Algebraic versions of "P=NP ?"

Pascal Koiran Laboratoire de l'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon

International Computer Science Symposium in Russia - CSR 2006. Saint Petersburg, June 8-12. Valiant's model : $VP_K = VNP_K$?

- Complexity of a polynomial f measured by number L(f) of arithmetic operations (+,-,×) needed to evaluate f.
- $(f_n) \in VP$ if number of variables, $deg(f_n)$ and $L(f_n)$ are polynomially bounded.

$$-(f_n) \in \text{VNP if } f_n(\overline{x}) = \sum_{\overline{y}} g_n(\overline{x}, \overline{y})$$

for some $(g_n) \in VP$

(sum ranges over all boolean values of \overline{y}).

A typical VNP family : the permanent.

$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}.$$

It is VNP-complete if $char(K) \neq 2$.

VP and VNP are almost the only classes studied

in Valiant's framework.

Sharp contrast with the "complexity theory zoo" of discrete classes (> 400 classes at www.complexityzoo.com).

Some exceptions :

- VQP : deg (f_n) polynomially bounded and $L(f_n) \le n^{\operatorname{poly}(\log n)}$.
- Malod (2003) has studied versions of VP and VNP without bound on $\deg(f_n) : \operatorname{VP}_{nb}, \operatorname{VNP}_{nb}$; and constant-free classes : VP^0 , VNP^0 , VP^0_{nb} , $\operatorname{VNP}^0_{nb}$.

Blum-Shub-Smale model : $P_K = NP_K$?

- Computation model is richer : in addition to $+, -, \times$ gates, = and \leq (if K ordered) gates are allowed.

Selection gates : $s(x, y, z) = \begin{cases} y \text{ si } x = 0 \\ z \text{ si } x = 1 \end{cases}$

For instance, s(x, y, z) = xz + (1 - x)y.

- Focus on decision problems :
 we assume that the output gate is a test gate.
- Uniform model.

Complexity classes

– A problem :
$$X \subseteq \mathbb{R}^{\infty} = \bigcup_{n \ge 1} \mathbb{R}^n$$

- X is $P_{\mathbb{R}}$ if for all $x \in \mathbb{R}^n$,

$$x \in X \Leftrightarrow C_n(x_1, \dots, x_n, a_1, \dots, a_k) = 1$$

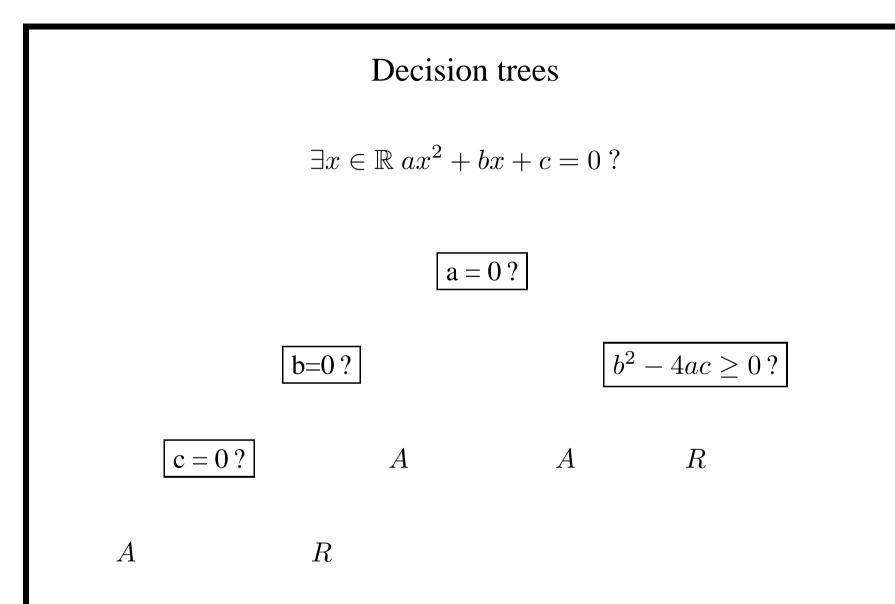
with C_n constructed in polynomial time by a Turing machine. - X is NP_R if for all $x \in \mathbb{R}^n$,

$$x \in X \Leftrightarrow \exists y \in M^{p(n)} \langle x, y \rangle \in Y$$

with $Y \in P_{\mathbb{R}}$.

A typical $NP_{\mathbb{R}}$ -complete problem :

decide whether a polynomial of degree 4 in n variables has a real root. Best algorithms to this day are of complexity exponential in n.



Internal nodes labeled by *arbitrary* polynomials. Complexity \equiv tree depth.

Circuits versus trees

Circuit of size $s \rightarrow$ tree of depth $\leq s$.

Can NP_{\mathbb{R}} problems be solved by decision trees of polynomial depth? If not, P_{\mathbb{R}} \neq NP_{\mathbb{R}}!

Similar questions for various structures M, for instance, $M = (\mathbb{C}, +, -, \times, =), \ (\mathbb{R}, +, -, \leq), \ (\mathbb{R}, +, -, =), \ \{0, 1\}.$ Do NP_M problems have polynomial depth decision trees ? For $M = \{0, 1\}$, the answer is...

Labels of internal nodes are of the form " $x_i = 0$?".

Do NP_M problems have polynomial depth decision trees ? For $M = \{0, 1\}$, Yes.

```
Root node (depth 1) : x_1 = 0?
```

```
2 nodes of depth 2: x_2 = 0?
```

```
2^i nodes of depth i: x_i = 0?
```

. . .

 2^n nodes of depth $n: x_n = 0$?

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, =)$, the answer is...

Internal nodes are of the form :

$$a_1x_1 + \dots + a_nx_nb = 0?$$

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, =)$, No.

Twenty Questions :

INPUT : x_1, \ldots, x_n .

QUESTION : $x_1 \in \{0, 1, 2, \dots, 2^n - 1\}$?

Twenty Questions is in NP_M : guess $y \in \{0, 1\}^n$, check that $x_1 = \sum_{j=1}^n 2^{j-1} y_j$.

A *canonical path argument* shows that its decision tree complexity is 2^n . Therefore, $P_M \neq NP_M$ (Meer).

Conjecture (Shub-Smale) : Twenty Questions is not in $P_{\mathbb{C}}$.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \leq)$, the answer is...

Internal nodes are of the form :

 $a_1x_1 + \dots + a_nx_nb \ge 0?$

Remark : Twenty Questions *is* in P_M by binary search.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \leq)$, Yes.

Construction based on algorithms for point location in arrangements of hyperplanes (Meiser, Meyer auf der Heide,...).

Corollary [Fournier-Koiran] : if P = NP then $P_M = NP_M$.

Proof sketch :

with access to an NP oracle, one can effectively "run" the tree on any input $x \in \mathbb{R}^n$

(i.e., construct the path followed by x from the root to a leaf).

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{C}, +, -, \times, =)$, the answer is...

Internal nodes are of the form

$$P(x_1,\ldots,x_n)=0?$$

where P is an arbitrary polynomial.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{C}, +, -, \times, =)$, Yes.

Not the topic of this talk...

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \times, \leq)$, the answer is...

Internal nodes are of the form

$$P(x_1,\ldots,x_n) \ge 0?$$

where P is an arbitrary polynomial.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \times, \leq)$, Yes.

- 1. $NP_{\mathbb{R}} \subseteq PAR_{\mathbb{R}}$: problems solvable in parallel polynomial time (by circuits of possibly exponential size).
- 2. For inputs in Rⁿ, any PAR_R problem is a union of *cells* of an arrangement of 2^{n^{O(1)}} polynomials of degree 2^{n^{O(1)}}. Fix polynomials P₁,..., P_s. Two points x and y are in the same cell if sign(P_i(x)) = sign(P_i(y)) for all i = 1,...,s. Here, sign(a) ∈ {-1,0,1}.
- 3. In this arrangement, point location can be performed in depth $n^{O(1)}$. Now, just label the leaves correctly.

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth $O(\log N)$, where N is the number of nonempty cells.

Remark : $N \leq (sd)^{O(n)}$ where $d = \max_{i=1,...,s} \deg(P_i)$. Hence $\log N = n^{O(1)}$.

Consider inputs x with $P_i(x) \neq 0$ for all i. Nodes are of the form " $\prod_{j \in F} P_j(x) > 0$?", where F is as follows.

Divide and Conquer Lemma :

Let $X = \{1, \ldots, s\}$ and F_1, \ldots, F_N nonempty subsets of X. There exists $F \subseteq X$ such that $N/3 \leq |\{F_x; |F \cap F_x | \text{ even }\}| \leq 2N/3$. Apply to sets F_x defined by conditions of the form :

$$j \in F_x \Leftrightarrow P_j(x) < 0.$$

Then $\prod_{j \in F} P_j(x) > 0 \Leftrightarrow |F \cap F_x|$ even.

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] : The range $\left[\frac{N}{3}, \frac{2N}{3}\right]$ can be replaced by $\left[\frac{N}{2} - \alpha, \frac{N}{2} + \alpha\right]$ where $\alpha = \sqrt{N}/2$. **Remark :** One must have $\alpha = \Omega(\sqrt{N}/(\log N)^{1/4})$.

Probabilistic proof : for a random subset F, let

 $Y_i = 1$ if $|F \cap F_i|$ is even, and $Y_i = -1$ otherwise.

Need to show that there exists F such that $Y^2 \leq N$, where $Y = \sum_{i=1}^{N} Y_i$. This follows from $E[Y^2] = N$:

$$E[Y^2] = E[\sum_{i=1}^{N} Y_i^2 + 2\sum_{i < j} Y_i Y_j]$$

but $E[Y_i^2] = 1$ and for $i \neq j$, by pairwise independence : $E[Y_iY_j] = E[Y_i]E[Y_j] = 0.$

This can be turned into a deterministic logspace algorithm.

Effective point location

For a problem $A \in PAR_{\mathbb{R}}$, hypersurfaces of the arrangement are defined by polynomials P_i in P-uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Nodes of the tree of the form " $\prod_{i \in F} P_i(x) > 0$?" where $F \in PSPACE$: in P-uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size circuits, then $PAR_{\mathbb{R}}$ problems have polynomial size circuits.

Can VPAR families have polynomial size circuits?

- Very strong hypothesis.
- Admits several versions (6?), depending on uniformity conditions and role of constants.

With P/poly-uniformity and Valiant's convention for constants :

(i)
$$VPAR = VP_{nb}$$
.

```
\textcircled{}
```

(ii) VP = VNP and $PSPACE \subseteq P/poly$.

Under GRH, $VP = VNP \Rightarrow NC/poly = NP/poly$ [Bürgisser] (VPAR = $VP_{nb} \Rightarrow PSPACE \subseteq P/poly$ also assumes GRH).

```
Hence, assuming GRH, (i) \Rightarrow PSPACE \subseteq NC/poly.
```

Most uniform version of this hypothesis

P-uniform VPAR⁰ = P-uniform VP⁰_{nb} \Rightarrow P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) P = PSPACE.

(ii) P-uniform NC = \bigoplus P.

(ii) is based on \bigoplus P-completeness of \bigoplus HAMILTONIAN PATHS.

Note that *#HAMILTONIAN* PATHS is of the form

 $\sum_{\sigma: n-\text{cycle } i \neq \text{end}(\sigma)} \prod_{a_{i\sigma(i)}} a_{i\sigma(i)}$

where (a_{ij}) is the graph's adjacency matrix.

Remark : It is known that LOGSPACE-uniform NC \neq PSPACE.

VPSPACE

Theorem :

A polynomial family $f_n \in \mathbb{Z}[X_1, \ldots, X_{p(n)}]$ is in P-uniform VPAR⁰ iff :

- (i) p(n) is polynomially bounded.
- (ii) $\deg(f_n)$ is exponentially bounded.
- (iii) The bit size of the coefficients of f_n is exponentially bounded.
- (iv) The map $(1^n, \overline{\alpha}) \mapsto a_{n,\overline{\alpha}}$ is PSPACE computable, where

$$f_n(\overline{X}) = \sum_{\overline{\alpha}} a_{n,\overline{\alpha}} \overline{X}^{\overline{\alpha}}.$$

This characterization is useful in the proof that

$$[VP = VNP \text{ and } PSPACE \subseteq P/poly] \Rightarrow VPAR = VP_{nb}.$$

Outcome of this work

- Focus put back on evaluation problems : to show that certain decision problems (in NP_{\mathbb{R}}, or PAR_{\mathbb{R}}) are hard, one must first be able to show that certain evaluation problems (in VPAR) are hard.
- Suggestion of new lower bound problems : various versions of " $VP_{nb} = VPAR$?".
- Natural (complete ?) polynomial families in VPAR ?