is the degree function of (V, F).

Remark

A subgraph (V, F) is a a–factor of (V, E) if and only if $(V, E \setminus F)$ is a $(d_G - a)$–factor of (V, E).

Martín Matamala

Factors
Graph setting
Some cells are forbidden

- Tableaux → bipartite graph $G = (X \cup Y, E)$.
 - Rows → X; Columns → Y.
 - Allowed Cells → E:
 - Input: A function $a : X \cup Y \rightarrow \mathbb{N}$.
 - Output: A a–factor of G.
Graph setting
Some cells are forbidden

Tableaux \rightarrow bipartite graph $G = (X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$:

Input: A function $a : X \cup Y \rightarrow \mathbb{N}$.
Output: A a–factor of G.
Graph setting
Three or more colors

- **Tableaux** → **bipartite graph** \(G = (X \cup Y, E) \).
 - Rows → \(X \); Columns → \(Y \).
 - Allowed Cells → \(E \)

- Input: A set \(A \) of three or more functions.
- Output: A partition \(\mathcal{P} = \{F_a : a \in A\} \) of \(E \).
 \((X \cup Y, F_a)\) is a \(a \)--factor of \(G \), for each \(a \in A \).
Graph setting

Three or more colors

- Tableaux → bipartite graph $G = (X \cup Y, E)$.
 - Rows → X; Columns → Y.
 - Allowed Cells → E

- Input: A set A of three or more functions.
- Output: A partition $\mathcal{P} = \{F_a : a \in A\}$ of E.
 $(X \cup Y, F_a)$ is an a–factor of G, for each $a \in A$.

Martín Matamala Factors
Graph setting
Three or more colors

- Tableaux → **bipartite graph** $G = (X \cup Y, E)$.
 - Rows → X; Columns → Y.
 - Allowed Cells → E

- Input: A set A of three or more functions.
- Output: A partition $\mathcal{P} = \{F_a : a \in A\}$ of E.

 $(X \cup Y, F_a)$ is an a–factor of G, for each $a \in A$.
Decomposition of graphs in factors

- **Input:** A graph \(G = (V, E) \) and a set \(A \) of functions.

- **Output:** A partition \(\mathcal{P} = \{F_a : a \in A\} \) of \(E \),

 \[\forall a \in A, (V, F_a) \text{ is a } a-\text{factor of } G. \]

 When it is possible \(G \) is called \(A-\text{decomposable}. \)
Decomposition of graphs in factors

- **Input:** A graph $G = (V, E)$ and a set A of functions.

- **Output:** A partition $\mathcal{P} = \{F_a : a \in A\}$ of E, $\forall a \in A, (V, F_a)$ is an a–factor of G.

When it is possible G is called A–decomposable.
Decomposition of graphs in factors

- Input: A graph $G = (V, E)$ and a set A of functions.

- Output: A partition $\mathcal{P} = \{F_a : a \in A\}$ of E,
 $$\forall a \in A, (V, F_a) \text{ is a } a-\text{factor of } G.$$

When it is possible G is called A–decomposable.
p–decomposition problem.

Input: A graph $G = (V, E)$ and a set of functions A with $|A| = p$.

Question: Does G have a A–decomposition?
Decomposition
Two parts

Definition (Factors)
Let $G = (V, E)$ be a graph and $a, b : V \to \mathbb{N}$.

A (a, b)-factor of G is a subgraph (V, F) of G such that $a \leq d_G \leq b$, where d_G is the degree function of (V, F).
Two parts: \((a, b)\)-factors

Known results

- **Tutte** (1970): NSC for perfect matching and for \(a\)–factors.
- **Lovász** (1970): NSC for \((a, b)\)–factors.
- **Anstee** (1985, 1990, 1994): S conditions and a \(O(n^3)\) algorithm for \((a, b)\)–factors.
- **Heinrich, Hell, Kirkpatrick, Liu.** (1990). *Simpler* conditions when \(a < b\) or \(G_{a=b}\) bipartite.
- **Correa, M.** (2006) new NSC for \((a, b)\)–factors.
Three or more parts

Polynomial

- **Guiñez, M.** (2007), Any G and $|A| \geq 3$ such that at most two function assign to v a nonzero value.

- **Kundu** (1970), **Kleitman, Koren and Li** (1973), **Guiñez, M.** (2007), G a complete graph, $|A| = 3$ and at least one function a has span 1.

- **Guiñez, M.** (2007), G acyclic (forest) and $|A| \geq 3$.
Three or more colors
NP-completeness

- Dürr, Marek (2001), Bipartite graphs and $|A| = 3$.
- Dürr, Marek (2001), $|A| = 4$ and G a complete or a complete bipartite graph.
- Open for G complete or complete bipartite and $|A| = 3$.
Scaled factors
Known scaled factors

- **Lovász (1970):** If $G = (V, E)$ has maximum degree k and $k_1 + k_2 = k + 1$, then E can be partitioned into a $(0, k_1)$–factor and a $(0, k_2)$–factor.

- **Tutte (1978):** If $G = (V, E)$ is k-regular graph and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.

- **Gupta (1978):** If $G = (V, E)$ has minimum degree k and $k_1 + k_2 = k - 1 \geq 1$, then E can be partitioned into a (k_1, d_G)–factor and a (k_2, d_G)–factor.

- **Thomassen (1980):** If $G = (V, E)$ is such that $\deg_E(v) \in \{k, k + 1\}$ and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.
Scaled factors

Known scaled factors

- **Lovász (1970):** If $G = (V, E)$ has maximum degree k and $k_1 + k_2 = k + 1$, then E can be partitioned into a $(0, k_1)$–factor and a $(0, k_2)$–factor.

- **Tutte (1978):** If $G = (V, E)$ is k-regular graph and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.

- **Gupta (1978):** If $G = (V, E)$ has minimum degree k and $k_1 + k_2 = k - 1 \geq 1$, then E can be partitioned into a (k_1, d_G)–factor and a (k_2, d_G)–factor.

- **Thomassen (1980):** If $G = (V, E)$ is such that $\deg_E(v) \in \{k, k + 1\}$ and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.
Scaled factors
Known scaled factors

- **Lovász (1970):** If $G = (V, E)$ has maximum degree k and $k_1 + k_2 = k + 1$, then E can be partitioned into a $(0, k_1)$-factor and a $(0, k_2)$-factor.

- **Tutte (1978):** If $G = (V, E)$ is k-regular graph and $0 \leq r < k$, then G has a $(r, r + 1)$-factor.

- **Gupta (1978):** If $G = (V, E)$ has minimum degree k and $k_1 + k_2 = k - 1 \geq 1$, then E can be partitioned into a (k_1, d_G)-factor and a (k_2, d_G)-factor.

- **Thomassen (1980):** If $G = (V, E)$ is such that $\deg_E(v) \in \{k, k + 1\}$ and $0 \leq r < k$, then G has a $(r, r + 1)$-factor.
Scaled factors

Known scaled factors

- **Lovász (1970):** If $G = (V, E)$ has maximum degree k and $k_1 + k_2 = k + 1$, then E can be partitioned into a $(0, k_1)$–factor and a $(0, k_2)$–factor.

- **Tutte (1978):** If $G = (V, E)$ is a k-regular graph and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.

- **Gupta (1978):** If $G = (V, E)$ has minimum degree k and $k_1 + k_2 = k - 1 \geq 1$, then E can be partitioned into a (k_1, d_G)–factor and a (k_2, d_G)–factor.

- **Thomassen (1980):** If $G = (V, E)$ is such that $\deg_E(v) \in \{k, k + 1\}$ and $0 \leq r < k$, then G has a $(r, r + 1)$–factor.
Let $\lambda \in (0, 1)$ be. A λ-factor of $G = (V, E)$ is a subgraph (V, F) of G such that

$$\lceil \lambda \deg_E(v) \rceil - 1 \leq \deg_F(v) \leq \lfloor \lambda \deg_E(v) \rfloor + 1$$

that is a $(\lceil \lambda \deg_E(v) \rceil - 1, \lfloor \lambda \deg_E(v) \rfloor + 1)$-factor.

A λ-factor is equivalent to scaling the degrees of G by λ.

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a λ-factor.
λ-factors

Definition (Correa, M)

- Let $\lambda \in (0, 1)$ be. A λ-factor of $G = (V, E)$ is a subgraph (V, F) of G such that

$$\lceil \lambda \deg_E(v) \rceil - 1 \leq \deg_F(v) \leq \lfloor \lambda \deg_E(v) \rfloor + 1$$

- that is a $(\lceil \lambda \deg_E(v) \rceil - 1, \lfloor \lambda \deg_E(v) \rfloor + 1)$-factor.

λ-factor \equiv scaling the degrees of G by λ

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a λ-factor.
λ-factors
Definition (Correa, M)

- Let $\lambda \in (0, 1)$ be. A λ-factor of $G = (V, E)$ is a subgraph (V, F) of G such that

$$\left\lceil \lambda \deg_E(v) \right\rceil - 1 \leq \deg_F(v) \leq \left\lfloor \lambda \deg_E(v) \right\rfloor + 1$$

- that is a $\left(\left\lceil \lambda \deg_E(v) \right\rceil - 1, \left\lfloor \lambda \deg_E(v) \right\rfloor + 1\right)$-factor.

λ-factor \equiv scaling the degrees of G by λ

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a λ-factor.
Let \(\lambda \in (0, 1) \) be. A \(\lambda \)-factor of \(G = (V, E) \) is a subgraph \((V, F)\) of \(G \) such that

\[
\lceil \lambda \deg_E(v) \rceil - 1 \leq \deg_F(v) \leq \lfloor \lambda \deg_E(v) \rfloor + 1
\]

that is a \((\lceil \lambda \deg_E(v) \rceil - 1, \lfloor \lambda \deg_E(v) \rfloor + 1)\)-factor.

\(\lambda \)-factor \equiv \text{scaling the degrees of } G \text{ by } \lambda

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a \(\lambda \)-factor.
λ-factors

Results

- **Theorem A:** If G bipartite and $\lambda \in [0, 1]$, then there exists F such that
 \[
 \lfloor \lambda \deg_E(v) \rfloor \leq \deg_F(v) \leq \lceil \lambda \deg_E(v) \rceil
 \]
 Hoffman (1956), using techniques of network flows.

- **Theorem B:** λ-factors always exists.
 Kano, Saito (1983), using the NSC of Lovasz.

Theorem A: If G bipartite and $\lambda \in [0, 1]$, then there exists F such that

$$\lfloor \lambda \deg_E(v) \rfloor \leq \deg_F(v) \leq \lceil \lambda \deg_E(v) \rceil$$

Hoffman (1956), using techniques of network flows.

Theorem B: λ–factors always exists.

Kano, Saito (1983), using the NSC of Lovasz.

Theorem A: If G bipartite and $\lambda \in [0, 1]$, then there exists F such that

$$\lfloor \lambda \deg_E(v) \rfloor \leq \deg_F(v) \leq \lceil \lambda \deg_E(v) \rceil$$

Hoffman (1956), using techniques of network flows.

Theorem B: λ–factors always exists.

Kano, Saito (1983), using the NSC of Lovasz.

Definition (weighted factors)

Let \(G = (V, E) \) be a graph, let \(w : E \to [0, \infty) \) and let \(a, b : V \to \mathbb{N} \). A \(w \)-weighted \((a, b) \)-factor of \(G \) is a subset \(F \subseteq E \) such that

\[
a(v) \leq w(\delta_v \cap F) \leq b(v), \forall v \in V,
\]

where \(x(A) = \sum_{e \in A} x_e \) and \(\delta_v = \{uv : uv \in E\} \).
Weighted λ-factors.

Definition

Let $G = (V, E)$ be a graph, let $w : E \to [0, \infty)$ and let $\lambda \in (0, 1)$. A w–weighted λ–factor of G is a subset $F \subseteq E$ such that

$$\left| w(\delta_v \cap F) - \lambda w(\delta_v) \right| \leq \max\{w_e : e \in \delta_v\} \quad \forall v \in V.$$
A w–weighted λ–factor always exists.

Theorem C: Let $G = (V, E)$ be a graph and $l \leq 0 \leq u : E \to \mathbb{R}$. Then, $\exists x \in \prod_{e \in E} \{l_e, u_e\}$, $\forall v \in V$

$$|x(\delta_v)| \leq \max \{u_e - l_e : e \in \delta_v\}$$

Theorem D: Weighted λ–factors always exists.
A w–weighted λ–factor always exists.

Theorem C: Let $G = (V, E)$ be a graph and $l \leq 0 \leq u : E \to \mathbb{R}$. Then, $\exists x \in \prod_{e \in E} \{l_e, u_e\}$, $\forall v \in V$

$$|x(\delta_v)| \leq \max \{u_e - l_e : e \in \delta_v\}$$

Theorem D: Weighted λ–factors always exists.
Decomposition in several $\lambda-$factors

Let $G = (V, E)$ be a graph and let $\lambda_1, \ldots, \lambda_k \in (0, 1)$ be such that $\sum_{i=1}^{k} \lambda_i = 1$.

Can E be partitioned into F_1, \ldots, F_k such that for all $v \in V$: $|\deg_{F_i}(v) - \lambda_i \deg_E(v)| \leq 1$?

Combining $\lambda-$factor Theorem with Correa and Goemans’ previous ideas, we show $|\deg_{F_i}(v) - \lambda_i \deg_E(v)| < 3$.
Let $G = (V, E)$ be a graph and let $\lambda_1, \ldots, \lambda_k \in (0, 1)$ be such that $\sum_{i=1}^{k} \lambda_i = 1$.

Can E be partitioned into F_1, \ldots, F_k such that for all $v \in V$:

$$|\deg_{F_i}(v) - \lambda_i \deg_{E}(v)| \leq 1?$$

Combining λ–factor Theorem with Correa and Goemans’ previous ideas, we show $|\deg_{F_i}(v) - \lambda_i \deg_{E}(v)| < 3$.

Decomposition in several λ–factors
Let $G = (V, E)$ be a graph and let $\lambda_1, \ldots, \lambda_k \in (0, 1)$ be such that $\sum_{i=1}^{k} \lambda_i = 1$.

Can E be partitioned into F_1, \ldots, F_k such that for all $v \in V$: $|\deg_{F_i}(v) - \lambda_i \deg_E(v)| \leq 1$?

Combining λ–factor Theorem with Correa and Goemans’ previous ideas, we show $|\deg_{F_i}(v) - \lambda_i \deg_E(v)| < 3$.

Martín Matamala
Factors
Feasibility
A necessary condition

- G is A–feasible if for each $S \subseteq A$, G has a a_S–factor, where $a_s = \sum_{a \in S} a$.
- In particular, a_A must be the degree function of G.
- Feasibility can be tested in polynomial time.
Feasibility
A necessary condition

- G is A–feasible if for each $S \subseteq A$, G has a a_S–factor, where $a_s = \sum_{a \in S} a$.
- In particular, a_A must be the degree function of G.
- Feasibility can be test in polynomial time.
Feasibility in the complete graph

\[K_n = (V, E) \]

- Each function \(a \in A \) must be a graphical function, i.e., there exists a graph \(G \) on \(V \) such that \(d_G = a \).
- Can be tested in linear time: Erdös, Gallai (1960).
Feasibility in the complete graph

Each function $a \in A$ must be a **graphical function**, i.e., there exists a graph G on V such that $d_G = a$.

Can be tested in linear time: Erdös, Gallai (1960).
Feasibility is not sufficient

$G = K_5$, $|A| = 3$ and A feasible but G has not A-decomposition.

$$A = \begin{bmatrix}
1 & 0 & 0 & 2 & 1 \\
3 & 2 & 2 & 1 & 0 \\
0 & 2 & 2 & 1 & 3
\end{bmatrix}$$
Feasibility and Roomy
Using feasibility

- e is **forced** if there is $a \in A$ such that $G - e$ has no a–factor.
- A is roomy for G if no edge of e is forced.
- p–decomposition problem \equiv its restriction to roomy matrices, in any class \mathcal{C} closed under subgraphs.
Feasibility and Roomy

Using feasibility

- e is **forced** if there is $a \in A$ such that $G - e$ has no a–factor.
- A is roomy for G if no edge of e is forced.
- p–decomposition problem \equiv its restriction to roomy matrices, in any class C closed under subgraphs.
Complete graphs are not closed under subgraphs.
Complete bipartite graphs are not closed under subgraphs.

→ Known complexity results do not given information when A is roomy.

An open problem.

When G is complete or complete bipartite and A is roomy, is p–decomposition problem polynomially solvable?
Complete graphs are not closed under subgraphs.

Complete bipartite graphs are not closed under subgraphs.

→ Known complexity results do not given information when A is roomy.

An open problem.

When G is complete or complete bipartite and A is roomy, is p–decomposition problem polynomially solvable?
Feasibility and Roomy
An open problem

- Complete graphs are not closed under subgraphs.
- Complete bipartite graphs are not closed under subgraphs.
 → Known complexity results do not give information when A is roomy.
- An open problem.

When G is complete or complete bipartite and A is roomy, is p-decomposition problem polynomially solvable?
Related open problems
Kundu’s conjecture, (1973)

Definition (tree-functions)

A graphical function $a : V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a = d_T$.

- Kundu’s conjecture:
 When $|A| = n$, each $a \in A$ is a tree-function and a_A is $2n - 1$,
 then K_{2n} have a A–decomposition?.
- In this case A is roomy!
Related open problems

Kundu’s conjecture, (1973)

Definition (tree-functions)

A graphical function $a : V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a = d_T$.

- Kundu’s conjecture:

 When $|A| = n$, each $a \in A$ is a tree-function and a_A is $2n - 1$,

 then K_{2n} have a A–decomposition?.

- In this case A is roomy!
Related open problems

Kundu’s conjecture, (1973)

Definition (tree-functions)

A graphical function \(a : V \rightarrow \mathbb{N}\) is a \textit{tree-function} if there is a tree \(T\) on \(V\) such that \(a = d_T\).

- Kundu’s conjecture:

 When \(|A| = n\), each \(a \in A\) is a tree-function and \(a_A\) is \(2n - 1\),

 then \(K_{2n}\) have a \(A\)–decomposition?.

- In this case \(A\) is roomy!
Related open problems

Kundu’s conjecture, (1973)

Definition (tree-functions)

A graphical function $a : V \rightarrow \mathbb{N}$ is a **tree-function** if there is a tree T on V such that $a = d_T$.

- **Kundu’s conjecture:**

 When $|A| = n$, each $a \in A$ is a tree-function and a_A is $2n - 1$,

 then K_{2n} have a A–decomposition?.

- In this case A is roomy!
Kundu’s conjecture
Partial results

- **Kundu** (1974), $|A| = 3$ and two functions are tree-functions.
- **Kundu** (1975), $|A| = 4$, three functions are tree-functions + fourth is upper bounded by $2n - 5$.
- **Kleitman, Koren, Li** (1977), $|A| = 3$ and two of them are forest-functions.
- **M., Zamora** (2006), A is obtained by a cyclic rotation of a function a.

Uses graceful labeling of some trees (caterpillar).

Related to another conjecture of Rosa 1960...
Kundu’s conjecture
Partial results

- **Kundu** (1974), $|A| = 3$ and two functions are tree-functions.
- **Kundu** (1975), $|A| = 4$, three functions are tree-functions + fourth is upper bounded by $2n - 5$.
- **Kleitman, Koren, Li** (1977), $|A| = 3$ and two of them are forest-functions.
- **M., Zamora** (2006), A is obtained by a cyclic rotation of a function a.

 Uses graceful labeling of some trees (caterpillar).

 Related to another conjecture of **Rosa** 1960...
Conjectures

Too much for today!

Merci Beaucoup!
Conjectures

Too much for today!

Merci Beaucoup!
Decomposition in factors
Computational Complexity
Scaled factors always exists
Open Problems

$\lambda -$ factors
Complete graphs and special A

??????