
Algebraic versions of “P=NP ?”
Pascal Koiran

Laboratoire de l’Informatique du Parallélisme

Ecole Normale Supérieure de Lyon

International Computer Science Symposium in Russia - CSR 2006.

Saint Petersburg, June 8-12.

1

Valiant’s model : VPK = VNPK ?

– Complexity of a polynomial f measured by number L(f)

of arithmetic operations (+,-,×) needed to evaluate f .

– (fn) ∈ VP if number of variables, deg(fn) and L(fn)

are polynomially bounded.

– (fn) ∈ VNP if fn(x) =
∑

y

gn(x, y)

for some (gn) ∈ VP

(sum ranges over all boolean values of y).

A typical VNP family : the permanent.

per(X) =
∑

σ∈Sn

n
∏

i=1

Xiσ(i).

It is VNP-complete if char(K) 6= 2.

2

VP and VNP are almost the only classes studied

in Valiant’s framework.

Sharp contrast with the “complexity theory zoo” of discrete classes

(> 400 classes at www.complexityzoo.com).

Some exceptions :

– VQP : deg(fn) polynomially bounded

and L(fn) ≤ npoly(log n).

– Malod (2003) has studied versions of VP and VNP

without bound on deg(fn) : VPnb, VNPnb ;

and constant-free classes : VP0, VNP0, VP0
nb, VNP0

nb.

3

Blum-Shub-Smale model : PK = NPK ?

– Computation model is richer : in addition to +,−,× gates,

= and ≤ (if K ordered) gates are allowed.

Selection gates : s(x, y, z) =

y si x = 0

z si x = 1

For instance, s(x, y, z) = xz + (1 − x)y.

– Focus on decision problems :

we assume that the output gate is a test gate.

– Uniform model.

4

Complexity classes

– A problem : X ⊆ R
∞ =

⋃

n≥1 R
n.

– X is PR if for all x ∈ Rn,

x ∈ X ⇔ Cn(x1, . . . xn, a1, . . . , ak) = 1

with Cn constructed in polynomial time by a Turing machine.

– X is NPR if for all x ∈ Rn,

x ∈ X ⇔ ∃y ∈ Mp(n)〈x, y〉 ∈ Y

with Y ∈ PR.

A typical NPR-complete problem :

decide whether a polynomial of degree 4 in n variables has a real root.

Best algorithms to this day are of complexity exponential in n.

5

Decision trees

∃x ∈ R ax2 + bx + c = 0 ?

a = 0 ?

b=0 ? b2 − 4ac ≥ 0 ?

c = 0 ? A A R

A R

Internal nodes labeled by arbitrary polynomials.
Complexity ≡ tree depth.

6

Circuits versus trees

Circuit of size s → tree of depth ≤ s.

Can NPR problems be solved by decision trees of polynomial depth ?

If not, PR 6= NPR !

Similar questions for various structures M , for instance,

M = (C, +,−,×, =), (R, +,−,≤), (R, +,−, =), {0, 1}.

7

Do NPM problems have polynomial depth decision trees ?
For M = {0, 1}, the answer is...

Labels of internal nodes are of the form “xi = 0 ?”.

8

Do NPM problems have polynomial depth decision trees ?
For M = {0, 1}, Yes.

Root node (depth 1) : x1 = 0 ?

2 nodes of depth 2 : x2 = 0 ?

. . .

2i nodes of depth i : xi = 0 ?

. . .

2n nodes of depth n : xn = 0 ?

9

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,=), the answer is...

Internal nodes are of the form :

a1x1 + · · · + anxnb = 0?

10

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,=), No.

Twenty Questions :

INPUT : x1, . . . , xn.

QUESTION : x1 ∈ {0, 1, 2, . . . , 2n − 1} ?

Twenty Questions is in NPM : guess y ∈ {0, 1}n,

check that x1 =
∑n

j=1 2j−1yj .

A canonical path argument shows that its decision tree complexity is 2n.

Therefore, PM 6= NPM (Meer).

Conjecture (Shub-Smale) : Twenty Questions is not in PC.

11

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,≤), the answer is...

Internal nodes are of the form :

a1x1 + · · · + anxnb ≥ 0?

Remark : Twenty Questions is in PM by binary search.

12

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,≤), Yes.

Construction based on algorithms for point location in arrangements of

hyperplanes (Meiser, Meyer auf der Heide,...).

Corollary [Fournier-Koiran] : if P = NP then PM = NPM .

Proof sketch :

with access to an NP oracle, one can effectively “run” the tree

on any input x ∈ R
n

(i.e., construct the path followed by x from the root to a leaf).

13

Do NPM problems have polynomial depth decision trees ?
For M = (C,+,−,×,=), the answer is...

Internal nodes are of the form

P (x1, . . . , xn) = 0?

where P is an arbitrary polynomial.

14

Do NPM problems have polynomial depth decision trees ?
For M = (C,+,−,×,=), Yes.

Not the topic of this talk...

15

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,×,≤), the answer is...

Internal nodes are of the form

P (x1, . . . , xn) ≥ 0?

where P is an arbitrary polynomial.

16

Do NPM problems have polynomial depth decision trees ?
For M = (R,+,−,×,≤), Yes.

1. NPR ⊆ PARR : problems solvable in parallel polynomial time

(by circuits of possibly exponential size).

2. For inputs in Rn, any PARR problem is a union of cells

of an arrangement of 2nO(1)

polynomials of degree 2nO(1)

.

Fix polynomials P1, . . . , Ps.

Two points x and y are in the same cell if sign(Pi(x)) = sign(Pi(y))

for all i = 1, . . . , s.

Here, sign(a) ∈ {−1, 0, 1}.

3. In this arrangement, point location can be performed in depth nO(1).

Now, just label the leaves correctly.

17

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth O(log N),

where N is the number of nonempty cells.

Remark : N ≤ (sd)O(n) where d = maxi=1,...,s deg(Pi).

Hence log N = nO(1).

Consider inputs x with Pi(x) 6= 0 for all i.

Nodes are of the form “
∏

j∈F Pj(x) > 0 ?”, where F is as follows.

Divide and Conquer Lemma :
Let X = {1, . . . , s} and F1, . . . , FN nonempty subsets of X .

There exists F ⊆ X such that N/3 ≤ |{Fx; |F ∩ Fx| even }| ≤ 2N/3.

Apply to sets Fx defined by conditions of the form :

j ∈ Fx ⇔ Pj(x) < 0.

Then
∏

j∈F Pj(x) > 0 ⇔ |F ∩ Fx| even.

18

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] :
The range [N

3 , 2N
3] can be replaced by [N

2 −α, N
2 +α] where α =

√
N/2.

Remark : One must have α = Ω(
√

N/(log N)1/4).

Probabilistic proof : for a random subset F , let

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

Need to show that there exists F such that Y 2 ≤ N , where Y =
∑N

i=1 Yi.
This follows from E[Y 2] = N :

E[Y 2] = E[
N

∑

i=1

Y 2
i + 2

∑

i<j

YiYj]

but E[Y 2
i] = 1 and for i 6= j, by pairwise independence :

E[YiYj] = E[Yi]E[Yj] = 0.

This can be turned into a deterministic logspace algorithm.

19

Effective point location

For a problem A ∈ PARR, hypersurfaces of the arrangement are defined

by polynomials Pi in P-uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits

of polynomial depth.

Nodes of the tree of the form “
∏

i∈F Pi(x) > 0 ?” where F ∈ PSPACE :

in P-uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size

circuits, then PARR problems have polynomial size circuits.

20

Can VPAR families have polynomial size circuits ?

– Very strong hypothesis.

– Admits several versions (6 ?), depending on uniformity conditions

and role of constants.

With P/poly-uniformity and Valiant’s convention for constants :

(i) VPAR = VPnb.

m
(ii) VP = VNP and PSPACE ⊆ P/poly.

Under GRH, VP = VNP ⇒ NC/poly = NP/poly [Bürgisser]

(VPAR = VPnb ⇒ PSPACE ⊆ P/poly also assumes GRH).

Hence, assuming GRH, (i) ⇒ PSPACE ⊆ NC/poly.

21

Most uniform version of this hypothesis

P-uniform VPAR0 = P-uniform VP0
nb ⇒ P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) P = PSPACE.

(ii) P-uniform NC =
⊕

P.

(ii) is based on
⊕

P-completeness of
⊕

HAMILTONIAN PATHS.

Note that]HAMILTONIAN PATHS is of the form
∑

σ: n−cycle

∏

i6=end(σ)

aiσ(i)

where (aij) is the graph’s adjacency matrix.

Remark : It is known that LOGSPACE-uniform NC 6= PSPACE.

22

VPSPACE

Theorem :
A polynomial family fn ∈ Z[X1, . . . , Xp(n)] is in P-uniform VPAR0 iff :

(i) p(n) is polynomially bounded.

(ii) deg(fn) is exponentially bounded.

(iii) The bit size of the coefficients of fn is exponentially bounded.

(iv) The map (1n, α) 7→ an,α is PSPACE computable, where

fn(X) =
∑

α

an,αX
α
.

This characterization is useful in the proof that

[VP = VNP and PSPACE ⊆ P/poly] ⇒ VPAR = VPnb.

23

Outcome of this work

– Focus put back on evaluation problems :

to show that certain decision problems (in NPR, or PARR) are hard,

one must first be able to show that certain evaluation problems

(in VPAR) are hard.

– Suggestion of new lower bound problems :

various versions of “VPnb = VPAR ?”.

– Natural (complete ?) polynomial families in VPAR ?

24

