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Asynchronous Systems
Most of the real systems are asynchronous

• Networks, physical particles, biological cells...

• How does randomness introduced by 
asynchonicity affect the global behavior of 
these systems?



Example
A ring network

• where each node has two states: 
          “has a token” or “does not have a token”

• running an algorithm that redistributes the tokens 
according to some rules/constraints:

“I get a token if none of my neighbors have one”  or
“I get a token if my right neighbor has one”,...

• Example of question 
How long does it take to reach a “stable configuration”?



Nature is an other 
example

Patterns are governed by rule 30 as the shell grows



2D Cellular automata



2D Cellular automata

At each time step, each cell updates its states 
according to the state of its neighbors



2D Cellular automata

At each time step, each cell updates its states 
according to the state of its neighbors



2D Cellular automata

Extensively used in physics, biology,...
What happens in asynchronism regims?



Cellular automata, here

• 0/1 state (0 = white & 1 = black)

• Full asynchronism
A deamon chooses a random cell uniformly at 
random and updates it

• α-asynchronism
Each cell is independently updated with 
probability 0 < α < 1

Full synchronism: α = 1
Full asynchronism: “limit” for α → 0



Cellular automata, here

• 0/1 state (0 = white & 1 = black)

• Full asynchronism
A deamon chooses a random cell uniformly at 
random and updates it

• α-asynchronism
Each cell is independently updated with 
probability 0 < α < 1
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Full asynchronism: “limit” for α → 0



Dem
o



Ergodicity of deterministic CA with random noise
• Toom - Gasc - Gray - Park - Louis (1974-)

Indecidability of independance to update history
• Gacs (2002)

Empiral studies of asynchronism
• Buvel, Ingerson - Bersini, Detour - Schönfish, de Roos (1995-)

Study of particular automata or classes of automata
• Fuks (2004 -)

• Fatès, Morvan, Regnault, S., Thierry (2005-)

• Chassaing, Gerin (2007)

Historic



Historic: 1D automata
6 types of relaxation times

[FMST 2005, FRST 2006, CG 2007]

(a) LOGARITHMIC (232) (b) LINEAR (130) (c) QUADRATIC (170)

(e) DIVERGING (150)(d) EXPONENTIAL (210)(c’) QUADRATIC (146)



Behavior ACE (#) Rule 01 10 010 101 Convergence

Identity 204 (1) ∅ • • • • 0

Coupon collector
200 (2) E • • ✔ •

Θ(n ln n)
232 (1) DE • • ✔ ✔

Monotone

206 (4) B ← • • •

Θ(n2)

222 (2) BC ← → • •

234 (4) BDE ← • ✔ ✔

250 (2) BCDE ← → ✔ ✔

202 (4) BE ← • ✔ •

192 (4) EF → • ✔ •

218 (2) BCE ← → ✔ •

128 (2) EFG → ← ✔ •

Biased random 
walks

242 (4) BCDEF ←→ → ✔ ✔

130 (4) BEFG ←→ ← ✔ •

Random walks

226 (2) BDEF ←→ • ✔ ✔

Θ(n3)

170 (2) BDEG ← ← ✔ ✔

178 (1) BCDEFG ←→ ←→ ✔ ✔

194 (4) BEF ←→ • ✔ •

138 (4) BEG ← ← ✔ •

146 (2) BCEFG ←→ ←→ ✔ •

Biased random walk 210 (4) BCEF ←→ → ✔ • Θ(n2n)

Diverging

198 (2) BF ←→ • • •

Diverging
142 (2) BG ← ← • •

214 (4) BCF ←→ → • •

150 (1) BCFG ←→ ←→ • •

232

130

170

210

150



Fully asynchronous
2D Minority

• 0/1 states

• n x m toric configurations

• A daemon selects uniformly at random a cell 
and the cell updates to the minority state 
among its 4 neighbors and itself.



Energy function
Potential. vij = #{neighbors in the same state as (i,j)} 

Cell (i,j) is active if vij ≥ 2.

Energy of configuration c:  

Energy(c) = ∑(i,j) vij

Fact. The expected energy of a random configuration is

2 N,   where N = n m 



Observed phase transition
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Fully asynchronous regime



Energy is non-increasing
when fully asynchronous

Theorem. The energy of a configuration is a non-
increasing function of time in fully asynchronous 
dynamic. 

Energy decreases by at least 4 each time a cell with 
potential at least 3 is updated.

proof.  ∆Energy = 8 - 4 vij,  when (i,j) is updated.



Initial energy drop

Theorem. The energy of any configuration of 
size N is at most N+2N/3 after O(N2) updates 
on expectation. 

proof.  Any such configuration contains a 
neighborhood in which a finite sequence of 
updates decreases the energy by at least 1.



Borders



There is a red border between two neighboring cells in 
the same state.

Borders



There is a red border between two neighboring cells in 
the same state.

Borders



There is a red border between two neighboring cells in 
the same state.

Fact. The borders are the boundaries of the covering 
homogeneous checkerboards regions 

Borders



dual configuration = configuration XOR checkerboard

Dual configurations
(from now on, n and m are even)
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dual configuration = configuration XOR checkerboard

Dual configurations
(from now on, n and m are even)



Stable configurations
Stable configurations are made of cells with 
potential ≤ 1, i.e. in contact with at most one border:

Fact. Stable configurations are made of an even number 
of bands of width ≥ 2 tiled by alternating checkerboards.

of highest energyof higher energyof lowest energy
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Stable configurations are made of cells with 
potential ≤ 1, i.e. in contact with at most one border:
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Energy of configurations
N 5N/3 4N0

Stable &
non-stable config.

2N

Random All black

non-fixed point 
configurations

High energyLowest energy Stable Highest energy
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Energy of configurations
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Typical asynchronous 
2D minority

t = 0 t = N t = 5N t = 20N t = 50N

t = 75N t = 150N t = 300N t = 350N t = 381N



Convergence is 
almost sure

Definition. The dynamics converges from an initial 
configuration c0 if  T = min{t : ct is stable} is almost 
surely finite.

Theorem. For all c0, E(T) ≤ 2N•N2N.

Proof. The following is a sequence of at most 2N 
updates that stabilizes any configuration:

1. As long as there is an active black cell, flip it;
2. As long as there is an active white cell, flip it.

This sequence is followed with probability 1/N2N.



Convergence is 
almost sure

Definition. The dynamics converges from an initial 
configuration c0 if  T = min{t : ct is stable} is almost 
surely finite.

Theorem. For all c0, E(T) ≤ 2N•N2N.

Conjecture. If one of n or m is odd, the 
convergence time can indeed be exponential.

2n+1

2n3



Typical asynchronous 
2D minority

t = 0 t = N t = 5N t = 20N t = 50N

t = 75N t = 150N t = 300N t = 350N t = 381N



Typical asynchronous 
2D minority

t = 0 t = N t = 5N t = 20N t = 50N

t = 75N t = 150N t = 300N t = 350N t = 381N

Bounded
configuration



Polynomial convergence
(conjecture. It is true as soon as n and m are even)

We study bounded configuration, which are surrounded 
by a checkerboard of width ≥ 2:



Polynomial convergence
(conjecture. It is true as soon as n and m are even)

We study bounded configuration, which are surrounded 
by a checkerboard of width ≥ 2:

The 
surrounding 

checkerboard 
is stable



Typical evolution of a 
bounded configuration

t = N t = 5N t = 10N t = 15N

t = 20N t = 25N t = 30N t = 35N



Dual evolution:  
Automaton OT976

t = N t = 5N t = 10N t = 15N

t = 20N t = 25N t = 30N t = 35N



Rules of the primal and 
dual dynamics

Primal
(Minority)

Dual
(Automaton

OT976)

Active
Irreversible

∆E = -8    ∆E = -4

Active
Reversible
∆E = 0

Inactive

Isolated Peninsula Corner Bridge Border Surrounded

neighborhoods are considered with white/black symetries & rotations



Coupling with the 
HV-convex hull

t = 20N t = 25N t = 30N t = 35N

t = N t = 5N t = 10N t = 15N



Coupling with the 
HV-convex hull

t = 20N t = 25N t = 30N t = 35N

t = N t = 5N t = 10N t = 15N



Rules of the hull dynamic

Primal
(Minority)

Hull
(OT976

modified to 
preserve 

black 
convexity)

Active
Irreversible

∆E = -8    ∆E = -4

Active
Reversible
∆E = 0

Inactive

Isolated Peninsula Corner
White
Bridge Border Surrounded

Black
Bridge

neighborhoods are considered with white/black symetries & rotations
(with exception of the bridge for the white/black symetry)



Convergence
Let ƒ = #black dual hull cells  + Energy/4.

Lemma. For any island of the dual hull, E[∆ƒ] ≤ -3/N.

An island of the convex hull



Convergence
Let ƒ = #black dual cells + Energy/4.

Lemma. For any island, E[∆ƒ] ≤ -3/N.

Proposition. For all bounded configuration,

E[∆ƒ] ≤ (2 #island contacts - 3 #islands)/N 
≤ -#islands/N.                      a

Theorem. Every bounded configuration converges 
to the checkerboard configuration in finite time a.s.. 
The expected convergence time is:

 O(N • Initial area).



Conclusion

• An exponential upper bound on the 
convergence time.

• Polynomial convergence time for bounded 
configurations 
(can be extended to configuration with a 
checkerboard band of width ≥ 2)

• An useful energy function that defines proper 
statistical physics 

• Similar results for the Moore-Neighborhood



Conjectures

• Phase transition at αc ≈ 0.83.

•  

• Some ideas to prove polynomial convergence 
time to checkerboard for α < 1/3 but...

• Strongly depends on the underlying network
(a lot of differences on trees...)

• Generalization to the class of threshold automata

αc =
3

√
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√
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Thank you


