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Vaiant'smodel : VP = VNP ?

— Complexity of a polynomial f measured by number L( f)
of arithmetic operations (+,-,x) needed to evaluate f.

— (fn) € VP if number of variables, deg(f,,) and L(f,)
are polynomially bounded.

— (fa) € VNPIf f,(z) = Zgn@, 7)

for some (g,,) € VP
(sum ranges over all boolean values of ).
A typical VNP family : the permanent.

per(X) = Z HXia(z')-

cesS,, 1=1

It is VNP-complete if char(K) # 2.




VP and VNP are almost the only classes studied
In Valiant’s framework.

Sharp contrast with the “complexity theory zoo” of discrete classes
(> 400 classes at www.complexityzoo.com).

Some exceptions :

— VQP : deg( f,,) polynomially bounded
and L(f,) < nPOly(ogn).

— Malod (2003) has studied versions of VP and VNP
without bound on deg(f,,) : VPnp, VNP4 ;
and constant-free classes : VP?, VNP", VP, VNP, .

nb




Blum-Shub-Smale model : P = NPy ?

— Computation model is richer : in addition to +, —, x gates,
= and < (if K ordered) gates are allowed.

ysSix =10

Selection gates : s(x,y, z) =

zSlx =1
For instance, s(z,y,2) = xz + (1 — 2)y.
— Focus on decision problems :
we assume that the output gate is a test gate.
— Uniform model.




Complexity classes

— Aproblem: X C R*>® = Un21 R™.
— X 1sPg if forall x € R"™,

re X e Oh(ry,...xn,a1,...,a;) =1

with C',, constructed in polynomial time by a Turing machine.

— X IS NPy if for all x € R",

reX e IyeMPW iz y ey

withY € Pg.
A typical NPk-complete problem :

decide whether a polynomial of degree 4 in n variables has a real root.
Best algorithms to this day are of complexity exponential in n.




Decision trees

JreRazx? +br+c=07?

A R

Internal nodes labeled by arbitrary polynomials.
Complexity = tree depth.




Circuits versus trees

Circuit of size s — tree of depth < s.

Can NPy problems be solved by decision trees of polynomial depth ?
If not, Pr 7& NPp !

Similar questions for various structures M, for instance,
M = ((C7 _|_7 — X, :)7 (Ra —|_7 I S)) (Ra +7 T :)7 {07 1}




Do NP,, problems have polynomial depth decision trees?
For M = {0, 1}, theanswer is...

Labels of internal nodes are of the form “x; = 07?”.




Do NP,, problems have polynomial depth decision trees?
For M =0, 1}, Yes.

Root node (depth 1) : 1 =07
2 nodes of depth2: 25 =07?

2° nodes of depth 7 : z; = 07?

2" nodes of depthn : x,, =07?




Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, =), the answer is...

Internal nodes are of the form :

aix1+ -+ a,x,b =07




Do NP,, problems have polynomial depth decision trees?
For M = (R, +,—,=), No.

Twenty Questions :
INPUT : zq,...,2,.
QUESTION : z; € {0,1,2,...,2" — 1} ?

Twenty Questions is in NP, : guess y € {0,1}",
check that z; = Z?:l 271y

A canonical path argument shows that its decision tree complexity is 2.
Therefore, Py; # NP, (Meer).

Conjecture (Shub-Smale) : Twenty Questions is not in P¢.




Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, <), theanswer is...

Internal nodes are of the form :

a1x1+ -+ a,xr,b > 07

Remark : Twenty Questions isin P, by binary search.




Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, <), Yes.

Construction based on algorithms for point location in arrangements of
hyperplanes (Meiser, Meyer auf der Heide,...).

Corollary [Fournier-Koiran] : if P = NP then P;; = NPj,.

Proof sketch :

with access to an NP oracle, one can effectively “run” the tree
on any input x € R"

(i.e., construct the path followed by x from the root to a leaf).




Do NP,, problems have polynomial depth decision trees?
For M = (C, 4+, —, x, =), theanswer is...

Internal nodes are of the form
P(Zlfl,...,il?n> = 07

where P is an arbitrary polynomial.




Do NP,, problems have polynomial depth decision trees?
For M = (C,+, —, x,=), Yes.

Not the topic of this talk...




Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, x, <), the answer is...

Internal nodes are of the form

P(Zlfl,...,il?n> > 07

where P is an arbitrary polynomial.




Do NP,, problems have polynomial depth decision trees?
For M = (R, +, —, x, <), Yes.

1. NPr C PARy : problems solvable in parallel polynomial time
(by circuits of possibly exponential size).

. For inputs in R™, any PARR problem is a union of cells
)

O(1) ) o(1
of an arrangement of 2" polynomials of degree 2™ .

Fix polynomials P, ..., P;.

Two points x and y are in the same cell if sign(P;(x)) = sign(P;(y))
foralli =1,...,s.

Here, sign(a) € {—1,0,1}.

. In this arrangement, point location can be performed in depth n©(1),
Now, just label the leaves correctly.




Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth O(log N),
where N is the number of nonempty cells.

Remark : N < (sd)°™ where d = max;—; , deg(P;).
Hence log N = n©W),

Consider inputs x with P;(x) # 0 for all .
Nodes are of the form “[ [ . . P;(z) > 07", where F is as follows.

Divide and Conquer Lemma.:

Let X = {1,...,s}and Fy,..., Fy nonempty subsets of X.

There exists F* C X such that N/3 < |[{F,; |F N F,|even }| <2N/3.
Apply to sets F,. defined by conditions of the form :

j€F, < Pi(x) <O.

Then [[.cr Pi(z) > 0 < |F N Fy| even.




|mproved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] :

The range [4, 2] can be replaced by [ — a, & + o] where a = VN /2.

Remark : One must have a = Q(v/ N /(log N)'/4).

Probabilistic proof : for a random subset F, let
Y; =1if |[F N F;| iseven, and Y; = —1 otherwise.

Need to show that there exists ' such that Y2 < N, where Y = 37 'Y},
This follows from E[Y?] = N :

ZY2+QZYY

1<J
but E[Y;?] = 1 and for i # j, by pairwise independence :
E[Y;Y;] = E[Yi|E[Y;] = 0.

This can be turned into a deterministic logspace algorithm.




Effective point location

For a problem A € PARg, hypersurfaces of the arrangement are defined
by polynomials P; in P-uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits
of polynomial depth.

Nodes of the tree of the form “] [, P;(z) > 0?” where I’ € PSPACE :
In P-uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size
circuits, then PARy problems have polynomial size circuits.




Can VPAR families have polynomial size circuits?

— Very strong hypothesis.
— Admits several versions (6 ?), depending on uniformity conditions
and role of constants.
With P/poly-uniformity and Valiant’s convention for constants :
(i) VPAR = VP,,;.

0

(i) VP = VNP and PSPACE C P/poly.

Under GRH, VP = VNP =- NC/poly = NP/poly [Burgisser]
(VPAR = VP,,;, = PSPACE C P/poly also assumes GRH).

Hence, assuming GRH, (i) = PSPACE C NC/poly.




Most uniform version of this hypothesis

P-uniform VPAR" = P-uniform VP, = P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) P =PSPACE.

(if) P-uniform NC = & P.

(i) is based on € P-completeness of GHAMILTONIAN PATHS.
Note that tHAMILTONIAN PATHS is of the form

>, 1 wen
o: n—cycle iend(o)
where (a;;) is the graph’s adjacency matrix.

Remark : It is known that LOGSPACE-uniform NC = PSPACE.




VPSPACE

Theorem :

A polynomial family f,, € Z[ X, ..., X, is in P-uniform VPARY iff :
(i) p(n) is polynomially bounded.

(i) deg(f,) is exponentially bounded.

(it1) The bit size of the coefficients of f,, is exponentially bounded.

(iv) The map (1", @) — a,_ & IS PSPACE computable, where

X)) =) anzX .
This characterization is useful in the proof that

'VP = VNP and PSPACE C P/poly] = VPAR = VP,,;.




Outcome of this work

— Focus put back on evaluation problems
to show that certain decision problems (in NPy, or PARR) are hard,
one must first be able to show that certain evaluation problems

(in VPAR) are hard.
— Suggestion of new lower bound problems :
various versions of “VP,,;, = VPAR ?”,
— Natural (complete ?) polynomial families in VPAR ?




