Free groups and subgroups Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem

Algorithmic problems in free groups

Pascal Weil

LaBRI, CNRS and Université de Bordeaux

MC2, LIP, January 2007

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- - E - M

Algorithmic problems Rank, index and conjugates

Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

・ 同・ ・ ヨ・

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
, and let aa
 = aa = 1

イロト イポト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

- b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- i.e., perform reductions: uaāv → uv, uāav → uv. For instance a³ā bab²bāa ^{*}→ a²bāb

イロト イヨト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

- b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- i.e., perform reductions: uaāv → uv, uāav → uv. For instance a³ā bab²bāa ^{*}→ a²bāb
- this rewriting system is confluent, it terminates: it yields a unique representation by means of *reduced* words

イロト イポト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

- b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- ▶ *i.e.*, perform reductions: $ua\bar{a}v \longrightarrow uv$, $u\bar{a}av \longrightarrow uv$. For instance $a^3\bar{a}\,\bar{b}ab^2\bar{b}\,\bar{a}a \xrightarrow{*} a^2\bar{b}ab$
- this rewriting system is confluent, it terminates: it yields a unique representation by means of *reduced* words
- ► F(A) and F(B) are isomorphic iff A and B have the same cardinality : the notions of rank, basis make sense for free groups

イロト イヨト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

- b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- ▶ *i.e.*, perform reductions: $ua\bar{a}v \longrightarrow uv$, $u\bar{a}av \longrightarrow uv$. For instance $a^3\bar{a}\,\bar{b}ab^2\bar{b}\,\bar{a}a \xrightarrow{*} a^2\bar{b}ab$
- this rewriting system is confluent, it terminates: it yields a unique representation by means of *reduced* words
- ► F(A) and F(B) are isomorphic iff A and B have the same cardinality : the notions of rank, basis make sense for free groups
- The subgroups of a free group are free...

イロト イヨト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

The free group on A, F(A)

- b the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- ▶ *i.e.*, perform reductions: $ua\bar{a}v \longrightarrow uv$, $u\bar{a}av \longrightarrow uv$. For instance $a^3\bar{a}\,\bar{b}ab^2\bar{b}\,\bar{a}a \xrightarrow{*} a^2\bar{b}ab$
- this rewriting system is confluent, it terminates: it yields a unique representation by means of *reduced* words
- ► F(A) and F(B) are isomorphic iff A and B have the same cardinality : the notions of rank, basis make sense for free groups
- The subgroups of a free group are free...
- but a subgroup may have a larger rank than the group in which it sits!

・ロン ・回と ・ヨン ・ヨン

Algorithmic problems Rank, index and conjugates

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem

The free group on A, F(A)

- ► the "simplest" group built from the symbols in set A: start with strings (words) on alphabet A ∪ A
 , and let aa
 = aa = 1
- ▶ *i.e.*, perform reductions: $ua\bar{a}v \longrightarrow uv$, $u\bar{a}av \longrightarrow uv$. For instance $a^3\bar{a}\,\bar{b}ab^2\bar{b}\,\bar{a}a \xrightarrow{*} a^2\bar{b}ab$
- this rewriting system is confluent, it terminates: it yields a unique representation by means of *reduced* words
- ► F(A) and F(B) are isomorphic iff A and B have the same cardinality : the notions of rank, basis make sense for free groups
- The subgroups of a free group are free...
- ... but a subgroup may have a larger rank than the group in which it sits!
- ► Every subset of {aⁿba⁻ⁿ | n ≥ 0} is a basis of a subgroup of F(a, b).

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Algorithmic problems in free groups

 Algorithmic problems on elements (reduced words) and on finitely generated subgroups of free groups: compute the rank, a basis, the index, conjugacy problems, etc.

イロト イポト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Algorithmic problems in free groups

- Algorithmic problems on elements (reduced words) and on finitely generated subgroups of free groups: compute the rank, a basis, the index, conjugacy problems, etc.
- The general idea for subgroups: to represent the finitely generated subgroups of a free group by combinatorial objects (certain kinds of *automata*)

イロト イポト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Algorithmic problems in free groups

- Algorithmic problems on elements (reduced words) and on finitely generated subgroups of free groups: compute the rank, a basis, the index, conjugacy problems, etc.
- The general idea for subgroups: to represent the finitely generated subgroups of a free group by combinatorial objects (certain kinds of *automata*)
- results in effective (often efficient) computations on subgroups of free groups

イロト イヨト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^{3}b^{-1} \rangle$$

イロン イボン イヨン イヨン

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^{3}b^{-1} \rangle$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^3b^{-1} \rangle$$

イロン 不同と 不同と 不同と

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

•
$$H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^3b^{-1} \rangle$$

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^{3}b^{-1} \rangle$$

reduced automaton: finite, connected, deterministic and co-deterministic, with a distinguished state 1; every vertex v ≠ 1 has valency at least 2

・ロト ・同ト ・ヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^{3}b^{-1} \rangle$$

- reduced automaton: finite, connected, deterministic and co-deterministic, with a distinguished state 1; every vertex v ≠ 1 has valency at least 2
- H = all reduced words that read from 1 to 1

イロン イヨン イヨン

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

•
$$H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^3b^{-1} \rangle$$

► this automaton is denoted by Γ(H), or Γ_A(H). It characterizes H, not the generating set

イロン イヨン イヨン

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Representation of subgroups

- $H = \langle abab^{-1}, aba^{-1}b^{-1}, aba^{3}b^{-1} \rangle$
- ► this automaton is denoted by Γ(H), or Γ_A(H). It characterizes H, not the generating set
- $\Gamma(H)$ is computable in $O(n \log^* n)$

イロト イポト イヨト イヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

・ロン ・回 と ・ ヨ と ・ ヨ と

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

<ロ> <同> <同> <三>

Image: A image: A

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

• aba^3b^{-1} is a product of the other generators

an efficient solution of the (generalized) membership problem

・ロト ・同ト ・ヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

• aba^3b^{-1} is a product of the other generators

- ▶ an efficient solution of the (generalized) membership problem
- the rank is the number of "independent" loops, which can be read on Γ(H): choose a spanning tree T; then each A-labeled edge not in T yields a basis element

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

• aba^3b^{-1} is a product of the other generators

- ▶ an efficient solution of the (generalized) membership problem
- the rank is the number of "independent" loops, which can be read on Γ(H): choose a spanning tree T; then each A-labeled edge not in T yields a basis element
- ► H has rank 2, and for the dotted spanning tree, we get basis abab⁻¹, ba²b⁻¹

(日) (四) (王) (王)

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Basic invariants of subgroups

► aba³b⁻¹ is a product of the other generators

- ▶ an efficient solution of the (generalized) membership problem
- the rank is the number of "independent" loops, which can be read on Γ(H): choose a spanning tree T; then each A-labeled edge not in T yields a basis element
- ► H has rank 2, and for the dotted spanning tree, we get basis abab⁻¹, ba²b⁻¹
- $\operatorname{rank}(H) = |E(H)| |V(H)| + 1.$

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Finite-index subgroups

Each vertex is an *H*-coset:

イロン イヨン イヨン

3

vertex 2 is Ha, or also $Hbab^{-1}$

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Finite-index subgroups

Each vertex is an *H*-coset:

(日) (同) (三) (三)

vertex 2 is Ha, or also $Hbab^{-1}$

Recall: F(A) is partitioned by the *H*-cosets Hg ($g \in F(A)$), the index of *H* is the number of these cosets.

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Finite-index subgroups

Each vertex is an *H*-coset:

イロン イヨン イヨン

vertex 2 is Ha, or also $Hbab^{-1}$

In general, not all *H*-cosets occur as vertices of Γ(*H*). But if Γ(*H*) is a permutation graph, they do, and *H* has finite index, equal to the number of vertices |V(*H*)|. That's an iff.

Recall: F(A) is partitioned by the *H*-cosets Hg ($g \in F(A)$), the index of *H* is the number of these cosets.

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Finite-index subgroups

Each vertex is an *H*-coset:

イロン イヨン イヨン

vertex 2 is Ha, or also $Hbab^{-1}$

- In general, not all *H*-cosets occur as vertices of Γ(*H*). But if Γ(*H*) is a permutation graph, they do, and *H* has finite index, equal to the number of vertices |V(*H*)|. That's an iff.
- ► this yields a proof of the Nielsen-Schreier formula for finite index subgroups: if H has finite index i(H), then rank(H) - 1 = i(H)(rank(F(A)) - 1)

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Computing the conjugates of H

$$H = \langle abab^{-1}, aba^{-1}b^{-1} \rangle$$

イロン イヨン イヨン イヨン

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Computing the conjugates of H

$$\bullet \ H = \langle abab^{-1}, aba^{-1}b^{-1} \rangle$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Computing the conjugates of H

$$\blacktriangleright H = \langle abab^{-1}, aba^{-1}b^{-1} \rangle$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem Algorithmic problems Rank, index and conjugates

Computing the conjugates of H

► an algorithm to solve the conjugacy problem

Free groups and subgroups Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem

Rank of the intersection of subgroups

Howson (1954): if H and K are finite rank subgroups of F(A), then H ∩ K is finitely generated

イロト イポト イヨト イヨト

Free groups and subgroups Intersections of subgroups: the Hanna Neumann conjecture The Whitehead minimization problem

Rank of the intersection of subgroups

- Howson (1954): if H and K are finite rank subgroups of F(A), then H ∩ K is finitely generated
- $\blacktriangleright \ \langle a^2, abab^{-1}a^{-1}, ab^2ab^{-2}\rangle \cap \langle a, bab^{-1}\rangle = \langle a^2, abab^{-1}a^{-1}\rangle$

・ロト ・同ト ・ヨト ・ヨト
Rank of the intersection of subgroups

- Howson (1954): if H and K are finite rank subgroups of F(A), then H ∩ K is finitely generated
- $\blacktriangleright \ \langle a^2, abab^{-1}a^{-1}, ab^2ab^{-2}\rangle \cap \langle a, bab^{-1}\rangle = \langle a^2, abab^{-1}a^{-1}\rangle$
- ► Hanna Neumann (1956) rank $(H \cap K) - 1 \le 2(\operatorname{rank}(H) - 1)(\operatorname{rank}(K) - 1)$

ヘロト 人間 とくほとくほとう

Rank of the intersection of subgroups

- Howson (1954): if H and K are finite rank subgroups of F(A), then H ∩ K is finitely generated
- $\blacktriangleright \langle a^2, abab^{-1}a^{-1}, ab^2ab^{-2}\rangle \cap \langle a, bab^{-1}\rangle = \langle a^2, abab^{-1}a^{-1}\rangle$
- ► Hanna Neumann (1956) rank $(H \cap K) - 1 \le 2(\operatorname{rank}(H) - 1)(\operatorname{rank}(K) - 1)$
- Let r̃k(H) = max(rank(H) − 1,0), the reduced rank of H, Hanna Neumann Conjecture (HNC)

$$\widetilde{\mathsf{rk}}(H \cap K) \leq \widetilde{\mathsf{rk}}(H) \ \widetilde{\mathsf{rk}}(K)$$

<ロ> (四) (四) (三) (三) (三) (三)

Status of the conjecture

► **HNC**: $\widetilde{\text{rk}}(H \cap K) \leq \widetilde{\text{rk}}(H) \widetilde{\text{rk}}(K)$

(本間) (本語) (本語)

3

Status of the conjecture

- ► **HNC**: $\widetilde{\mathsf{rk}}(H \cap K) \leq \widetilde{\mathsf{rk}}(H) \ \widetilde{\mathsf{rk}}(K)$
- HNC holds if H has finite index (elementary), if H has rank 1 (immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek, 2001)

イロト イポト イヨト イヨト

Status of the conjecture

- ► **HNC**: $\widetilde{\mathsf{rk}}(H \cap K) \leq \widetilde{\mathsf{rk}}(H) \ \widetilde{\mathsf{rk}}(K)$
- HNC holds if H has finite index (elementary), if H has rank 1 (immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek, 2001)
- ► It also holds if *H* is *positively generated*, i.e. *H* is generated by a finite set of words using letters from *A* and not from *A*⁻¹ (Meakin and Weil, Khan, 2002)

イロト イポト イヨト イヨト

Status of the conjecture

- ▶ **HNC**: $\widetilde{\mathsf{rk}}(H \cap K) \leq \widetilde{\mathsf{rk}}(H) \ \widetilde{\mathsf{rk}}(K)$
- HNC holds if H has finite index (elementary), if H has rank 1 (immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek, 2001)
- ► It also holds if *H* is *positively generated*, i.e. *H* is generated by a finite set of words using letters from *A* and not from *A*⁻¹ (Meakin and Weil, Khan, 2002)
- ► H is positively generated if and only if Γ(H) is strongly connected. When is H potentially connected? That is, such that φ(H) is positively generated for some injective endomorphism φ of F(A).

・ロト ・同ト ・ヨト ・ヨト

Status of the conjecture

- ► **HNC**: $\widetilde{\mathsf{rk}}(H \cap K) \leq \widetilde{\mathsf{rk}}(H) \ \widetilde{\mathsf{rk}}(K)$
- HNC holds if H has finite index (elementary), if H has rank 1 (immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek, 2001)
- ► It also holds if *H* is *positively generated*, i.e. *H* is generated by a finite set of words using letters from *A* and not from *A*⁻¹ (Meakin and Weil, Khan, 2002)
- ► H is positively generated if and only if Γ(H) is strongly connected. When is H potentially connected? That is, such that φ(H) is positively generated for some injective endomorphism φ of F(A).
- ► How is this approached by means of automata? compute $\Gamma(H \cap K)$, knowing $\Gamma(H)$ and $\Gamma(K)$

Example

$$K = \langle a, bab^{-1} \rangle$$

$$H = \langle a^2, abab^{-1}a^{-1}, ab^2ab^{-2} \rangle$$

<ロ> <同> <同> < 同> < 同> < 三> < 三> -

4

Example

Pascal Weil Algorithmic problems in free groups

Example

 $H \cap K = \langle a^2, abab^{-1}a^{-1} \rangle$

 $\Gamma(H \cap K)$

Pascal Weil Algorithmic problems in free groups

Translation of HNC in graph-theoretic terms

• Translation of HNC: On each connected component of $\Gamma(H) \times_A \Gamma(K)$,

 $|E| - |V| \le (|E(H)| - |V(H)|) (|E(K)| - |V(K)|)$

・ロト ・同ト ・ヨト ・ヨト

-2

Translation of HNC in graph-theoretic terms

• Translation of HNC: On each connected component of $\Gamma(H) \times_A \Gamma(K)$,

$|E| - |V| \le (|E(H)| - |V(H)|) (|E(K)| - |V(K)|)$

a very simple, graph-theoretic problem. Very simple to state, yet very elusive...

イロン イ団ン イヨン イヨン 三連

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

Problem: To find a minimum length word in the automorphic orbit of a given word u

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length word in the automorphic orbit of a given word u
- ... or a minimum length element in the automorphic orbit of a conjugacy class of a word (aka a cyclic word [u])

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length word in the automorphic orbit of a given word u
- ... or a minimum length element in the automorphic orbit of a conjugacy class of a word (aka a cyclic word [u])
- $u = ab\bar{c}ea\bar{d}ca$ (*u* and [*u*] have length 8)

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length word in the automorphic orbit of a given word u
- ... or a minimum length element in the automorphic orbit of a conjugacy class of a word (aka a cyclic word [u])
- $u = ab\bar{c}ea\bar{d}ca$ (*u* and [*u*] have length 8)
- Let $\varphi: a \mapsto \overline{c}ac, b \mapsto \overline{c}bc, c \mapsto c, d \mapsto dc, e \mapsto ec$, then $\varphi(u) = \overline{c}abea\overline{d}ac$ and $cc(\varphi(u)) = abea\overline{d}a$. So $|\varphi(u)| = 8$ and $|\varphi([u])| = 6$

・ロト ・同ト ・ヨト ・ヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length word in the automorphic orbit of a given word u
- ... or a minimum length element in the automorphic orbit of a conjugacy class of a word (aka a cyclic word [u])
- $u = ab\bar{c}ea\bar{d}ca$ (*u* and [*u*] have length 8)
- Let $\varphi: a \mapsto \overline{c}ac, b \mapsto \overline{c}bc, c \mapsto c, d \mapsto dc, e \mapsto ec$, then $\varphi(u) = \overline{c}abea\overline{d}ac$ and $cc(\varphi(u)) = abea\overline{d}a$. So $|\varphi(u)| = 8$ and $|\varphi([u])| = 6$
- there is an analogous problem for a finitely generated subgroup H instead of a word u

・ロット (四) ・ (日) ・ (日)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

 Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word

• Application: decide whether a given element $u \in F$ is primitive

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word

- Application: decide whether a given element $u \in F$ is primitive
- This is the so-called easy part of the equivalence problem (does v belong to the automorphic orbit of u?)

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word
- It is decidable by the Whitehead method

- Application: decide whether a given element $u \in F$ is primitive
- This is the so-called easy part of the equivalence problem (does v belong to the automorphic orbit of u?)

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word
- It is decidable by the Whitehead method
- Interest in the algorithmic complexity of this problem

- ▶ Application: decide whether a given element $u \in F$ is primitive
- This is the so-called easy part of the equivalence problem (does v belong to the automorphic orbit of u?)

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead minimization problem

- Problem: To find a minimum length element in the automorphic orbit of a given word or cyclic word
- It is decidable by the Whitehead method
- Interest in the algorithmic complexity of this problem
- The word case reduces to the cyclic word case at little extra cost
- ▶ Application: decide whether a given element $u \in F$ is primitive
- This is the so-called easy part of the equivalence problem (does v belong to the automorphic orbit of u?)

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

▶ W(A) the set of non-length preserving Whitehead automorphisms

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

- ▶ W(A) the set of non-length preserving Whitehead automorphisms
- ▶ **Theorem** (Whitehead). If there exists $\varphi \in Aut(F)$ such that $|\varphi([u]) < |[u]|$, then there exists such a $\varphi \in W(A)$

・ロン ・回と ・ヨン ・ヨン

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

- ► W(A) the set of non-length preserving Whitehead automorphisms
- ▶ **Theorem** (Whitehead). If there exists $\varphi \in Aut(F)$ such that $|\varphi([u]) < |[u]|$, then there exists such a $\varphi \in W(A)$

► Algorithm. Try every Whitehead automorphism φ until |[φ(u)]| < |[u]|. If there is one, replace [u] by [φ(u)] and repeat. If there is none, [u] has minimum length.</p>

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

Let r = rank(F) = card(A) and n = |[u]|. At most n iterations. Trying one Whitehead automorphism takes time O(n). card(W(A)) = O(r4^r). The complexity is in O(n²r4^r)

► Algorithm. Try every Whitehead automorphism φ until |[φ(u)]| < |[u]|. If there is one, replace [u] by [φ(u)] and repeat. If there is none, [u] has minimum length.</p>

イロン 不同と 不同と 不同と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

- Let r = rank(F) = card(A) and n = |[u]|. At most n iterations. Trying one Whitehead automorphism takes time O(n). card(W(A)) = O(r4^r). The complexity is in O(n²r4^r)
- Suggestion that this is can be done faster (Myasnikov *et al.*, Kapovich, Schupp, Shpilrain, etc)

► Algorithm. Try every Whitehead automorphism φ until |[φ(u)]| < |[u]|. If there is one, replace [u] by [φ(u)] and repeat. If there is none, [u] has minimum length.</p>

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

- Let r = rank(F) = card(A) and n = |[u]|. At most n iterations. Trying one Whitehead automorphism takes time O(n). card(W(A)) = O(r4^r). The complexity is in O(n²r4^r)
- Suggestion that this is can be done faster (Myasnikov *et al.*, Kapovich, Schupp, Shpilrain, etc)
- Our result (A. Roig, E. Ventura, P. Weil): an algorithm that is polynomial in n and in r

▶ Algorithm. Try every Whitehead automorphism φ until $|[\varphi(u)]| < |[u]|$. If there is one, replace [u] by $[\varphi(u)]$ and repeat. If there is none, [u] has minimum length.

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method

- Let r = rank(F) = card(A) and n = |[u]|. At most n iterations. Trying one Whitehead automorphism takes time O(n). card(W(A)) = O(r4^r). The complexity is in O(n²r4^r)
- Suggestion that this is can be done faster (Myasnikov *et al.*, Kapovich, Schupp, Shpilrain, etc)
- Our result (A. Roig, E. Ventura, P. Weil): an algorithm that is polynomial in n and in r
- In fact, a modification of the algorithm below: do not try every φ ∈ W(A), but choose an optimal one fast
- ► Algorithm. Try every Whitehead automorphism φ until |[φ(u)]| < |[u]|. If there is one, replace [u] by [φ(u)] and repeat. If there is none, [u] has minimum length.</p>

・ロト ・同ト ・ヨト ・ヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead automorphisms $\mathbb{W}(A)$

• $x \in \tilde{A} = A \sqcup \bar{A}$. $Y \subseteq \tilde{A}$ is an *x-cut* if $x \in Y$ and $\bar{x} \notin Y$

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead automorphisms $\mathbb{W}(A)$

▶ $x \in \tilde{A} = A \sqcup \bar{A}$. $Y \subseteq \tilde{A}$ is an *x*-cut if $x \in Y$ and $\bar{x} \notin Y$ ▶ if Y is an x-cut, (x, Y) defines $\varphi \in W(A)$

<177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177 < 177

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead automorphisms $\mathbb{W}(A)$

▶ $x \in \tilde{A} = A \sqcup \bar{A}$. $Y \subseteq \tilde{A}$ is an *x*-cut if $x \in Y$ and $\bar{x} \notin Y$ ▶ if Y is an x-cut, (x, Y) defines $\varphi \in W(A)$

• Given u, is there (x, Y) such that $|\varphi([u])| - |[u]| < 0$?

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead automorphisms $\mathbb{W}(A)$

- ► $x \in \tilde{A} = A \sqcup \bar{A}$. $Y \subseteq \tilde{A}$ is an *x*-cut if $x \in Y$ and $\bar{x} \notin Y$ ► if *Y* is an *x*-cut (*x*, *Y*) defines $x \in \mathbb{R}^{NM}(A)$
- ▶ if Y is an x-cut, (x, Y) defines $\varphi \in \mathbb{W}(A)$

- Given u, is there (x, Y) such that $|\varphi([u])| |[u]| < 0$?
- Given *u*, find (x, Y) that minimizes $|\varphi([u])| |[u]|$

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead graph of a cyclic word

 $u = ab\bar{c}ea\bar{d}ca$

Pascal Weil Algorithmic problems in free groups

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead graph of a cyclic word

 $u = ab \bar{c} e a \bar{d} c a$

A subword xy in the cyclic word yields an edge between x and \bar{y}

イロン 不同と 不同と 不同と
The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead graph of a cyclic word

A subword xy in the cyclic word yields an edge between x and \bar{y}

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead graph of a cyclic word

A subword xy in the cyclic word yields an edge between x and \bar{y}

•
$$\varphi \in \mathbb{W}(A)$$
, determined by (x, Y)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead graph of a cyclic word

A subword xy in the cyclic word yields an edge between x and \bar{y}

- $\varphi \in \mathbb{W}(A)$, determined by (x, Y)
- ► Evaluate |\varphi([u])| |[u]| in graph-theoretic terms, depending on x, Y and the Whitehead graph of [u]

(日) (四) (王) (王)

A cut formula

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

• cap(Y) = number of edges between Y and Y^c

<ロ> (四) (四) (三) (三) (三)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

- cap(Y) = number of edges between Y and Y^c
- $Y_1 = \{a, b, c, d, e\}, \operatorname{cap}(Y_1) = 4$

・ロン ・回と ・ヨン ・ヨン

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

• cap(Y) = number of edges between Y and Y^c

•
$$Y_2 = \{a, \bar{a}, \bar{b}, c, d, e\}, \operatorname{cap}(Y_2) = 0$$

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

- cap(Y) = number of edges between Y and Y^c
- $Y_2 = \{a, \bar{a}, \bar{b}, c, d, e\}, \operatorname{cap}(Y_2) = 0$

▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([u])| - |[u]| = \operatorname{cap}(Y) - \operatorname{deg}(x)$

イロト イポト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

- cap(Y) = number of edges between Y and Y^c
- $Y_2 = \{a, \bar{a}, \bar{b}, c, d, e\}, \operatorname{cap}(Y_2) = 0$

- ▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([u])| |[u]| = \operatorname{cap}(Y) \operatorname{deg}(x)$
- This is a rewording of a formula in [Lyndon-Schupp]

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

• cap(Y) = number of edges between Y and Y^c

•
$$Y_2 = \{a, \bar{a}, \bar{b}, c, d, e\}, \operatorname{cap}(Y_2) = 0$$

- ▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([u])| |[u]| = \operatorname{cap}(Y) \operatorname{deg}(x)$
- ▶ if $\varphi \longleftrightarrow (d, Y_2)$, then $|\varphi([u])| = |[u]| 1$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

A cut formula

• cap(Y) = number of edges between Y and Y^c

•
$$Y_2 = \{a, \bar{a}, \bar{b}, c, d, e\}, \operatorname{cap}(Y_2) = 0$$

- ▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([u])| |[u]| = \operatorname{cap}(Y) \operatorname{deg}(x)$
- ▶ if $\varphi \longleftrightarrow (c, Y_2)$, then $|\varphi([u])| = |[u]| 2$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

• Given *u*, find (x, Y) that minimizes $|\varphi([u])| - |[u]|$

Pascal Weil Algorithmic problems in free groups

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given *u*, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given u, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)
- Given u, for each $x \in A$, find Y that minimizes cap(Y)

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given *u*, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)
- Given u, for each $x \in A$, find Y that minimizes cap(Y)
- This is a standard problem in combinatorial optimization: the min-cut problem

イロト イポト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given *u*, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)
- Given u, for each $x \in A$, find Y that minimizes cap(Y)
- This is a standard problem in combinatorial optimization: the min-cut problem
- There exists an algorithm (Dinic, based on the max-flow min-cut theorem) that solves this problem in O(nr²) (recall: n = |[u]| and r = rank(F))

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given u, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)
- Given u, for each $x \in A$, find Y that minimizes cap(Y)
- This is a standard problem in combinatorial optimization: the min-cut problem
- There exists an algorithm (Dinic, based on the max-flow min-cut theorem) that solves this problem in O(nr²) (recall: n = |[u]| and r = rank(F))
- The Whitehead minimization problem is thus solved in O(n²r³)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The min-cut problem

- Given u, find (x, Y) that minimizes $|\varphi([u])| |[u]|$
- Given u, find (x, Y) that minimizes cap(Y) deg(x)
- Given u, for each $x \in A$, find Y that minimizes cap(Y)
- This is a standard problem in combinatorial optimization: the min-cut problem
- There exists an algorithm (Dinic, based on the max-flow min-cut theorem) that solves this problem in O(nr²) (recall: n = |[u]| and r = rank(F))
- The Whitehead minimization problem is thus solved in O(n²r³)
- w.l.o.g. $r \leq n$, so there is a solution in $O(n^5)$

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead problem for subgroups

 A finitely generated subgroup H of F is represented by a finite automaton Γ(H)

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead problem for subgroups

 A finitely generated subgroup H of F is represented by a finite automaton Γ(H)

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead problem for subgroups

 A finitely generated subgroup H of F is represented by a finite automaton Γ(H)

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead problem for subgroups

 A finitely generated subgroup H of F is represented by a finite automaton Γ(H)

► H_1 and H_2 are conjugates, and the conjugacy class $[H_1] = [H_2]$ is represented by a *cyclically reduced* graph b $f([H_1]) = \Gamma([H_2])$

イロト イポト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead problem for subgroups

- A finitely generated subgroup H of F is represented by a finite automaton Γ(H)
- Say that the *size* of *H* is the number of vertices.

イロン 不同と 不同と 不同と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead problem for subgroups

- A finitely generated subgroup H of F is represented by a finite automaton Γ(H)
- Say that the *size* of *H* is the number of vertices.
- Problem: To find a minimum size element in the automorphic orbit of a given subgroup *H*, or of the conjugacy class [*H*]

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead problem for subgroups

- A finitely generated subgroup H of F is represented by a finite automaton Γ(H)
- Say that the *size* of *H* is the number of vertices.
- Problem: To find a minimum size element in the automorphic orbit of a given subgroup *H*, or of the conjugacy class [*H*]
- ► A part of the equivalence problem (does [K] belong to the orbit of [H]?)

イロト イポト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead problem for subgroups

- A finitely generated subgroup H of F is represented by a finite automaton Γ(H)
- Say that the *size* of *H* is the number of vertices.
- Problem: To find a minimum size element in the automorphic orbit of a given subgroup *H*, or of the conjugacy class [*H*]
- A part of the equivalence problem (does [K] belong to the orbit of [H]?)
- ▶ Application: decide whether a given f.g. subgroup H ≤ F is a free factor of F

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead problem for subgroups

- A finitely generated subgroup H of F is represented by a finite automaton Γ(H)
- Say that the *size* of *H* is the number of vertices.
- Problem: To find a minimum size element in the automorphic orbit of a given subgroup *H*, or of the conjugacy class [*H*]
- A part of the equivalence problem (does [K] belong to the orbit of [H]?)
- ▶ Application: decide whether a given f.g. subgroup H ≤ F is a free factor of F
- ► The cyclic word problem is a special case: if H = ⟨u⟩, then H (or Γ([H])) can be identified with the cyclic word [u].

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method still applies

► Theorem (Gersten). If there exists φ ∈ Aut(F) such that |φ([H]) < |[H]|, then there exists such a φ ∈ W(A)</p>

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead method still applies

- ► Theorem (Gersten). If there exists φ ∈ Aut(F) such that |φ([H]) < |[H]|, then there exists such a φ ∈ W(A)</p>
- ► Algorithm. Try every Whitehead automorphism φ until |φ([H])| < |[H]|. If there is one, replace [H] by [φ(H)] and repeat. If there is none, [H] has minimum size.

・ロト ・同ト ・ヨト ・ヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead method still applies

- ► Theorem (Gersten). If there exists φ ∈ Aut(F) such that |φ([H]) < |[H]|, then there exists such a φ ∈ W(A)</p>
- ► Algorithm. Try every Whitehead automorphism φ until |φ([H])| < |[H]|. If there is one, replace [H] by [φ(H)] and repeat. If there is none, [H] has minimum size.
- We propose again a modification of this algorithm: do not try every φ ∈ W(A), but choose an optimal one fast

(日) (同) (E) (E) (E)

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

The Whitehead method still applies

- ► Theorem (Gersten). If there exists φ ∈ Aut(F) such that |φ([H]) < |[H]|, then there exists such a φ ∈ W(A)</p>
- ► Algorithm. Try every Whitehead automorphism φ until |φ([H])| < |[H]|. If there is one, replace [H] by [φ(H)] and repeat. If there is none, [H] has minimum size.
- We propose again a modification of this algorithm: do not try every φ ∈ W(A), but choose an optimal one fast
- Given *H*, find (x, Y) that minimizes $|\varphi([H])| |[H]|$

(日) (同) (E) (E) (E)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The Whitehead hypergraph of a cyclically reduced graph Γ

► This Whitehead hypergraph is a generalization of the Whitehead graph of a cyclic word. Vertex set \tilde{A}

イロト イボト イヨト イヨト

The Whitehead hypergraph of a cyclically reduced graph Γ

- This Whitehead hypergraph is a generalization of the Whitehead graph of a cyclic word. Vertex set A
- A vertex v of Γ yields a hyperedge d_v: the set of letters that label edges into v

イロト イボト イヨト イヨト

The Whitehead hypergraph of a cyclically reduced graph Γ

- This Whitehead hypergraph is a generalization of the Whitehead graph of a cyclic word. Vertex set A
- A vertex v of Γ yields a hyperedge d_v: the set of letters that label edges into v

$$egin{aligned} d_1 &= \{ar{a},ar{b}\}\ d_2 &= \{a,b,ar{c},ar{d}\}\ d_3 &= \{c,d,ar{e}\}\ d_4 &= \{a,ar{a}\}\ d_5 &= \{a,ar{a},c,ar{c},d\}\ d_6 &= \{d,e\} \end{aligned}$$

▲ □ ► ▲ □ ►

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The cut formula still holds

 $egin{aligned} d_1 &= \{ar{a},ar{b}\}\ d_2 &= \{a,b,ar{c},ar{d}\}\ d_3 &= \{c,d,ar{e}\}\ d_4 &= \{a,ar{a}\}\ d_5 &= \{a,ar{a},c,ar{c},d\}\ d_6 &= \{d,e\} \end{aligned}$

イロト イヨト イヨト

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The cut formula still holds

 $egin{aligned} d_1 &= \{ar{a},ar{b}\}\ d_2 &= \{a,b,ar{c},ar{d}\}\ d_3 &= \{c,d,ar{e}\}\ d_4 &= \{a,ar{a}\}\ d_5 &= \{a,ar{a},c,ar{c},d\}\ d_6 &= \{d,e\} \end{aligned}$

イロン 不同と 不同と 不同と

• cap(Y) = number of hyperedges that meet Y and Y^c

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The cut formula still holds

$$d_{1} = \{\bar{a}, \bar{b}\}$$

$$d_{2} = \{a, b, \bar{c}, \bar{d}\}$$

$$d_{3} = \{c, d, \bar{e}\}$$

$$d_{4} = \{a, \bar{a}\}$$

$$d_{5} = \{a, \bar{a}, c, \bar{c}, d\}$$

$$d_{6} = \{d, e\}$$

イロト イポト イヨト イヨト

• cap(Y) = number of hyperedges that meet Y and Y^c

▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([H])| - |[H]| = \operatorname{cap}(Y) - \operatorname{deg}(x)$
The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The cut formula still holds

$$d_{1} = \{\bar{a}, \bar{b}\}$$

$$d_{2} = \{a, b, \bar{c}, \bar{d}\}$$

$$d_{3} = \{c, d, \bar{e}\}$$

$$d_{4} = \{a, \bar{a}\}$$

$$d_{5} = \{a, \bar{a}, c, \bar{c}, d\}$$

$$d_{6} = \{d, e\}$$

イロト イポト イヨト イヨト

► cap(Y) = number of hyperedges that meet Y and Y^c

- ▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([H])| |[H]| = \operatorname{cap}(Y) \operatorname{deg}(x)$
- This is a rewording of a formula of Gersten

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

The cut formula still holds

$$d_{1} = \{\bar{a}, \bar{b}\}$$

$$d_{2} = \{a, b, \bar{c}, \bar{d}\}$$

$$d_{3} = \{c, d, \bar{e}\}$$

$$d_{4} = \{a, \bar{a}\}$$

$$d_{5} = \{a, \bar{a}, c, \bar{c}, d\}$$

$$d_{6} = \{d, e\}$$

- 4 回 2 - 4 □ 2 - 4 □

• cap(Y) = number of hyperedges that meet Y and Y^c

- ▶ If $\varphi \in \mathbb{W}(A)$ is determined by (x, Y), then $|\varphi([H])| |[H]| = \operatorname{cap}(Y) \operatorname{deg}(x)$
- This is a rewording of a formula of Gersten
- Given H, for each $x \in A$, find Y that minimizes cap(Y)

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

and an algorithm exists in the literature

• Given H, for each $x \in A$, find Y that minimizes cap(Y)

・ロン ・回と ・ヨン ・ヨン

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

and an algorithm exists in the literature

- Given H, for each $x \in A$, find Y that minimizes cap(Y)
- This min-cut problem for hypergraphs is an instance of a standard problem in combinatorial optimization: the minimization of submodular functions

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word **The subgroup case**

and an algorithm exists in the literature

- Given H, for each $x \in A$, find Y that minimizes cap(Y)
- This min-cut problem for hypergraphs is an instance of a standard problem in combinatorial optimization: the minimization of submodular functions
- ► There exists an algorithm (Cunningham) that solves this problem in O(nr³ log(nr))

・ロン ・回と ・ヨン・

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

and an algorithm exists in the literature

- Given H, for each $x \in A$, find Y that minimizes cap(Y)
- This min-cut problem for hypergraphs is an instance of a standard problem in combinatorial optimization: the minimization of submodular functions
- ► There exists an algorithm (Cunningham) that solves this problem in O(nr³ log(nr))
- ► The Whitehead minimization problem is thus solved in O((n²r⁴ + n³r²) log(nr))

・ロン ・回 と ・ ヨ と ・ ヨ と

The Whitehead method Cuts in the Whitehead graph of a cyclic word The subgroup case

and an algorithm exists in the literature

- Given H, for each $x \in A$, find Y that minimizes cap(Y)
- This min-cut problem for hypergraphs is an instance of a standard problem in combinatorial optimization: the minimization of submodular functions
- There exists an algorithm (Cunningham) that solves this problem in O(nr³ log(nr))
- ► The Whitehead minimization problem is thus solved in O((n²r⁴ + n³r²) log(nr))
- w.l.o.g. $r \leq n$, so there is a solution in $O(n^6 \log n)$

・ロン ・回 と ・ ヨ と ・ ヨ と

Free groups and subgroups	The Whitehead method
Intersections of subgroups: the Hanna Neumann conjecture	Cuts in the Whitehead graph of a cyclic word
The Whitehead minimization problem	The subgroup case

Thank you for your attention!

@ ▶ ★ ● ▶

< ∃⇒