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◮ i.e., perform reductions: uaāv −→ uv , uāav −→ uv . For
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∗
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◮ this rewriting system is confluent, it terminates: it yields a
unique representation by means of reduced words

◮ F (A) and F (B) are isomorphic iff A and B have the same
cardinality : the notions of rank, basis make sense for free
groups

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

Algorithmic problems
Rank, index and conjugates

The free group on A, F (A)
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◮ i.e., perform reductions: uaāv −→ uv , uāav −→ uv . For
instance a3ā b̄ab2b̄ āa

∗
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◮ this rewriting system is confluent, it terminates: it yields a
unique representation by means of reduced words
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cardinality : the notions of rank, basis make sense for free
groups

◮ The subgroups of a free group are free. . .
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◮ the “simplest” group built from the symbols in set A: start
with strings (words) on alphabet A ∪ Ā, and let aā = āa = 1

◮ i.e., perform reductions: uaāv −→ uv , uāav −→ uv . For
instance a3ā b̄ab2b̄ āa

∗
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◮ this rewriting system is confluent, it terminates: it yields a
unique representation by means of reduced words

◮ F (A) and F (B) are isomorphic iff A and B have the same
cardinality : the notions of rank, basis make sense for free
groups

◮ The subgroups of a free group are free. . .
◮ . . . but a subgroup may have a larger rank than the group in

which it sits!
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The free group on A, F (A)

◮ the “simplest” group built from the symbols in set A: start
with strings (words) on alphabet A ∪ Ā, and let aā = āa = 1

◮ i.e., perform reductions: uaāv −→ uv , uāav −→ uv . For
instance a3ā b̄ab2b̄ āa

∗

−→ a2b̄ab

◮ this rewriting system is confluent, it terminates: it yields a
unique representation by means of reduced words

◮ F (A) and F (B) are isomorphic iff A and B have the same
cardinality : the notions of rank, basis make sense for free
groups

◮ The subgroups of a free group are free. . .
◮ . . . but a subgroup may have a larger rank than the group in

which it sits!
◮ Every subset of {anba−n | n ≥ 0} is a basis of a subgroup of

F (a, b).
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The Whitehead minimization problem

Algorithmic problems
Rank, index and conjugates

Algorithmic problems in free groups

◮ Algorithmic problems on elements (reduced words) and on
finitely generated subgroups of free groups: compute the rank,
a basis, the index, conjugacy problems, etc.

◮ The general idea for subgroups: to represent the finitely
generated subgroups of a free group by combinatorial objects
(certain kinds of automata)

◮ results in effective (often efficient) computations on subgroups
of free groups
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◮ H = 〈abab−1, aba−1b−1, aba3b−1〉

◮ reduced automaton: finite, connected, deterministic and
co-deterministic, with a distinguished state 1; every vertex
v 6= 1 has valency at least 2
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Representation of subgroups

◮ H = 〈abab−1, aba−1b−1, aba3b−1〉

◮ reduced automaton: finite, connected, deterministic and
co-deterministic, with a distinguished state 1; every vertex
v 6= 1 has valency at least 2

◮ H = all reduced words that read from 1 to 1
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◮ this automaton is denoted by Γ(H), or ΓA(H). It characterizes
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Representation of subgroups

◮ H = 〈abab−1, aba−1b−1, aba3b−1〉

◮ this automaton is denoted by Γ(H), or ΓA(H). It characterizes
H, not the generating set

◮ Γ(H) is computable in O(n log∗ n)
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◮ aba3b−1 is a product of the other generators

◮ an efficient solution of the (generalized) membership problem

◮ the rank is the number of “independent” loops, which can be
read on Γ(H): choose a spanning tree T ; then each A-labeled
edge not in T yields a basis element
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◮ aba3b−1 is a product of the other generators

◮ an efficient solution of the (generalized) membership problem

◮ the rank is the number of “independent” loops, which can be
read on Γ(H): choose a spanning tree T ; then each A-labeled
edge not in T yields a basis element

◮ H has rank 2, and for the dotted spanning tree, we get basis
abab−1, ba2b−1
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Basic invariants of subgroups
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a

a
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a

H = 〈abab−1, aba−1b−1〉

◮ aba3b−1 is a product of the other generators

◮ an efficient solution of the (generalized) membership problem

◮ the rank is the number of “independent” loops, which can be
read on Γ(H): choose a spanning tree T ; then each A-labeled
edge not in T yields a basis element

◮ H has rank 2, and for the dotted spanning tree, we get basis
abab−1, ba2b−1

◮ rank(H) = |E (H)| − |V (H)| + 1.
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a

a
bb

a
vertex 2 is Ha, or also Hbab−1

Recall: F (A) is partitioned by the H-cosets Hg (g ∈ F (A)), the
index of H is the number of these cosets.
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Finite-index subgroups

Each vertex is an H-coset: 1 2
a

a
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vertex 2 is Ha, or also Hbab−1

◮ In general, not all H-cosets occur as vertices of Γ(H). But if
Γ(H) is a permutation graph, they do, and H has finite index,
equal to the number of vertices |V (H)|. That’s an iff.

Recall: F (A) is partitioned by the H-cosets Hg (g ∈ F (A)), the
index of H is the number of these cosets.
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Algorithmic problems
Rank, index and conjugates

Finite-index subgroups

Each vertex is an H-coset: 1 2
a

a
bb

a
vertex 2 is Ha, or also Hbab−1

◮ In general, not all H-cosets occur as vertices of Γ(H). But if
Γ(H) is a permutation graph, they do, and H has finite index,
equal to the number of vertices |V (H)|. That’s an iff.

◮ this yields a proof of the Nielsen-Schreier formula for finite
index subgroups: if H has finite index ı(H), then
rank(H) − 1 = ı(H)(rank(F (A))− 1)
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Computing the conjugates of H

◮ H = 〈abab−1, aba−1b−1〉
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◮ an algorithm to solve the conjugacy problem
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Rank of the intersection of subgroups

◮ Howson (1954): if H and K are finite rank subgroups of
F (A), then H ∩ K is finitely generated
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The Whitehead minimization problem

Rank of the intersection of subgroups

◮ Howson (1954): if H and K are finite rank subgroups of
F (A), then H ∩ K is finitely generated

◮ 〈a2, abab−1a−1, ab2ab−2〉 ∩ 〈a, bab−1〉 = 〈a2, abab−1a−1〉
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◮ Howson (1954): if H and K are finite rank subgroups of
F (A), then H ∩ K is finitely generated

◮ 〈a2, abab−1a−1, ab2ab−2〉 ∩ 〈a, bab−1〉 = 〈a2, abab−1a−1〉

◮ Hanna Neumann (1956)
rank(H ∩ K )− 1 ≤ 2(rank(H) − 1)(rank(K )− 1)
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The Whitehead minimization problem

Rank of the intersection of subgroups

◮ Howson (1954): if H and K are finite rank subgroups of
F (A), then H ∩ K is finitely generated

◮ 〈a2, abab−1a−1, ab2ab−2〉 ∩ 〈a, bab−1〉 = 〈a2, abab−1a−1〉

◮ Hanna Neumann (1956)
rank(H ∩ K )− 1 ≤ 2(rank(H) − 1)(rank(K )− 1)

◮ Let r̃k(H) = max(rank(H) − 1, 0), the reduced rank of H,

Hanna Neumann Conjecture (HNC)

r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

Status of the conjecture

◮ HNC: r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )
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The Whitehead minimization problem

Status of the conjecture

◮ HNC: r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )

◮ HNC holds if H has finite index (elementary), if H has rank 1
(immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek,
2001)
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Status of the conjecture

◮ HNC: r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )

◮ HNC holds if H has finite index (elementary), if H has rank 1
(immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek,
2001)

◮ It also holds if H is positively generated, i.e. H is generated
by a finite set of words using letters from A and not from A−1

(Meakin and Weil, Khan, 2002)

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

Status of the conjecture

◮ HNC: r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )

◮ HNC holds if H has finite index (elementary), if H has rank 1
(immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek,
2001)

◮ It also holds if H is positively generated, i.e. H is generated
by a finite set of words using letters from A and not from A−1

(Meakin and Weil, Khan, 2002)

◮ H is positively generated if and only if Γ(H) is strongly
connected. When is H potentially connected? That is, such
that ϕ(H) is positively generated for some injective
endomorphism ϕ of F (A).
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The Whitehead minimization problem

Status of the conjecture

◮ HNC: r̃k(H ∩ K ) ≤ r̃k(H) r̃k(K )

◮ HNC holds if H has finite index (elementary), if H has rank 1
(immediate), or 2 (Tardos, 1992), or 3 (Dicks and Formanek,
2001)

◮ It also holds if H is positively generated, i.e. H is generated
by a finite set of words using letters from A and not from A−1

(Meakin and Weil, Khan, 2002)

◮ H is positively generated if and only if Γ(H) is strongly
connected. When is H potentially connected? That is, such
that ϕ(H) is positively generated for some injective
endomorphism ϕ of F (A).

◮ How is this approached by means of automata? compute
Γ(H ∩ K ), knowing Γ(H) and Γ(K )
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Example

Γ(H)

1 2

3

45

6

a

a
b

b

b

b

a

a

Γ(K ) 1 2
b

aa

H = 〈a2, abab−1a−1, ab2ab−2〉

K = 〈a, bab−1〉
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The Whitehead minimization problem

Example

Γ(H)

1 2

3

45

6

a

a
b

b

b

b

a

a

Γ(K ) 1 2
b

aa

Γ(H) ×A Γ(K )

1,1 2,1

3,26,2

1,2 2,2 4,1 5,1

3,1 6,1

5,24,2

a

a
b b

a

a

a

a

a
b b

a
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The Whitehead minimization problem

Example

Γ(H)

1 2

3

45

6

a

a
b

b

b

b

a

a

Γ(K ) 1 2
b

aa

1,1 2,1

3,26,2

Γ(H ∩ K )

H ∩ K = 〈a2, abab−1a−1〉

a

a
b b

a
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The Whitehead minimization problem

Translation of HNC in graph-theoretic terms

◮ Translation of HNC: On each connected component of
Γ(H) ×A Γ(K ),

|E | − |V | ≤ (|E (H)| − |V (H)|) (|E (K )| − |V (K )|)
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Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

Translation of HNC in graph-theoretic terms

◮ Translation of HNC: On each connected component of
Γ(H) ×A Γ(K ),

|E | − |V | ≤ (|E (H)| − |V (H)|) (|E (K )| − |V (K )|)

◮ a very simple, graph-theoretic problem. Very simple to state,
yet very elusive. . .
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Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead minimization problem

◮ Problem: To find a minimum length word in the automorphic
orbit of a given word u
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead minimization problem

◮ Problem: To find a minimum length word in the automorphic
orbit of a given word u

◮ . . . or a minimum length element in the automorphic orbit of
a conjugacy class of a word (aka a cyclic word [u])
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead minimization problem

◮ Problem: To find a minimum length word in the automorphic
orbit of a given word u

◮ . . . or a minimum length element in the automorphic orbit of
a conjugacy class of a word (aka a cyclic word [u])

◮ u = abc̄ead̄ca (u and [u] have length 8)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead minimization problem

◮ Problem: To find a minimum length word in the automorphic
orbit of a given word u

◮ . . . or a minimum length element in the automorphic orbit of
a conjugacy class of a word (aka a cyclic word [u])

◮ u = abc̄ead̄ca (u and [u] have length 8)

◮ Let ϕ : a 7→ c̄ac , b 7→ c̄bc , c 7→ c , d 7→ dc , e 7→ ec , then
ϕ(u) = c̄abead̄ac and cc(ϕ(u)) = abead̄a. So |ϕ(u)| = 8 and
|ϕ([u])| = 6
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead minimization problem

◮ Problem: To find a minimum length word in the automorphic
orbit of a given word u

◮ . . . or a minimum length element in the automorphic orbit of
a conjugacy class of a word (aka a cyclic word [u])

◮ u = abc̄ead̄ca (u and [u] have length 8)

◮ Let ϕ : a 7→ c̄ac , b 7→ c̄bc , c 7→ c , d 7→ dc , e 7→ ec , then
ϕ(u) = c̄abead̄ac and cc(ϕ(u)) = abead̄a. So |ϕ(u)| = 8 and
|ϕ([u])| = 6

◮ there is an analogous problem for a finitely generated
subgroup H instead of a word u
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word

◮ Application: decide whether a given element u ∈ F is primitive
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word

◮ Application: decide whether a given element u ∈ F is primitive

◮ This is the so-called easy part of the equivalence problem
(does v belong to the automorphic orbit of u?)
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word

◮ It is decidable by the Whitehead method

◮ Application: decide whether a given element u ∈ F is primitive

◮ This is the so-called easy part of the equivalence problem
(does v belong to the automorphic orbit of u?)
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word

◮ It is decidable by the Whitehead method

◮ Interest in the algorithmic complexity of this problem

◮ Application: decide whether a given element u ∈ F is primitive

◮ This is the so-called easy part of the equivalence problem
(does v belong to the automorphic orbit of u?)
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The Whitehead minimization problem

◮ Problem: To find a minimum length element in the
automorphic orbit of a given word or cyclic word

◮ It is decidable by the Whitehead method

◮ Interest in the algorithmic complexity of this problem

◮ The word case reduces to the cyclic word case at little extra
cost

◮ Application: decide whether a given element u ∈ F is primitive

◮ This is the so-called easy part of the equivalence problem
(does v belong to the automorphic orbit of u?)
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The Whitehead method

◮ W(A) the set of non-length preserving Whitehead
automorphisms
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The Whitehead method

◮ W(A) the set of non-length preserving Whitehead
automorphisms

◮ Theorem (Whitehead). If there exists ϕ ∈ Aut(F ) such that
|ϕ([u]) < |[u]|, then there exists such a ϕ ∈W(A)
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The Whitehead method

◮ W(A) the set of non-length preserving Whitehead
automorphisms

◮ Theorem (Whitehead). If there exists ϕ ∈ Aut(F ) such that
|ϕ([u]) < |[u]|, then there exists such a ϕ ∈W(A)

◮ Algorithm. Try every Whitehead automorphism ϕ until
|[ϕ(u)]| < |[u]|. If there is one, replace [u] by [ϕ(u)] and
repeat. If there is none, [u] has minimum length.
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The Whitehead method

◮ Let r = rank(F ) = card(A) and n = |[u]|. At most n

iterations. Trying one Whitehead automorphism takes time
O(n). card(W(A)) = O(r4r ). The complexity is in O(n2r4r )

◮ Algorithm. Try every Whitehead automorphism ϕ until
|[ϕ(u)]| < |[u]|. If there is one, replace [u] by [ϕ(u)] and
repeat. If there is none, [u] has minimum length.
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The Whitehead method

◮ Let r = rank(F ) = card(A) and n = |[u]|. At most n

iterations. Trying one Whitehead automorphism takes time
O(n). card(W(A)) = O(r4r ). The complexity is in O(n2r4r )

◮ Suggestion that this is can be done faster (Myasnikov et al.,
Kapovich, Schupp, Shpilrain, etc)

◮ Algorithm. Try every Whitehead automorphism ϕ until
|[ϕ(u)]| < |[u]|. If there is one, replace [u] by [ϕ(u)] and
repeat. If there is none, [u] has minimum length.
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The Whitehead method

◮ Let r = rank(F ) = card(A) and n = |[u]|. At most n

iterations. Trying one Whitehead automorphism takes time
O(n). card(W(A)) = O(r4r ). The complexity is in O(n2r4r )

◮ Suggestion that this is can be done faster (Myasnikov et al.,
Kapovich, Schupp, Shpilrain, etc)

◮ Our result (A. Roig, E. Ventura, P. Weil): an algorithm that is
polynomial in n and in r

◮ Algorithm. Try every Whitehead automorphism ϕ until
|[ϕ(u)]| < |[u]|. If there is one, replace [u] by [ϕ(u)] and
repeat. If there is none, [u] has minimum length.
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The Whitehead method

◮ Let r = rank(F ) = card(A) and n = |[u]|. At most n

iterations. Trying one Whitehead automorphism takes time
O(n). card(W(A)) = O(r4r ). The complexity is in O(n2r4r )

◮ Suggestion that this is can be done faster (Myasnikov et al.,
Kapovich, Schupp, Shpilrain, etc)

◮ Our result (A. Roig, E. Ventura, P. Weil): an algorithm that is
polynomial in n and in r

◮ In fact, a modification of the algorithm below: do not try
every ϕ ∈W(A), but choose an optimal one fast

◮ Algorithm. Try every Whitehead automorphism ϕ until
|[ϕ(u)]| < |[u]|. If there is one, replace [u] by [ϕ(u)] and
repeat. If there is none, [u] has minimum length.
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The Whitehead automorphisms W(A)

◮ x ∈ Ã = A ⊔ Ā. Y ⊆ Ã is an x-cut if x ∈ Y and x̄ 6∈ Y
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead automorphisms W(A)

◮ x ∈ Ã = A ⊔ Ā. Y ⊆ Ã is an x-cut if x ∈ Y and x̄ 6∈ Y

◮ if Y is an x-cut, (x ,Y ) defines ϕ ∈W(A)

Y

x x̄
ϕ(x) = x and if a 6= x , x̄

ϕ(a) = xλaxρ with

λ = −1 if ā ∈ Y , O otherwise

ρ = 1 if a ∈ Y , O otherwise
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead automorphisms W(A)

◮ x ∈ Ã = A ⊔ Ā. Y ⊆ Ã is an x-cut if x ∈ Y and x̄ 6∈ Y

◮ if Y is an x-cut, (x ,Y ) defines ϕ ∈W(A)

Y

x x̄
ϕ(x) = x and if a 6= x , x̄

ϕ(a) = xλaxρ with

λ = −1 if ā ∈ Y , O otherwise

ρ = 1 if a ∈ Y , O otherwise

◮ Given u, is there (x ,Y ) such that |ϕ([u])| − |[u]| < 0?
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead automorphisms W(A)

◮ x ∈ Ã = A ⊔ Ā. Y ⊆ Ã is an x-cut if x ∈ Y and x̄ 6∈ Y

◮ if Y is an x-cut, (x ,Y ) defines ϕ ∈W(A)

Y

x x̄
ϕ(x) = x and if a 6= x , x̄

ϕ(a) = xλaxρ with

λ = −1 if ā ∈ Y , O otherwise

ρ = 1 if a ∈ Y , O otherwise

◮ Given u, is there (x ,Y ) such that |ϕ([u])| − |[u]| < 0?

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|
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The Whitehead graph of a cyclic word

u = abc̄ead̄ca

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead graph of a cyclic word

u = abc̄ead̄ca

A subword xy in the cyclic word yields an edge between x and ȳ
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead graph of a cyclic word

u = abc̄ead̄ca

a b c d e

ā b̄ c̄ d̄ ē

A subword xy in the cyclic word yields an edge between x and ȳ
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead graph of a cyclic word

u = abc̄ead̄ca

a b c d e

ā b̄ c̄ d̄ ē

A subword xy in the cyclic word yields an edge between x and ȳ

◮ ϕ ∈W(A), determined by (x ,Y )

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead graph of a cyclic word

u = abc̄ead̄ca

a b c d e

ā b̄ c̄ d̄ ē

A subword xy in the cyclic word yields an edge between x and ȳ

◮ ϕ ∈W(A), determined by (x ,Y )

◮ Evaluate |ϕ([u])| − |[u]| in graph-theoretic terms, depending
on x , Y and the Whitehead graph of [u]
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y1 = {a, b, c , d , e}, cap(Y1) = 4

a b c d e

ā b̄ c̄ d̄ ē

Y1
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y2 = {a, ā, b̄, c , d , e}, cap(Y2) = 0

a b c d e

ā b̄ c̄ d̄ ē

Y2
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y2 = {a, ā, b̄, c , d , e}, cap(Y2) = 0

a b c d e

ā b̄ c̄ d̄ ē

Y2

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([u])| − |[u]| = cap(Y )− deg(x)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y2 = {a, ā, b̄, c , d , e}, cap(Y2) = 0

a b c d e

ā b̄ c̄ d̄ ē

Y2

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([u])| − |[u]| = cap(Y )− deg(x)

◮ This is a rewording of a formula in [Lyndon-Schupp]
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y2 = {a, ā, b̄, c , d , e}, cap(Y2) = 0

a b c d e

ā b̄ c̄ d̄ ē

Y2

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([u])| − |[u]| = cap(Y )− deg(x)

◮ if ϕ←→ (d ,Y2), then |ϕ([u])| = |[u]| − 1
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

A cut formula

◮ cap(Y ) = number of edges between Y and Y c

◮ Y2 = {a, ā, b̄, c , d , e}, cap(Y2) = 0

a b c d e

ā b̄ c̄ d̄ ē

Y2

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([u])| − |[u]| = cap(Y )− deg(x)

◮ if ϕ←→ (c ,Y2), then |ϕ([u])| = |[u]| − 2
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|
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The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)

◮ Given u, for each x ∈ A, find Y that minimizes cap(Y )
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The Whitehead minimization problem

The Whitehead method
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The subgroup case

The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)

◮ Given u, for each x ∈ A, find Y that minimizes cap(Y )

◮ This is a standard problem in combinatorial optimization: the
min-cut problem
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)

◮ Given u, for each x ∈ A, find Y that minimizes cap(Y )

◮ This is a standard problem in combinatorial optimization: the
min-cut problem

◮ There exists an algorithm (Dinic, based on the max-flow
min-cut theorem) that solves this problem in O(nr2) (recall:
n = |[u]| and r = rank(F ))
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The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)

◮ Given u, for each x ∈ A, find Y that minimizes cap(Y )

◮ This is a standard problem in combinatorial optimization: the
min-cut problem

◮ There exists an algorithm (Dinic, based on the max-flow
min-cut theorem) that solves this problem in O(nr2) (recall:
n = |[u]| and r = rank(F ))

◮ The Whitehead minimization problem is thus solved in
O(n2r3)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The min-cut problem

◮ Given u, find (x ,Y ) that minimizes |ϕ([u])| − |[u]|

◮ Given u, find (x ,Y ) that minimizes cap(Y )− deg(x)

◮ Given u, for each x ∈ A, find Y that minimizes cap(Y )

◮ This is a standard problem in combinatorial optimization: the
min-cut problem

◮ There exists an algorithm (Dinic, based on the max-flow
min-cut theorem) that solves this problem in O(nr2) (recall:
n = |[u]| and r = rank(F ))

◮ The Whitehead minimization problem is thus solved in
O(n2r3)

◮ w.l.o.g. r ≤ n, so there is a solution in O(n5)
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The Whitehead method
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The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)
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The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

1

Γ(H1)

H1 = 〈b−1ab2, b−1ab−1ab〉

a b

b

b

a
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The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

1

Γ(H1)

H1 = 〈b−1ab2, b−1ab−1ab〉

a b

b

b

a

1

Γ(H2)

H2 = 〈a2b−1, b2a−1〉

a

b a

b

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture
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The Whitehead method
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The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

1

Γ(H1)

H1 = 〈b−1ab2, b−1ab−1ab〉

a b

b

b

a

1

Γ(H2)

H2 = 〈a2b−1, b2a−1〉

a

b a

b

◮ H1 and H2 are conjugates, and the conjugacy class
[H1] = [H2] is represented by a cyclically reduced graph

Γ([H1]) = Γ([H2])

a

b a

b
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

◮ Say that the size of H is the number of vertices.
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

◮ Say that the size of H is the number of vertices.

◮ Problem: To find a minimum size element in the automorphic
orbit of a given subgroup H, or of the conjugacy class [H]
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

◮ Say that the size of H is the number of vertices.

◮ Problem: To find a minimum size element in the automorphic
orbit of a given subgroup H, or of the conjugacy class [H]

◮ A part of the equivalence problem (does [K ] belong to the
orbit of [H]?)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

◮ Say that the size of H is the number of vertices.

◮ Problem: To find a minimum size element in the automorphic
orbit of a given subgroup H, or of the conjugacy class [H]

◮ A part of the equivalence problem (does [K ] belong to the
orbit of [H]?)

◮ Application: decide whether a given f.g. subgroup H ≤ F is a
free factor of F
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead problem for subgroups

◮ A finitely generated subgroup H of F is represented by a finite
automaton Γ(H)

◮ Say that the size of H is the number of vertices.

◮ Problem: To find a minimum size element in the automorphic
orbit of a given subgroup H, or of the conjugacy class [H]

◮ A part of the equivalence problem (does [K ] belong to the
orbit of [H]?)

◮ Application: decide whether a given f.g. subgroup H ≤ F is a
free factor of F

◮ The cyclic word problem is a special case: if H = 〈u〉, then H

(or Γ([H])) can be identified with the cyclic word [u].
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead method still applies

◮ Theorem (Gersten). If there exists ϕ ∈ Aut(F ) such that
|ϕ([H]) < |[H]|, then there exists such a ϕ ∈W(A)
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead method still applies

◮ Theorem (Gersten). If there exists ϕ ∈ Aut(F ) such that
|ϕ([H]) < |[H]|, then there exists such a ϕ ∈W(A)

◮ Algorithm. Try every Whitehead automorphism ϕ until
|ϕ([H])| < |[H]|. If there is one, replace [H] by [ϕ(H)] and
repeat. If there is none, [H] has minimum size.
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead method still applies

◮ Theorem (Gersten). If there exists ϕ ∈ Aut(F ) such that
|ϕ([H]) < |[H]|, then there exists such a ϕ ∈W(A)

◮ Algorithm. Try every Whitehead automorphism ϕ until
|ϕ([H])| < |[H]|. If there is one, replace [H] by [ϕ(H)] and
repeat. If there is none, [H] has minimum size.

◮ We propose again a modification of this algorithm: do not try
every ϕ ∈W(A), but choose an optimal one fast

Pascal Weil Algorithmic problems in free groups



Free groups and subgroups
Intersections of subgroups: the Hanna Neumann conjecture

The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead method still applies

◮ Theorem (Gersten). If there exists ϕ ∈ Aut(F ) such that
|ϕ([H]) < |[H]|, then there exists such a ϕ ∈W(A)

◮ Algorithm. Try every Whitehead automorphism ϕ until
|ϕ([H])| < |[H]|. If there is one, replace [H] by [ϕ(H)] and
repeat. If there is none, [H] has minimum size.

◮ We propose again a modification of this algorithm: do not try
every ϕ ∈W(A), but choose an optimal one fast

◮ Given H, find (x ,Y ) that minimizes |ϕ([H])| − |[H]|
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead hypergraph of a cyclically reduced graph Γ

◮ This Whitehead hypergraph is a generalization of the
Whitehead graph of a cyclic word. Vertex set Ã
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead hypergraph of a cyclically reduced graph Γ

◮ This Whitehead hypergraph is a generalization of the
Whitehead graph of a cyclic word. Vertex set Ã

◮ A vertex v of Γ yields a hyperedge dv : the set of letters that
label edges into v
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The Whitehead hypergraph of a cyclically reduced graph Γ

◮ This Whitehead hypergraph is a generalization of the
Whitehead graph of a cyclic word. Vertex set Ã

◮ A vertex v of Γ yields a hyperedge dv : the set of letters that
label edges into v

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The cut formula still holds

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The cut formula still holds

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}

◮ cap(Y ) = number of hyperedges that meet Y and Y c
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The cut formula still holds

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}

◮ cap(Y ) = number of hyperedges that meet Y and Y c

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([H])| − |[H]| = cap(Y )− deg(x)
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The cut formula still holds

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}

◮ cap(Y ) = number of hyperedges that meet Y and Y c

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([H])| − |[H]| = cap(Y )− deg(x)

◮ This is a rewording of a formula of Gersten
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

The cut formula still holds

◮

1

2

3

4

5

6

a

b

d c d

e

a
c

a

d1 = {ā, b̄}

d2 = {a, b, c̄ , d̄}

d3 = {c , d , ē}

d4 = {a, ā}

d5 = {a, ā, c , c̄ , d}

d6 = {d , e}

◮ cap(Y ) = number of hyperedges that meet Y and Y c

◮ If ϕ ∈W(A) is determined by (x ,Y ), then
|ϕ([H])| − |[H]| = cap(Y )− deg(x)

◮ This is a rewording of a formula of Gersten

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

and an algorithm exists in the literature

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

and an algorithm exists in the literature

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )

◮ This min-cut problem for hypergraphs is an instance of a
standard problem in combinatorial optimization: the
minimization of submodular functions
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

and an algorithm exists in the literature

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )

◮ This min-cut problem for hypergraphs is an instance of a
standard problem in combinatorial optimization: the
minimization of submodular functions

◮ There exists an algorithm (Cunningham) that solves this
problem in O(nr3 log(nr))
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

and an algorithm exists in the literature

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )

◮ This min-cut problem for hypergraphs is an instance of a
standard problem in combinatorial optimization: the
minimization of submodular functions

◮ There exists an algorithm (Cunningham) that solves this
problem in O(nr3 log(nr))

◮ The Whitehead minimization problem is thus solved in
O((n2r4 + n3r2) log(nr))
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The Whitehead minimization problem

The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

and an algorithm exists in the literature

◮ Given H, for each x ∈ A, find Y that minimizes cap(Y )

◮ This min-cut problem for hypergraphs is an instance of a
standard problem in combinatorial optimization: the
minimization of submodular functions

◮ There exists an algorithm (Cunningham) that solves this
problem in O(nr3 log(nr))

◮ The Whitehead minimization problem is thus solved in
O((n2r4 + n3r2) log(nr))

◮ w.l.o.g. r ≤ n, so there is a solution in O(n6 log n)
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The Whitehead method
Cuts in the Whitehead graph of a cyclic word
The subgroup case

Thank you for your attention!
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