Progresses in the analysis of Stochastic 2D cellular automata:
 Asynchronous 2D Minority

Nicolas SCHABANEL, CNRS CMM
Joint work with
Damien REGNAULT \& Éric THIERRY
CMM, Univ. de Chile - $|X X|$-ÉNS LYON, France

Asynchronous Systems

Most of the real systems are asynchronous

- Networks, physical particles, biological cells...
- How does randomness introduced by asynchonicity affect the global behavior of these systems?

Example A ring network

- where each node has two states: "has a token" or "does not have a token"
- running an algorithm that redistributes the tokens according to some rules/constraints:
"I get a token if none of my neighbors have one" or "I get a token if my right neighbor has one",...
- Example of question How long does it take to reach a "stable configuration"?

Nature is an other example

Patterns are governed by rule 30 as the shell grows

2D Cellular automata

2D Cellular automata

At each time step, each cell updates its states according to the state of its neighbors

2D Cellular automata

At each time step, each cell updates its states according to the state of its neighbors

2D Cellular automata

Extensively used in physics, biology,... What happens in asynchronism regims?

Cellular automata, here

- $0 / \mathrm{I}$ state ($0=$ white \& I = black)
- Full asynchronism

A deamon chooses a random cell uniformly at random and updates it

- α-asynchronism

Each cell is independently updated with probability $\mathbf{0}<\boldsymbol{\alpha}<\mathbf{I}$

Full synchronism: $\boldsymbol{\alpha}=\boldsymbol{I}$
Full asynchronism: "limit" for $\boldsymbol{\alpha} \rightarrow \mathbf{0}$

Cellular automata, here

- $0 / \mathrm{I}$ state ($0=$ white \& I = black)
- Full asynchronism

A deamon chooses a random cell uniformly at random and updates it

- α-asynchronism

Each cell is independently updated with probability $\mathbf{0}<\boldsymbol{\alpha}<\boldsymbol{I}$

Full synchronism: $\boldsymbol{\alpha}=\boldsymbol{I}$
Full asynchronism: "limit" for $\boldsymbol{\alpha} \rightarrow \mathbf{0}$

Historic

Ergodicity of deterministic CA with random noise

- Toom - Gasc - Gray - Park - Louis (I974-)

Indecidability of independance to update history

- Gacs (2002)

Empiral studies of asynchronism

- Buvel, Ingerson - Bersini, Detour - Schönfish, de Roos (I995-)

Study of particular automata or classes of automata

- Fuks (2004 -)
- Fatès, Morvan, Regnault, S., Thierry (2005-)
- Chassaing, Gerin (2007)

Historic: I D automata 6 types of relaxation times [FMST 2005, FRST 2006, CG 2007]

(a) LOGARITHMIC (232)

(c') QUADRATIC (146)

(b) LINEAR (I30)

(d) EXPONENTIAL (2।0)

(c) QUADRATIC (I70)

(e) DIVERGING (I50)

Fully asynchronous 2D Minority

- 0/I states
- $\mathrm{n} \times \mathrm{m}$ toric configurations
- A daemon selects uniformly at random a cell and the cell updates to the minority state among its 4 neighbors and itself.

Energy function

Potential. $\mathbf{v}_{\mathbf{i j}}=\#\{$ neighbors in the same state as (i,j)\}

Cell (i,j) is active if $\mathbf{v}_{\mathbf{i j}} \geq 2$.
Energy of configuration c:
Energy $(\mathbf{c})=\sum_{(i, j)} \mathbf{v}_{\mathrm{ij}}$
Fact. The expected energy of a random configuration is
$2 \mathbf{N}$, where $\mathrm{N}=\mathrm{n} \mathrm{m}$

Observed phase transition

Observed phase transition

Observed phase transition

Energy is non-increasing when fully asynchronous

Theorem. The energy of a configuration is a nonincreasing function of time in fully asynchronous dynamic.

Energy decreases by at least 4 each time a cell with potential at least 3 is updated.
proof. Δ Energy $=8-4 \mathbf{v}_{\mathbf{i j}}$, when (i, j) is updated.

Initial energy drop

Theorem. The energy of any configuration of size N is at most $N+2 N / 3$ after $O\left(N^{2}\right)$ updates on expectation.
proof. Any such configuration contains a neighborhood in which a finite sequence of updates decreases the energy by at least I.

Borders

Borders

There is a red border between two neighboring cells in the same state.

Borders

There is a red border between two neighboring cells in the same state.

Borders

There is a red border between two neighboring cells in the same state.

Fact. The borders are the boundaries of the covering homogeneous checkerboards regions

Dual configurations

 (from now on, n and m are even)dual configuration $=$ configuration XOR checkerboard
$P+P$

Dual configurations

(from now on, n and m are even)
dual configuration $=$ configuration XOR checkerboard

Dual configurations

(from now on, n and m are even)
dual configuration $=$ configuration \times OR checkerboard

Stable configurations

Stable configurations are made of cells with potential ≤ 1, i.e. in contact with at most one border:

Fact. Stable configurations are made of an even number of bands of width ≥ 2 tiled by alternating checkerboards.

Stable configurations

Stable configurations are made of cells with potential ≤ 1, i.e. in contact with at most one border:

Fact. Stable configurations are made of an even number of bands of width ≥ 2 tiled by alternating checkerboards.

Energy of configurations

Energy of configurations

Typical asynchronous 2D minority

$t=0$

$t=75 \mathrm{~N}$

$t=N$

$$
t=5 \mathrm{~N}
$$

$$
t=20 \mathrm{~N}
$$

$$
t=350 \mathrm{~N}
$$

$$
t=50 \mathrm{~N}
$$

$$
t=38 \mathrm{IN}
$$

Convergence is almost sure

Definition. The dynamics converges from an initial configuration c^{0} if $\mathbf{T}=\min \left\{t: c^{t}\right.$ is stable $\}$ is almost surely finite.

Theorem. For all $c^{0}, E(T) \leq 2 N \cdot N 2 N$.
Proof. The following is a sequence of at most 2 N updates that stabilizes any configuration:
I. As long as there is an active black cell, flip it;
2. As long as there is an active white cell, flip it.

This sequence is followed with probability $1 / N^{2} \mathrm{~N}$.

Convergence is almost sure

Definition. The dynamics converges from an initial configuration c^{0} if $\mathbf{T}=\min \left\{t: c^{t}\right.$ is stable $\}$ is almost surely finite.

Theorem. For all $c^{0}, E(T) \leq 2 N \cdot N^{2 N}$.
Conjecture. If one of n or m is odd, the convergence time can indeed be exponential.

$2 n^{3}$

Typical asynchronous 2D minority

$t=0$

$t=N$

$$
t=5 N
$$

$t=20 \mathrm{~N}$

$$
t=38 \mathrm{IN}
$$

Typical asynchronous 2D minority

$t=0$

$t=N$

$t=5 \mathrm{~N}$

$t=20 \mathrm{~N}$

$$
t=50 \mathrm{~N}
$$

$$
t=75 \mathrm{~N}
$$

$t=150 \mathrm{~N}$

$t=300 \mathrm{~N}$

$t=350 \mathrm{~N}$
$t=38 \mathrm{IN}$

Polynomial convergence

(conjecture. It is true as soon as n and m are even)
We study bounded configuration, which are surrounded by a checkerboard of width ≥ 2 :

Polynomial convergence

(conjecture. It is true as soon as n and m are even)
We study bounded configuration, which are surrounded by a checkerboard of width ≥ 2 :

Typical evolution of a bounded configuration

$t=N$

$$
t=20 \mathrm{~N}
$$

$t=5 \mathrm{~N}$

$t=25 \mathrm{~N}$

$t=10 \mathrm{~N}$

$t=30 \mathrm{~N}$

$t=15 \mathrm{~N}$

$$
t=35 N
$$

Dual evolution:

Automaton OT976

$t=N$
$t=5 \mathrm{~N}$

$t=15 \mathrm{~N}$

$t=20 \mathrm{~N}$

$t=30 \mathrm{~N}$

$t=35 \mathrm{~N}$

Rules of the primal and dual dynamics

Primal (Minority)

Dual
(Automaton OT976)

Isolated Peninsula

Corner

Inactive

Border Surrounded

Coupling with the HV-convex hull

$t=N$

$t=20 \mathrm{~N}$

$t=5 \mathrm{~N}$

$t=25 \mathrm{~N}$

$t=10 \mathrm{~N}$

$t=30 \mathrm{~N}$

$t=15 \mathrm{~N}$

$t=35 \mathrm{~N}$

Coupling with the HV-convex hull

$t=5 \mathrm{~N}$

$t=25 \mathrm{~N}$

$t=30 \mathrm{~N}$

$t=35 \mathrm{~N}$

Rules of the hull dynamic

neighborhoods are considered with white/black symetries \& rotations (with exception of the bridge for the white/black symetry)

Convergence

$$
\text { Let } \boldsymbol{f}=\text { \#black dual hull cells + Energy/4. }
$$

Lemma. For any island of the dual hull, $\mathrm{E}[\Delta f] \leq-3 / \mathrm{N}$.

Convergence

$$
\text { Let } \boldsymbol{f}=\text { \#black dual cells + Energy/4. }
$$

Lemma. For any island, $\mathrm{E}[\Delta f] \leq-3 / \mathrm{N}$.
Proposition. For all bounded configuration,

$$
\begin{aligned}
\mathrm{E}[\Delta f] & \leq(2 \text { \#island contacts }-3 \text { \#islands }) / \mathrm{N} \\
& \leq \text {-\#islands/N. }
\end{aligned}
$$

Theorem. Every bounded configuration converges to the checkerboard configuration in finite time a.s.. The expected convergence time is:
$\mathrm{O}(\mathrm{N} \cdot$ Initial area).

Conclusion

- An exponential upper bound on the convergence time.
- Polynomial convergence time for bounded configurations
(can be extended to configuration with a checkerboard band of width ≥ 2)
- An useful energy function that defines proper statistical physics
- Similar results for the Moore-Neighborhood

Conjectures

- Phase transition at $\alpha_{c} \approx 0.83$.
- $\alpha_{c}=\frac{\sqrt[3]{46+\sqrt{6969}}}{6}-\frac{16}{3 \cdot \sqrt[3]{46+\sqrt{6969}}}+\frac{2}{3}$
- Some ideas to prove polynomial convergence time to checkerboard for $\alpha<$ I/3 but...
- Strongly depends on the underlying network (a lot of differences on trees...)
- Generalization to the class of threshold automata

Thank you

