
Self-stabilizing synchronization in 3 dimensions

Matthew Cook, Erik Winfree1 Péter Gács2

1California Institute of Technology

2Department of Computer Science
Boston University

October 24, 2007

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 1 / 49

Asynchrony

Asynchrony

In a paralel computation model, distinction between two update
models.

Synchronous Discrete time steps 0, 1, 2, . . . , each component is
updated by a local (deterministic or random) “transition
rule”.

Asynchronous The update order is not deterministic. For example, the
update times form a random process: typically a Poisson
process. This is the case if the whole system is a
continuous-time Markov process.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 2 / 49

Asynchrony Cellular automata

Cellular automata

Elementary parts: cells, or sites. Set of cells: for example, C = Z3,
or C = Z/mZ (periodic boundary conditions).

Finite set S of (local) states.

(Space-) configuration: any function ξ : C → S.

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

−1 0 1 2

S = {0, 1, 2}C = Z

ξ(−1) = 1, ξ(0) = 1, ξ(1) = 2, . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 3 / 49

Asynchrony Cellular automata

Space-time configuration η(x, t).

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

−1 0 1 2

0 0 0 1 0 0 2 1 0 2 0 1 2 0 1 1 1
1 0 1 1 2 1 1 0 0 0 0 2 2 1 2 2 0
1 1 1 0 2 0 1 0 1 0 2 0 2 1 2 1 01

2

time
η(1, 2) = 2, η(2, 2) = 1, . . .

0

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 4 / 49

Asynchrony Cellular automata

Neighborhood function: N(x) = {ϑ1(x), . . . , ϑr(x)}.
Normally C = Zd and we have ϑi(x) = x + ϑi(0).

Examples
von Neumann neighborhood: the 7 nearest neighbors (including
itself) of a point, say, in the lattice Z3.

Toom neighborhood: 〈ϑ1(0), ϑ2(0), ϑ3(0)〉 = 〈〈0, 0〉, 〈0, 1〉, 〈1, 0〉〉.

ϑ1 ϑ2

ϑ3

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 5 / 49

Asynchrony Cellular automata

In discrete time, we say η is a trajectory of local transition function
g : Sr → S if

η(x, t + 1) = g(η(ϑ1(x), t), . . . , η(ϑr(x), t)).

Example
C = Z, N = {−1, 0, 1}.

−1 0 1 2

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0 t
t+1

η(x, t + 1) = g(0, 2, 2)

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 6 / 49

Asynchrony Cellular automata

Here is a trajectory of Wolfram’s rule 110 on Z/(17 Z).

1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0

−1 0 1 2

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 11

2

time

0

13 = −4

The rule says: “If your right neighbor is 1 and the neighborhood state is
not 111 then your next state is 1, otherwise 0”.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 7 / 49

Asynchrony Cellular automata

So, a (deterministic, synchronous) cellular automaton is given by these
data:

A = CA(C, S, r, ϑ, g).

Example (The Toom Rule)

C = Z2, S = {0, 1},

N(0) = 〈〈0, 0〉, 〈0, 1〉, 〈1, 0〉〉,
g(x, y, z) = Maj(x, y, z).

The new state is the majority of the state of the cell itself, and of its
northern and eastern neighbor.
Maj(x, y, z) can be extended to the case of larger alphabets: when no
symbol is in majority, let the result be y.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 8 / 49

Asynchrony Asynchronous updating

Asynchronous updating

Continuous time: cell x has
update times τ(x, n) ∈ R,
0 < τ(x, 1) < τ(x, t) < · · ·
with τ(x, n) →

n
∞.

time
43 5 6 7

τ(3, 1)

τ(3, 2)

τ(3, 3)

...

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 9 / 49

Asynchrony Asynchronous updating

Asynchronous updating

At any one time, only one site is updated:

η(x, t) = g(η(ϑ1(x), t−ε), . . . , η(ϑr(x), t−ε)),

where ε = ε(x, t) is such that the
neighborhood does not change during
[t − ε, t).

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 10 / 49

Asynchrony Asynchronous updating

Space-time neighbors

Set of update events

U = { 〈x, τ(x, n)〉 : x ∈ C, n = 1, 2, . . . }.

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 11 / 49

Asynchrony Asynchronous updating

Space-time neighbors

Let z = (x, t),

τ(x, t) = max
τ(x,k)<t

τ(x, k),

ΘU
i (z) = 〈ϑi(x), τ(ϑi(x), t)〉.

Then ΘU
i (z) is the event at which neighbor

ϑi(x) obtained the state influencing z.
Space-time neighbors of z: the events
ΘU

i (z), i = 1, . . . , r.
Directed graph G on vertices of U : directed
edge from each update event z to each of
its space-time neighbors.

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 12 / 49

Asynchrony Asynchronous updating

We say that η is an asynchronous trajectory if

η(z) = g(η(ΘU
1 (z)), . . . , η(ΘU

r (z))).

This recursive definition, along with the initial configuration η(·, 0)
determine η uniquely if the the graph G has no infinite directed path.
This condition will hold with probability 1 in our models with a
random update set U . We will also have, with probability 1:

〈x1, t1〉, 〈x2, t2〉 ∈ U ⇒ t1 6= t2.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 13 / 49

Asynchrony Asynchronous updating

Random updating

Now, let η(x, t) be a stochastic process. It is a trajectory of the
continuous-time probabilistic cellular automaton (sometimes called
interacting particle system)

A = CPCA(C, S, r, ϑ, g)

if the (random) update set U has the following properties.

The different sequences 〈 τ(x, n) : n = 0, 1, 2, . . . 〉 are independent
of each other.

The sequence of increments τ(x, n + 1)− τ(x, n) is independent.

Each variable τ(x, n + 1)− τ(x, n) has the same exponential
distribution with rate 1: P[τ(n + 1, x)− τ(n, x) > t] = e−t.

Thus, for each x, the sequence 〈 τ(x, n) : n > 0 〉 is a Poisson process
with rate 1. And, η is a continuous-time Markov process.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 14 / 49

Asynchrony Sensitivity to update order

Sensitivity to update order

Some computations are naturally “asynchronous”: the result is
independent of the choice of the update set U . (This can be formulated
precisely.)
Other computations rely substantially on the timing of many parallel
updates. Example: the “Toom-layering” itroduced below.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 15 / 49

Asynchrony Asynchronously simulating a synchronous computation

Asynchronously simulating a synchronous computation

How to simulate a discrete-time computation ζ(x, p), p = 0, 1, 2, . . . by
a continous-time η(x, t)? If we can recover ζ(x, p) from η then we can
also recover p. Denote

Stepη(x, t) = p.

We want to enforce

|Stepη(y, t)− Stepη(x, t)| 6 1

for neighbors x, y. This is called the marching soldiers scheme.

Step

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 16 / 49

Asynchrony Asynchronously simulating a synchronous computation

The mod 3 trick

We cannot store p = Stepη(x, t) in a finite state, but will store it modulo
3. Let the state η(x, t) have three fields: Cur, Prev, Clock with the
intended values

η(x, t).Cur = ζ(x, p),
η(x, t).Prev = ζ(x, p− 1),

η(x, t).Clock = p mod 3.

Denote n amod m = the smallest absolute value remainder,

∆(u, v) = (v.Clock− u.Clock) amod 3,

∆η(x, y, t) = ∆(η(x, t), η(y, t)).

With the intended values we will have

∆η(x, y, t) = Stepη(x, t)− Stepη(y, t).

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 17 / 49

Asynchrony Asynchronously simulating a synchronous computation

If

g is the transition function of ζ,

g̃ is the transition function for η,

then g̃ will satisfy some conditions called rules here. Suppose that g̃
changes the state s = η(z) with z = 〈x, t〉 to some state s, further
s.Clock ∈ Z3.

Rule (Wait)
We have

(s.Clock− s.Clock) amod 3 6= −1, that is the clock will not
“decrease”.
If z has a neighbor z′ ∈ N̂(z) with state s′ = η(z′) and with
s′.Clock ∈ Z3, ∆(s, s′) < 0 then s = s. That is, the clock does not
increase if some neighbor that would be “left behind”.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 18 / 49

Asynchrony Asynchronously simulating a synchronous computation

The following rule performs the actual simulation. For its definition, for
a space-time point z let

si = η(ΘU
i (z)),

qi =

{
si.Cur if ∆(s, si) = 0,

si.Prev if ∆(s, si) = 1,

Transη(z) = g(q1, . . . , qr).

This is the intended new simulated value.

Rule (Emulate)
If the states s′ in all neighbors have s′.Clock ∈ Z3 and ∆(s, s′) > 0 then

s.Cur := Transη(z),
s.Prev := s.Cur,

s.Clock := s.Clock + 1 mod 3.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 19 / 49

Asynchrony Asynchronously simulating a synchronous computation

What did we accomplish formally?

Definition (Asynchronous simulation)

An asynchronous simulation is a tuple 〈A, Ã, φ, Ψ〉 where

A = Aut(C, S, ϑ(·), g(·)),

Ã = Aut(C, S̃, ϑ(·), g̃(·))

and φ,Ψ are the (encoding, decoding) mappings such that:

If ξ is a space configuration of A then φ(ξ) is a space configuration
of Ã.

If η is an asynchronous trajectory of Ã with η(·, 0) = φ(ξ) then
Ψ(η) is a synchronous trajectory ζ of A with ζ(·, 0) = ξ.

Proposition
The mod 3 scheme introduced above defines an asynchronous simulation
for appropriate φ,Ψ.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 20 / 49

Asynchrony Asynchronously simulating a synchronous computation

A simulation of ζ by η via the simulation 〈φ,Ψ〉.

η

ζ

φ

Ψ

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 21 / 49

Asynchrony The slowdown

The slowdown

In the mod 3 scheme, we have update attempts in which nothing
happens. What is the price in slowdown?
For the random updating model, it is shown in [Berman, Simon 88]
that average slowdown is at most by a constant factor.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 22 / 49

Fault tolerance Toom-layering

Fault tolerance
A simple solution

The simplest known fault-tolerant computation model is the
three-dimensional cellular automaton introduced in [Gacs-Reif 88].

Definition (Toom-layering)
Let U be an arbitrary 1-dimensional cellular automaton. We define its
Toom-layering as a 3-dimensional automaton

U′.

In its initial configuration, we slice the space into planes by the value of
the first coordinate. Every cell with coordinates x, y, z will have the
initial state of cell x of automaton U.
The transition rule of U′ is: Toom’s rule within each plane, then the rule
of U across the planes.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 23 / 49

Fault tolerance Toom-layering

w

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

w

a

c

c

c

c

c

c

c

c

c

c

b

c

c

c

c

c

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

c

c

c

a

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

w
w

w

w
w

w

c
c

c

b

Transition rule of U′: Toom’s rule within each plane, then the rule of U
across the planes.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 24 / 49

Fault tolerance Toom-layering

In what sense is this fault-tolerant? Consider a random process η(u, t)
(discrete t) that follows the transition rule U′ only approximately: at
each space-time point 〈u, t〉, the transition rule is applied except with
some probability < ε, a fault occurs, when η(u, t) becomes something
else. We assume that faults occur independently of each other.

Proposition
There is a constant c with the following property. Let ζ(x, t) be a
computation (space-time configuration) of U, and let η(x, y, z, t) be a
space-time configuration of the Toom-layering U′ with noise bound ε, such
that for all x, y, z we have η(x, y, z, 0) = ζ(x, 0). Then for all x, y, z ∈ Z,
t ∈ Z+ we have

P[η(x, y, z, t) 6= ζ(x, t)] 6 cε.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 25 / 49

Fault tolerance The synchronization problem of the 3D model

The synchronization problem of the 3D model

The Toom-layering is trying to enforce the constancy of η(x, y, z, t) in
y, z. If some cells update before the others, this property is violated,
and the rule will try to “correct” the situation, messing up everyting.

w

a

a

a

a

a

a

a

a

a

a

a

w

w

w

a

a

a

a

w

w

b

w

a

a

a

a

w

w

w

a

a

a

a

a

a

a

a

a

w

a

c

c

c

c

c

c

c

c

c

c

b

c

c

c

c

c

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

c

c

c

a

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

w
w

w

w
w

w

c
c

c

b

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 26 / 49

Fault tolerance The synchronization problem of the 3D model

Toom’s rule itself works also in continuous time; only the
Toom-layering does not.

I have constructed continuous-time fault-tolerant cellular
automata, (even in 1 dimension), but their program creates and
maintains a hierarcy, and is very complex.

No simple continuous-time fault-tolerant cellular automata are
known in any dimension. The present work is trying to define one.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 27 / 49

The combination

The combination

Can we combine the mod 3 synchronization scheme with
Toom-layering? Maybe, but several difficulties arise.
First, even if faults do not affect the clocks, the slowdown may hurt us.
It is only linear on average, but if steep slopes persist too long locally,
then Toom’s Rule does not get the necessary speed for error correction.

Step

delayed

{

There must be a theorem of probability theory taking care of this, but I
have not found it yet.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 28 / 49

The combination

More interesting is the problem that the faults will affect the clocks,
even their consistency. This is not a problem in 1 dimension, but in 2
dimensions, they can already create situations like this:

0 1 2

02 1

Unless corrected, these clocks will wait for each other forever.
We do not know how to correct this situation in a simple
(non-hierarchical) way. Two opposite small loops can be far from each
other, and everything else may seem normal locally.

0 1 2

02 1

2 1 0

20 1

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 29 / 49

The combination

Definition (Lag)
For an arbitrary loop P = loop(u0, . . . , un−1) = 〈u0, u1, . . . , un−1, un〉
where un = u0, define its lag as

lag(P, t) =
n−1∑
i=0

∆η(ui, ui+1, t)

(each term is in {−1, 0, 1}).

0 1

2

1

2
-1

1

1

1

1
lag = 1 + 1− 1 + 1 + 1 = 3

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 30 / 49

The combination

Definition (Consistency)
A domain D in which all loops have zero lags is called consistent (at
time t).

The following is easy to prove.

Proposition
In a domain D, the function ∆η(u, v, t) can be represented as
Stepη(v, t)− Stepη(u, t) with integer function Stepη(u, t) if and only if D
is consistent.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 31 / 49

The combination

Definition
A loop of size 4 with nonzero lag is called a defect.

It easy to see that each loop of nonzero lag contains a defect.

0 1 2

02 1

More generally, the following holds, for an appropriate definition of
simply connected. (See next slide if there is time.)

Proposition
If a (2 or 3-dimensional) domain is simply connected and has no defects
then it is consistent.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 32 / 49

The combination

The following definitions work in two as well as three dimensions.

Definition (Addition of paths)
A directed path can be seen as the formal sum e1 + · · ·+ en of its
directed edges ei. More generally, we introduce formal sums

∑
i ciei

with integers ci. If e1 and e2 are the same edge with opposite directions
then e1 + e2 = 0.

Definition (Equivalence)
A plaquette is a loop of length 4. Two directed paths P and Q are
equivalent if P− Q can be represented as the sum of plaquettes. A
domain is simply connected if each loop in it is equivalent to 0.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 33 / 49

The combination

The following definitions work in two as well as three dimensions.

Definition (Addition of paths)
A directed path can be seen as the formal sum e1 + · · ·+ en of its
directed edges ei. More generally, we introduce formal sums

∑
i ciei

with integers ci. If e1 and e2 are the same edge with opposite directions
then e1 + e2 = 0.

Definition (Equivalence)
A plaquette is a loop of length 4. Two directed paths P and Q are
equivalent if P− Q can be represented as the sum of plaquettes. A
domain is simply connected if each loop in it is equivalent to 0.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 33 / 49

The combination 3-dimensions

3-dimensions

Interestingly, the situation is more promising in 3 dimensions (where
the Toom layering runs). We will restore consistency with a relatively
simple rule,

1 in the absence of new faults, and
2 in the absence of steep slopes.

We believe that more careful analysis will remove these conditions,
without changing the rule.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 34 / 49

The combination 3-dimensions

3-dimensional topology

Proposition
The sum the lags on the faces of a cube is 0, if each is read clockwise in the
direction of the normal pointing outside.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 35 / 49

The combination 3-dimensions

This motivates the following definition.

Definition
In 3 dimensions, each defect defines a defect vector connecting the
centers of the two facing corner cubes, in the direction towards which
the lag, read counterclockwise, is positive.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 36 / 49

The combination 3-dimensions

The Proposition implies that if a defect vector enters a corner cube,
another one must leave it.

So, defects form closed paths.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 37 / 49

The combination The program

The program

Here is the plan for eliminating defects. Introduce a new value ∗ for
Clock. The set of ∗’s will be called the Mess.

1 Mark all neighbors of each defect with a ∗, creating the initial
Mess.

2 Fill in the holes in the loops of the Mess, thus extending it. Now
the complement of the Mess is simply connected, hence (by the
earlier Proposition) consistent.

3 Propagate consistent clock values into the Mess.

Both part 2 and part 3 are nontrivial; the proof that all this will happen
in linear time is also nontrivial, even in the absence of additional faults.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 38 / 49

The combination The program

Rule (Form)
If you participate in a defect then become a ∗.

Rule (Swell)
If you are not a ∗, but cannot be separated from the Mess in the 〈1, 1, 1〉
corner block by a plane parallel to one of the coordinate planes, then
become a ∗.

(This is in the spirit of the Toom Rule.) Below, the circled point can be
separated from the mess in its 〈1, 1, 1〉 corner cube, hence does not
become ∗.

*

*

*

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 39 / 49

The combination The program

Lemma
The Mess never grows beyond an enclosing cube. When it cannot grow any
more, it has no “holes”, in the sense that its complement is simply
connected and hence (since has no defects), consistent.

* * * **
** *

*
*

*
*

* *
=⇒

* * * **
** *

*
*

*
*

* *

* ** *
**
* * * * *

* * *** *******

**

*
*

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 40 / 49

The combination The program

Proof idea. Try to pull a loop gradually together into a point. If it
does not go further, there is a “bottom” point that is so surrounded by
the Mess that the Swell rule would have turned it into a ∗.

* *
*
*

*

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 41 / 49

The combination The program

How to propagate the clocks consistently into a set from its consistent
environment? This is not always possible, but is certainly easy if all
your neighbors have the same value:

Rule (Shrivel)
Suppose that you are a ∗ with no higher neighbors that are ∗s and all
your non-∗ neighbors have the same clock value. Then change to this
common clock value.

0 1 2

2* *

* * 2

** *

0 1 2

2* *

* 2 2

** *

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 42 / 49

The combination The program

Now we will try to bring all cells on the surface (appropriately defined)
of the Mess to a common clock value. It helps that in the consistent
environment the Step values are not static in time: they keep growing
as far as they can. Therefore we only need to adjust upwards.

*
*

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 43 / 49

The combination The program

Rule (Synchronize)
Let x be the point with clock value c. Suppose that

all neighbors of x have Clock ∈ {∗, c, c + 1 mod 3}.
both x and one of its neighbors y are surface neighbors (defined
appropriately) of a common ∗, with y’s clock value being c + 1 mod 3.

Then set Clock(x) := c + 1.

0 1 2

2* *

* 1 2

** *

0 1 2

2* *

* 2 2

** *

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 44 / 49

The combination The theorem

What does all this prove?

Before saying it, let us introduce our conditions.

Definition
For integers L < G and a site v0, let us define the ball

B(x, r) = { u ∈ Z3 : |u− x| 6 r }.

Space-time configuration η is 〈L, G〉-good at point 〈x, t〉 if if at time t:
1 All defects are contained in B(x, L).

2 For u, v ∈ B(x, G) r B(x, L), with |u− v| 6 G + 3L we have
Step(u)− Step(v) 6 G.

Condition 2 says that there are no steep slopes (enough slack) in the
clocks nearby our bunch of defects in B(x, L).

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 45 / 49

The combination The theorem

time

defectsslack

consistency
restored

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 46 / 49

The combination The theorem

Theorem
There are constants c1, c2, d > 0 with the following properties.
Let A be an arbitrary 3-dimensional synchronous cellular automaton.
There is a corresponding continous-time cellular automaton Ã obeying the
rules Wait and Emulate, such that the following holds.
Let site v, time T0 and numbers G > 8L > 0 be given, with

T1 = T0 + c1L + c2G.

Let the stochastic process η be a trajectory of Ã in the set
Γ(v0, G)× [T0, T1], and let it be 〈L, G〉 good in v at time T0. Then with
probability > 1− e−dL, there is a step function over

(Γ(v, G)× [T0, T1]) r (Γ(v, L)× [T0, T1)).

In other words the consistency of the clocks, possibly disturbed inside
B(v0, L) at time T0, will be restored by time T1.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 47 / 49

The combination Proof method: blame sequences

Proof method: blame sequences

(The method borrowed from
[Berman-Simon 88].) Let
t0 > t1 > · · · > tn and consider the
sequence w0, w1, . . . , wn with wi = 〈ui, ti〉
in which ui+1 is a neighbor of ui.

It is a forward blame sequence if ti is
the first update time of ui after ti+1.

It is a backward blame sequence if ti+1
is the last update time of ui+1 before ti

The difference t0 − tn is the time span of
the blame sequence, and n is its length.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 48 / 49

The combination Proof method: blame sequences

Proof method: blame sequences

(The method borrowed from
[Berman-Simon 88].) Let
t0 > t1 > · · · > tn and consider the
sequence w0, w1, . . . , wn with wi = 〈ui, ti〉
in which ui+1 is a neighbor of ui.

It is a forward blame sequence if ti is
the first update time of ui after ti+1.

It is a backward blame sequence if ti+1
is the last update time of ui+1 before ti

The difference t0 − tn is the time span of
the blame sequence, and n is its length.

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 48 / 49

The combination Proof method: blame sequences

Proof method: blame sequences

(The method borrowed from
[Berman-Simon 88].) Let
t0 > t1 > · · · > tn and consider the
sequence w0, w1, . . . , wn with wi = 〈ui, ti〉
in which ui+1 is a neighbor of ui.

It is a forward blame sequence if ti is
the first update time of ui after ti+1.

It is a backward blame sequence if ti+1
is the last update time of ui+1 before ti

The difference t0 − tn is the time span of
the blame sequence, and n is its length.

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 48 / 49

The combination Proof method: blame sequences

Proof method: blame sequences

(The method borrowed from
[Berman-Simon 88].) Let
t0 > t1 > · · · > tn and consider the
sequence w0, w1, . . . , wn with wi = 〈ui, ti〉
in which ui+1 is a neighbor of ui.

It is a forward blame sequence if ti is
the first update time of ui after ti+1.

It is a backward blame sequence if ti+1
is the last update time of ui+1 before ti

The difference t0 − tn is the time span of
the blame sequence, and n is its length.

43 5 6 7 . . .

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 48 / 49

The combination Proof method: blame sequences

Proposition
Let A be a continuous-time probabilistic cellular automaton. There are
constants γ, δ > 0 such that for all n, for all space-time points z, the
probability that a blame sequence of length 6 n and time span > γn starts
at z is less than e−δn.

Matthew Cook, Erik Winfree, Péter Gács (Caltech and Boston University)3D synchronization October 24, 2007 49 / 49

	Asynchrony
	Cellular automata
	Asynchronous updating
	Sensitivity to update order
	Asynchronously simulating a synchronous computation
	The slowdown

	Fault tolerance
	Toom-layering
	The synchronization problem of the 3D model

	The combination
	3-dimensions
	The program
	The theorem
	Proof method: blame sequences

