Decomposition of graphs in given factors Decomposition in factors

Martín Matamala

Departamento de Ingeniería Matemática \& Centro de Modelamiento Matemático Universidad de Chile, Santiago, Chile

22th January 2008

Collaborators.

- José Correa, School of Business, Universidad Adolfo Ibañez, Santiago, Chile.
- Flavio Guiñez, Departement of Mathematical Engineering, Universidad de Chile, Santiago, Chile.
- José Zamora, Departement of Mathematical Engineering, Universidad de Chile, Santiago, Chile.

Content

(1) Decomposition in factors

- A family of games
- Graph Setting
- The problem
(2) Computational Complexity
- $p=2$
- $p \geq 3$
(3) Scaled factors always exists
- Motivation
- Known results
- Weighted version
(4) Open Problems
- λ-factors
- Complete graphs and special A

CELLST version 1.0 (1)

CELLST version 1.0 (1)

CELLST version 1.0 (1)

	3	2	1	1
3				
2				
1				
1				

CELLST version 1.0 (1)

	3	2	1	1
3				
2				
1				
1				

	3	2	1	1
3	\bullet	\bullet	\bullet	
2				
1				
1				

CELLST version 1.0 (2)

CELLST version 2.0

CELLST version 2.0

Some cells are forbidden

Some cells are forbidden

Three or more colors

Three or more colors

			2	1	1	1	\bullet
			1	1	2	0	\bullet
		1	2	1	3	\bullet	
2	1	1	\bullet	\bullet	\bullet	\bullet	
1	2	1	\bullet	\bullet	\bullet	\bullet	
1	1	2	\bullet	\bullet	\bullet	\bullet	
1	0	3	\bullet	\bullet	\bullet	\bullet	
\bullet	\bullet	\bullet					

CELLSG version 1.0

- Tableaux \rightarrow complete bipartite graph $(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Cells $\rightarrow E$: cell (i, j) is the edge between vertex $i \in X$ and vertex $j \in Y$.
- Input: A function a
- Output: A set $F \subseteq E$ such that:

Number of edges of F incident with v are exactly $a(v)$.

CELLSG version 1.0

- Tableaux \rightarrow complete bipartite graph $(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Cells $\rightarrow E$: cell (i, j) is the edge between vertex $i \in X$ and vertex $j \in Y$.
- Input: A function $a: X \cup Y \rightarrow \mathbb{N}$.
- Output: A set $F \subseteq E$ such that:

Number of edges of F incident with v are exactly $a(v)$.

CELLSG version 1.0

- Tableaux \rightarrow complete bipartite graph $(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Cells $\rightarrow E$: cell (i, j) is the edge between vertex $i \in X$ and vertex $j \in Y$.
- Input: A function a: $X \cup Y \rightarrow \mathbb{N}$.
- Output: A set $F \subseteq E$ such that:

$$
\forall v \in X \cup Y,|\{e \in F: v \in e\}|=a(v)
$$

Number of edges of F incident with v are exactly $a(v)$.

Graphs setting Definitions

Definition (Degree function)

Let $G=(V, E)$ be a graph. The function $a: V \rightarrow \mathbb{N}$ defined by

$$
a(v):=|\{e \in E: v \in e\}|
$$

is the degree function of G

- The degree function is denoted by d_{G}.

Degree function

- The degree function of the complete graph $K_{n}=(V, E)$ is $n-1$, for each vertex in V.
- The degree function of the complete bipartite graph $E)$ is m for vertex in X and n for vertex in Y

Degree function

- The degree function of the complete graph $K_{n}=(V, E)$ is $n-1$, for each vertex in V.
- The degree function of the complete bipartite graph $K_{n, m}=(X \cup Y, E)$ is m for vertex in X and n for vertex in Y.

Graphs setting Definitions

Definition (Factor)

Let $G=(V, E)$ be a graph and $a: V \rightarrow \mathbb{N}$.

- A a-factor of G is a subgraph (V, F) of G such that a is the degree function of (V, F).

Remark

A subgraph (V, F) is a a-factor of (V, E) if and only if $(V, E \backslash F)$ is a $\left(d_{G}-a\right)$-factor of (V, E).

Graphs setting Definitions

Definition (Factor)

Let $G=(V, E)$ be a graph and $a: V \rightarrow \mathbb{N}$.

- A a-factor of G is a subgraph (V, F) of G such that a is the degree function of (V, F).

Remark

A subgraph (V, F) is a a-factor of (V, E) if and only if $(V, E \backslash F)$ is a $\left(d_{G}-a\right)$-factor of (V, E).

Graph setting
 Some cells are forbidden

- Tableaux \rightarrow bipartite graph $G=(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$:
- Input: A function a
- Output: A a-factor of G.

Graph setting
 Some cells are forbidden

- Tableaux \rightarrow bipartite graph $G=(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$:
- Input: A function a: $X \cup Y \rightarrow \mathbb{N}$.
- Output: A a-factor of G.

Graph setting
 Three or more colors

- Tableaux \rightarrow bipartite graph $G=(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$
- Input: A set A of three or more functions.
- Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E. $\left(X \cup Y, F_{a}\right)$ is a a-factor of G, for each $a \in A$.

Graph setting
 Three or more colors

- Tableaux \rightarrow bipartite graph $G=(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$
- Input: A set A of three or more functions.
- Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E $\left(X \cup Y, F_{a}\right)$ is a a-factor of G, for each $a \in A$.

Graph setting

- Tableaux \rightarrow bipartite graph $G=(X \cup Y, E)$.
- Rows $\rightarrow X$; Columns $\rightarrow Y$.
- Allowed Cells $\rightarrow E$
- Input: A set A of three or more functions.
- Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E.
$\left(X \cup Y, F_{a}\right)$ is a a-factor of G, for each $a \in A$.

Decomposition of graphs in factors

- Input: A graph $G=(V, E)$ and a set A of functions.

> Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E, $\forall a \in A,\left(V, F_{a}\right)$ is a a-factor of G. When it is possible G is called A-decomposable.

Decomposition of graphs in factors

- Input: A graph $G=(V, E)$ and a set A of functions.
- Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E, $\forall a \in A,\left(V, F_{\mathrm{a}}\right)$ is a a-factor of G.
When it is possible G is called A-decomposable.

A family of games

Decomposition of graphs in factors

- Input: A graph $G=(V, E)$ and a set A of functions.
- Output: A partition $\mathcal{P}=\left\{F_{a}: a \in A\right\}$ of E, $\forall a \in A,\left(V, F_{\mathrm{a}}\right)$ is a a-factor of G.
When it is possible G is called A-decomposable.

Decomposition

The computational problem

- p-decomposition problem.

Input: A graph $G=(V, E)$ and a set of functions A with $|A|=p$.
Question: Does G have a A-decomposition?.

Decomposition
 Two parts

Definition (Factors)

Let $G=(V, E)$ be a graph and $a, b: V \rightarrow \mathbb{N}$.

- A (a, b)-factor of G is a subgraph (V, F) of G such that $a \leq d_{G} \leq b$, where d_{G} is the degree function of (V, F).

Two parts: (a, b)-factors

- Tutte (1970): NSC for perfect matching and for a-factors.
- Lovász (1970): NSC for (a, b)-factors.
- Anstee (1985, 1990, 1994): S conditions and a $O\left(n^{3}\right)$ algorithm for (a, b)-factors.
- Heinrich, Hell, Kirkpatrick, Liu. (1990). Simpler conditions when $a<b$ or $G_{a=b}$ bipartite.
- Correa, M. (2006) new NSC for (a, b)-factors.

Three or more parts

Polynomial

- Guiñez, M. (2007), Any G and $|A| \geq 3$ such that at most two function assign to v a nonzero value.
- Kundu (1970), Kleitman, Koren and Li (1973), Guiñez, M. (2007), G a complete graph, $|A|=3$ and at least one function a has span 1.
- Guiñez, M. (2007), G acyclic (forest) and $|A| \geq 3$.

Three or more colors
 NP-completeness

- Dürr, Marek (2001), Bipartite graphs and $|A|=3$.
- Guiñez, M. (2007), $|A| \geq 3$ and G a $|A|$-regular graph.
- Dürr, Marek (2001), $|A|=4$ and G a complete or a complete bipartite graph.
- Open for G complete or complete bipartite and $|A|=3$.

Scaled factors
 Known scaled factors

- Lovász (1970): If $G=(V, E)$ has maximum degree k and $k_{1}+k_{2}=k+1$, then E can be partitioned into a $\left(0, k_{1}\right)$-factor and a ($0, k_{2}$)--factor.

Scaled factors

- Lovász (1970): If $G=(V, E)$ has maximum degree k and $k_{1}+k_{2}=k+1$, then E can be partitioned into a
$\left(0, k_{1}\right)$-factor and a $\left(0, k_{2}\right)$-factor.
- Tutte (1978):If $G=(V, E)$ is k-regular graph and $0 \leq r<k$, then G has a $(r, r+1)$-factor.

Scaled factors
 Known scaled factors

- Lovász (1970): If $G=(V, E)$ has maximum degree k and $k_{1}+k_{2}=k+1$, then E can be partitioned into a
$\left(0, k_{1}\right)$-factor and a ($0, k_{2}$)--factor.
- Tutte (1978):If $G=(V, E)$ is k-regular graph and $0 \leq r<k$, then G has a $(r, r+1)$-factor.
- Gupta (1978):If $G=(V, E)$ has minimum degree k and $k_{1}+k_{2}=k-1 \geq 1$, then E can be partitioned into a $\left(k_{1}, d_{G}\right)$ - factor and a $\left(k_{2}, d_{G}\right)$-factor.

Scaled factors

Known scaled factors

- Lovász (1970): If $G=(V, E)$ has maximum degree k and $k_{1}+k_{2}=k+1$, then E can be partitioned into a
$\left(0, k_{1}\right)$-factor and a ($0, k_{2}$)--factor.
- Tutte (1978):If $G=(V, E)$ is k-regular graph and $0 \leq r<k$, then G has a $(r, r+1)$-factor.
- Gupta (1978):If $G=(V, E)$ has minimum degree k and $k_{1}+k_{2}=k-1 \geq 1$, then E can be partitioned into a $\left(k_{1}, d_{G}\right)$ - factor and $\mathrm{a}\left(k_{2}, d_{G}\right)$-factor.
- Thomassen (1980):If $G=(V, E)$ is such that $\operatorname{deg}_{E}(v) \in\{k, k+1\}$ and $0 \leq r<k$, then G has a $(r, r+1)$-factor.

-factors

Definition (Correa, M)

- Let $\lambda \in(0,1)$ be. A λ-factor of $G=(V, E)$ is a subgraph (V, F) of G such that

$$
\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1 \leq \operatorname{deg}_{F}(v) \leq\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1
$$

, that is a $\left(\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1,\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1\right)$-factor.

λ-factor \equiv scaling the degrees of G by

The results of Lovász (1970), Tutte (1978), Gupta (1978),
Thomassen (1980), can be formulated as the existence of
a λ-factor.

-factors

Definition (Correa, M)

- Let $\lambda \in(0,1)$ be. A λ-factor of $G=(V, E)$ is a subgraph (V, F) of G such that

$$
\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1 \leq \operatorname{deg}_{F}(v) \leq\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1
$$

- , that is a $\left(\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1,\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1\right)$-factor.

$$
\lambda \text {-factor } \equiv \text { scaling the degrees of } G \text { by }
$$

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a λ-factor.

-factors

Definition (Correa, M)

- Let $\lambda \in(0,1)$ be. A λ-factor of $G=(V, E)$ is a subgraph (V, F) of G such that

$$
\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1 \leq \operatorname{deg}_{F}(v) \leq\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1
$$

- , that is a $\left(\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1,\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1\right)$-factor.
λ-factor \equiv scaling the degrees of G by λ
The results of Lovász (1970), Tutte (1978), Gupta (1978),
Thomassen (1980), can be formulated as the existence of
a λ-factor.

-factors

Definition (Correa, M)

- Let $\lambda \in(0,1)$ be. A λ-factor of $G=(V, E)$ is a subgraph (V, F) of G such that

$$
\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1 \leq \operatorname{deg}_{F}(v) \leq\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1
$$

- , that is a $\left(\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil-1,\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor+1\right)$-factor.

$$
\lambda \text {-factor } \equiv \text { scaling the degrees of } G \text { by } \lambda
$$

The results of Lovász (1970), Tutte (1978), Gupta (1978), Thomassen (1980), can be formulated as the existence of a λ-factor.

factors

- Theorem A: If G bipartite and $\lambda \in[0,1]$, then there exists F such that
$\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor \leq \operatorname{deg}_{F}(v) \leq\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil$
Hoffman (1956), using techniques of network flows.
- Theorem B: λ-factors always exists.

Kano, Saito (1983), using the NSC of Lovasz.
Correa, M. (2006) Direct proof of Theorem B, using alternanting paths.

factors

- Theorem A: If G bipartite and $\lambda \in[0,1]$, then there exists F such that
$\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor \leq \operatorname{deg}_{F}(v) \leq\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil$
Hoffman (1956), using techniques of network flows.
- Theorem B: λ-factors always exists.

Kano, Saito (1983), using the NSC of Lovasz.

Correa, M. (2006) Direct proof of Theorem B, using alternanting paths.

factors

- Theorem A: If G bipartite and $\lambda \in[0,1]$, then there exists F such that
$\left\lfloor\lambda \operatorname{deg}_{E}(v)\right\rfloor \leq \operatorname{deg}_{F}(v) \leq\left\lceil\lambda \operatorname{deg}_{E}(v)\right\rceil$
Hoffman (1956), using techniques of network flows.
- Theorem B: λ-factors always exists. Kano, Saito (1983), using the NSC of Lovasz.

Correa, M. (2006) Direct proof of Theorem B, using alternanting paths.

Weighted factors.

Definition (weighted factors)

Let $G=(V, E)$ be a graph, let $w: E \rightarrow[0, \infty)$ and let $a, b: V \rightarrow \mathbb{N}$. A w-weighted (a, b)-factor of G is a subset $F \subseteq E$ such that

$$
a(v) \leq w\left(\delta_{v} \cap F\right) \leq b(v), \forall v \in V
$$

where $x(A)=\sum_{e \in A} x_{e}$ and $\delta_{v}=\{u v: u v \in E\}$.

Weighted -factors.

Definition

Let $G=(V, E)$ be a graph, let $w: E \rightarrow[0, \infty)$ and let $\lambda \in(0,1)$. A w-weighted λ-factor of G is a subset $F \subseteq E$ such that

$$
\left|w\left(\delta_{v} \cap F\right)-\lambda w\left(\delta_{v}\right)\right| \leq \max \left\{w_{e}: e \in \delta_{v}\right\} \quad \forall v \in V
$$

A weighted factor always exists.

Theorem C: Let $G=(V, E)$ be a graph and
$I \leq 0 \leq u: E \rightarrow \mathbb{R}$. Then, $\exists x \in \prod_{e \in E}\left\{I_{e}, u_{e}\right\}$,
$\forall v \in V$

$$
\left|x\left(\delta_{v}\right)\right| \leq \max \left\{u_{e}-l_{e}: e \in \delta_{v}\right\}
$$

Correa, M. (2006).

Theorem D: Weighted λ-factors always exists.

A weighted factor always exists.

Theorem C: Let $G=(V, E)$ be a graph and $I \leq 0 \leq u: E \rightarrow \mathbb{R}$. Then, $\exists x \in \prod_{e \in E}\left\{l_{e}, u_{e}\right\}$,
$\forall v \in V$

$$
\left|x\left(\delta_{v}\right)\right| \leq \max \left\{u_{e}-l_{e}: e \in \delta_{v}\right\}
$$

Correa, M. (2006).

Theorem D: Weighted λ-factors always exists.

Decomposition
 in several factors

- Let $G=(V, E)$ be a graph and let $\lambda_{1}, \ldots, \lambda_{k} \in(0,1)$ be such that $\sum_{i=1}^{k} \lambda_{i}=1$.
- Can E be partitioned into F_{1}, \ldots, F_{k} such that for all $V \in V$: $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right| \leq 1$?
- Combining λ-factor Theorem with Correa and Goemans' previous ideas, we show $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right|<3$.

Decomposition
 in several factors

- Let $G=(V, E)$ be a graph and let $\lambda_{1}, \ldots, \lambda_{k} \in(0,1)$ be such that $\sum_{i=1}^{k} \lambda_{i}=1$.
- Can E be partitioned into F_{1}, \ldots, F_{k} such that for all $v \in V$: $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right| \leq 1$?
- Combining λ-factor Theorem with Correa and Goemans' previous ideas, we show $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right|<3$.

Decomposition
 in several factors

- Let $G=(V, E)$ be a graph and let $\lambda_{1}, \ldots, \lambda_{k} \in(0,1)$ be such that $\sum_{i=1}^{k} \lambda_{i}=1$.
- Can E be partitioned into F_{1}, \ldots, F_{k} such that for all $v \in V$: $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right| \leq 1$?
- Combining λ-factor Theorem with Correa and Goemans' previous ideas, we show $\left|\operatorname{deg}_{F_{i}}(v)-\lambda_{i} \operatorname{deg}_{E}(v)\right|<3$.

Feasibility
 A necessary condition

- G is A-feasible if for each $S \subseteq A$, G has a a_{S}-factor, where $a_{s}=\sum_{a \in S} a$.
- In particular, a_{A} must be the degree function of G.
- Feasibility can be test in polynomial time.

Feasibility

A necessary condition

- G is A-feasible if for each $S \subseteq A, G$ has a a_{S}-factor, where $a_{s}=\sum_{a \in S} a$.
- In particular, a_{A} must be the degree function of G.
- Feasibility can be test in polynomial time.

Feasibility

in the complete graph

$$
K_{n}=(V, E)
$$

- Each function $a \in A$ must be a graphical function, i.e., there exists a graph G on V such that $d_{G}=a$.
- Can be tested in linear time: Erdös, Gallai (1960).

Feasibility

in the complete graph

$$
K_{n}=(V, E)
$$

- Each function $a \in A$ must be a graphical function, i.e., there exists a graph G on V such that $d_{G}=a$.
- Can be tested in linear time: Erdös, Gallai (1960).

Feasibility

- $G=K_{5},|A|=3$ and A feasible but G has not A-decomposition.

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 1 \\
3 & 2 & 2 & 1 & 0 \\
0 & 2 & 2 & 1 & 3
\end{array}\right]
$$

Feasibility and Roomy

Using feasibility

- e is forced if there is $a \in A$ such that $G-e$ has no a a-factor.
- A is roomy for G if no edge of e is forced.
- p-decomposition problem \equiv its restriction to roomy matrices, in any class \mathcal{C} closed under subgraphs

Feasibility and Roomy

Using feasibility

- e is forced if there is $a \in A$ such that $G-e$ has no a a-factor.
- A is roomy for G if no edge of e is forced.
- p-decomposition problem \equiv its restriction to roomy matrices, in any class \mathcal{C} closed under subgraphs

Feasibility and Roomy

An open problem

- Complete graphs are not closed under subgraphs.
- Complete bipartite graphs are not closed under subgraphs.
> \rightarrow Known complexity results do not given information when A is roomy.
> - An onen problem.

> When G is complete or complete bipartite and A is roomy.
> is p-decomposition problem polynomially solvable?

Feasibility and Roomy

An open problem

- Complete graphs are not closed under subgraphs.
- Complete bipartite graphs are not closed under subgraphs.
\rightarrow Known complexity results do not given information when A is roomy.
- An open problem.

When G is complete or complete bipartite and A is roomy.
is p-decomposition problem polynomially solvable?

Feasibility and Roomy

An open problem

- Complete graphs are not closed under subgraphs.
- Complete bipartite graphs are not closed under subgraphs.
\rightarrow Known complexity results do not given information when A is roomy.
- An open problem.

When G is complete or complete bipartite and A is roomy. is p-decomposition problem polynomially solvable?.

Related open problems

Definition (tree-functions)

A graphical function $a: V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a=d_{T}$.

- Kundu's conjecture:

When $|A|=n$, each $a \in A$ is a tree-function and a_{A} is
2n-1,
then $K_{2 n}$ have a A-decomposition?.

- In this case A is roomy!

Related open problems
 's conjecture, (1973)

Definition (tree-functions)

A graphical function $a: V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a=d_{T}$.

- Kundu's conjecture:

When $|A|=n$, each $a \in A$ is a tree-function and a_{A} is $2 n-1$,
then $K_{2 n}$ have a A-decomposition?.

- In this case A is roomy!.

Related open problems
 's conjecture, (1973)

Definition (tree-functions)

A graphical function $a: V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a=d_{T}$.

- Kundu's conjecture:

When $|A|=n$, each $a \in A$ is a tree-function and a_{A} is $2 n-1$, then $K_{2 n}$ have a A-decomposition?.

- In this case A is roomy!.

Related open problems
 's conjecture, (1973)

Definition (tree-functions)

A graphical function $a: V \rightarrow \mathbb{N}$ is a tree-function if there is a tree T on V such that $a=d_{T}$.

- Kundu's conjecture:

When $|A|=n$, each $a \in A$ is a tree-function and a_{A} is $2 n-1$, then $K_{2 n}$ have a A-decomposition?.

- In this case A is roomy!.

's conjecture

Partial results

- Kundu (1974), $|A|=3$ and two functions are tree-functions.
- Kundu (1975), $|A|=4$, three functions are tree-functions + fourth is upper bounded by $2 n-5$.
- Kleitman, Koren, Li (1977), $|A|=3$ and two of them are forest-functions.
- M., Zamora (2006), A is obtained by a cyclic rotation of a function a.
Uses graceful labeling of some trees (caterpillar).
Related to another conjecture of Rosa 1960

's conjecture

Partial results

- Kundu (1974), $|A|=3$ and two functions are tree-functions.
- Kundu (1975), $|A|=4$, three functions are tree-functions + fourth is upper bounded by $2 n-5$.
- Kleitman, Koren, Li (1977), $|A|=3$ and two of them are forest-functions.
- M., Zamora (2006), A is obtained by a cyclic rotation of a function a.
Uses graceful labeling of some trees (caterpillar). Related to another conjecture of Rosa 1960...

Conjectures

-•••

Too much for today!.

Conjectures

-•••

Too much for today!.

Merci Beaucoup!

?????

