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CELLSG version 1.0

Tableaux → complete bipartite graph (X ∪ Y , E).
Rows → X ; Columns → Y .
Cells → E :
cell (i , j) is the edge between vertex i ∈ X and vertex j ∈ Y .

Input: A function a : X ∪ Y → N.
Output: A set F ⊆ E such that:

∀v ∈ X ∪ Y , |{e ∈ F : v ∈ e}| = a(v)

Number of edges of F incident with v are exactly a(v).
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Graphs setting
Definitions

Definition (Degree function)

Let G = (V , E) be a graph. The function a : V → N defined by

a(v) := |{e ∈ E : v ∈ e}|

is the degree function of G

The degree function is denoted by dG.
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Degree function

The degree function of the complete graph Kn = (V , E) is
n − 1, for each vertex in V .
The degree function of the complete bipartite graph
Kn,m = (X ∪Y , E) is m for vertex in X and n for vertex in Y .
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Graphs setting
Definitions

Definition (Factor)

Let G = (V , E) be a graph and a : V → N.

A a-factor of G is a subgraph (V , F ) of G such that
a is the degree function of (V , F ).

Remark
A subgraph (V , F ) is a a−factor of (V , E) if and only if
(V , E \ F ) is a (dG − a)−factor of (V , E).
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Tableaux → bipartite graph G = (X ∪ Y , E).
Rows → X ; Columns → Y .
Allowed Cells → E :

Input: A function a : X ∪ Y → N.
Output: A a−factor of G.
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Graph setting
Three or more colors

Tableaux → bipartite graph G = (X ∪ Y , E).
Rows → X ; Columns → Y .
Allowed Cells → E

Input: A set A of three or more functions.
Output: A partition P = {Fa : a ∈ A} of E .
(X ∪ Y , Fa) is a a−factor of G, for each a ∈ A.
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Decomposition of graphs in factors

Input: A graph G = (V , E) and a set A of functions.

Output: A partition P = {Fa : a ∈ A} of E ,
∀a ∈ A, (V , Fa) is a a−factor of G.

When it is possible G is called A−decomposable.
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Decomposition
The computational problem

p−decomposition problem.
Input: A graph G = (V , E) and a set of functions A with
|A| = p.
Question: Does G have a A−decomposition?.
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Decomposition
Two parts

Definition (Factors)

Let G = (V , E) be a graph and a, b : V → N.

A (a, b)-factor of G is a subgraph (V , F ) of G such that
a ≤ dG ≤ b, where dG is the degree function of (V , F ).
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p ≥ 3

Two parts: (a, b)-factors
Known results

Tutte (1970): NSC for perfect matching and for a−factors.
Lovász (1970): NSC for (a, b)−factors.
Anstee (1985, 1990, 1994): S conditions and a O(n3)
algorithm for (a, b)−factors.
Heinrich, Hell, Kirkpatrick, Liu. (1990). Simpler conditions
when a < b or Ga=b bipartite.
Correa, M. (2006) new NSC for (a, b)−factors.
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Three or more parts
Polynomial

Guiñez, M. (2007), Any G and |A| ≥ 3 such that at most
two function assign to v a nonzero value.
Kundu (1970), Kleitman, Koren and Li (1973), Guiñez, M.
(2007), G a complete graph, |A| = 3 and at least one
function a has span 1.
Guiñez, M. (2007), G acyclic (forest) and |A| ≥ 3.
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Three or more colors
NP-completeness

Dürr, Marek (2001), Bipartite graphs and |A| = 3.
Guiñez, M. (2007), |A| ≥ 3 and G a |A|−regular graph.
Dürr, Marek (2001), |A| = 4 and G a complete or a
complete bipartite graph.
Open for G complete or complete bipartite and |A| = 3.
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Scaled factors
Known scaled factors

Lovász (1970): If G = (V , E) has maximum degree k and
k1 + k2 = k + 1, then E can be partitioned into a
(0, k1)−factor and a (0, k2)−-factor.
Tutte (1978):If G = (V , E) is k -regular graph and
0 ≤ r < k , then G has a (r , r + 1)−factor.
Gupta (1978):If G = (V , E) has minimum degree k and
k1 + k2 = k − 1 ≥ 1, then E can be partitioned into a
(k1, dG)− factor and a (k2, dG)−factor.
Thomassen (1980):If G = (V , E) is such that
degE(v) ∈ {k , k + 1} and 0 ≤ r < k , then G has a
(r , r + 1)−factor.
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λ-factors
Definition (Correa, M)

Let λ ∈ (0, 1) be. A λ-factor of G = (V , E) is a subgraph
(V , F ) of G such that

dλ degE(v)e − 1 ≤ degF (v) ≤ bλ degE(v)c+ 1

, that is a (dλ degE(v)e − 1, bλ degE(v)c+ 1)-factor.

λ-factor ≡ scaling the degrees of G by λ

The results of Lovász (1970), Tutte (1978), Gupta (1978),
Thomassen (1980), can be formulated as the existence of
a λ−factor.
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λ−factors
Results

Theorem A: If G bipartite and λ ∈ [0, 1], then there exists F
such that
bλ degE(v)c ≤ degF (v) ≤ dλ degE(v)e
Hoffman (1956), using techniques of network flows.

Theorem B: λ−factors always exists.
Kano, Saito (1983), using the NSC of Lovasz.

Correa, M. (2006) Direct proof of Theorem B, using
alternanting paths.
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Weighted factors.
Definition

Definition (weighted factors)

Let G = (V , E) be a graph, let w : E → [0,∞) and let
a, b : V → N. A w−weighted (a, b)−factor of G is a subset
F ⊆ E such that

a(v) ≤ w(δv ∩ F ) ≤ b(v),∀v ∈ V ,

where x(A) =
∑

e∈A xe and δv = {uv : uv ∈ E}.
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Weighted λ-factors.
Definition

Definition
Let G = (V , E) be a graph, let w : E → [0,∞) and let λ ∈ (0, 1).
A w−weighted λ−factor of G is a subset F ⊆ E such that

|w(δv ∩ F )− λw(δv )| ≤ max{we : e ∈ δv} ∀v ∈ V .
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A w−weighted λ−factor always exists.
Correa, M. (2006)

Theorem C: Let G = (V , E) be a graph and
l ≤ 0 ≤ u : E → R. Then, ∃x ∈

∏
e∈E{le, ue},

∀v ∈ V
|x(δv )| ≤ max{ue − le : e ∈ δv}

Correa, M. (2006).

Theorem D: Weighted λ−factors always exists.
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λ−factors
Complete graphs and special A

Decomposition
in several λ−factors

Let G = (V , E) be a graph and let λ1, . . . , λk ∈ (0, 1) be
such that

∑k
i=1 λi = 1.

Can E be partitioned into F1, . . . , Fk such that for all v ∈ V :
|degFi

(v)− λi degE(v)| ≤ 1?
Combining λ−factor Theorem with Correa and Goemans’
previous ideas, we show |degFi

(v)− λi degE(v)| < 3.
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Feasibility
A necessary condition

G is A−feasible if for each S ⊆ A, G has a aS−factor,
where as =

∑
a∈S a.

In particular, aA must be the degree function of G.
Feasibility can be test in polynomial time.
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Feasibility
in the complete graph

Kn = (V , E)

Each function a ∈ A must be a graphical function,
i.e., there exists a graph G on V such that dG = a.
Can be tested in linear time: Erdös, Gallai (1960).
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Feasibility
is not sufficient

G = K5, |A| = 3 and A feasible but G has not
A−decomposition.

A =

 1 0 0 2 1
3 2 2 1 0
0 2 2 1 3
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Feasibility and Roomy
Using feasibility

e is forced if there is a ∈ A such that G − e has no a
a−factor.
A is roomy for G if no edge of e is forced.
p−decomposition problem ≡ its restriction to roomy
matrices, in any class C closed under subgraphs
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Feasibility and Roomy
An open problem

Complete graphs are not closed under subgraphs.
Complete bipartite graphs are not closed under subgraphs.
→ Known complexity results do not given information when
A is roomy.
An open problem.
When G is complete or complete bipartite and A is roomy.
is p−decomposition problem polynomially solvable?.
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Related open problems
Kundu’s conjecture, (1973)

Definition (tree-functions)
A graphical function a : V → N is a tree-function if there is a
tree T on V such that a = dT .

Kundu’s conjecture:
When |A| = n, each a ∈ A is a tree-function and aA is
2n − 1,
then K2n have a A−decomposition?.
In this case A is roomy!.
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Kundu’s conjecture
Partial results

Kundu (1974), |A| = 3 and two functions are tree-functions.
Kundu (1975), |A| = 4, three functions are tree-functions
+ fourth is upper bounded by 2n − 5.
Kleitman, Koren, Li (1977), |A| = 3 and two of them are
forest-functions.
M., Zamora (2006), A is obtained by a cyclic rotation of a
function a.
Uses graceful labeling of some trees (caterpillar).
Related to another conjecture of Rosa 1960...
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Conjectures
....

Too much for today!.

Merci Beaucoup!
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