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One-way model [Briegel - Raussendorf (00)]

One-qubit measurements over a large entangled state is universal for
quantum computation.
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Definition

For a given graph G = (V,K),

|G〉 = Π(a,b)∈KΛZa,b |+〉V

where |+〉V =
N

u∈V
1√
2
(|0〉u + |1〉u).
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Definition (Open graph)

For any graph G = (V,K), and for any I,O ⊆ V ,
(G, I,O) is an open graph .

Definition (Initial state)

For any open graph (G, I,O) with G = (V,K), for any |I|-qubit state |ϕ〉, the
initial state is

∣

∣ΨG,ϕ
〉

=
(

Π(a,b)∈KΛZa,b
)

(

|ϕ〉I ⊗|+〉V\I

)
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One-way quantum computation [Briegel, Raussendorf]

U|Φ>
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|ϕ2>

s2=0

s2=1

s1=0

s1=1

s2=0

s2=1

|ϕ1>

|ϕ3>

|ϕ4>

Definition (Determinism)

A One-way QC is deterministic iff all branches have the same output (up to
a Pauli operator);
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Theorem (Danos, Kashefi 05)

For a given (G, I,O), a deterministic One-way QC can be driven on the
corresponding quantum state if (G, I,O) has a causal flow .

Definition (Causal Flow)

(f ,≺) is a causal flow of (G, I,O), where f : V \O → V \ I, if for any u,
— u ≺ f (u)
— u ∈ N(f (u))
— if v ∈ N(f (u))\ {u} then u ≺ v

Future

u

Past Present

f(u)
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Definition (Open Graph)

An open graph is a triplet (G, I,O), where G = (V,E) is a undirected graph ,
and I,O ⊆ V , are respectively called input and output vertices.

Definition (Causal Flow)

(f ,≺) is a causal flow of (G, I,O), where f : V \O → V \ I, if for any u,
— u ≺ f (u)
— u ∈ N(f (u))
— if v ∈ N(f (u))\ {u} then u ≺ v

Definition (Layers and Depth)

– (f ,≺) induces a partition (V≺
k )k=0..d≺ of the vertices into d≺ + 1 layers ,

where V≺
0 = max(V) and V≺

1 = max(V \V≺
0 ), etc...

– d≺ is the depth of the flow.
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0VV 12
V

3V

V1

V2

V0

depth 2 depth 3

2V V03 1VV 1
V

2
3 V0VV

depth 3 depth 3
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Theorem (De Beaudrap 06)

There exists a O(nm)a algorithm for finding causal flow of a given open graph
(G, I,O), when |I| = |O|.

awhere n (resp. m) is the number of vertices (resp. edges) of G

Open Question (Danos, Kashefi 05 & De Beaudrap 06)

Is there an efficient (poly-time) algorithm for finding a causal flow if |I| 6= |O| ?

Theorem (Mhalla, Perdrix 07)

O(m)-algorithm for finding causal flow of a given open graph (G, I,O),
whatever the numbers of inputs and outputs are.
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Definition (Maximally Delayed)

(f ,≺) is maximally delayed if for any causal flow (f ′,≺′) of the same open
graph,

∀k, | ∪i=0..k V≺
i | ≥ |∪i=0..k V≺′

i |

1
V

2
3 V0VV

2V V03 1VV
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Property

If (f ,≺) is a maximally delayed causal flow of (G, I,O) then
V≺

0 = O

Property

If (f ,≺) is a maximally delayed causal flow of (G, I,O) then
V≺

1 = {u ∈ V \V≺
0 ,∃v ∈ V≺

0 ,N(v)\V≺
0 = {u}}

Property (Inductive Structure)

If (f ,≺) is a maximally delayed causal flow of (G, I,O) then
V≺

k = {u ∈ V \Lk,∃v ∈ Lk,N(v)\Lk = {u}}
where Lk =

S

i=0..k−1 V≺
i
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Greedy backward algorithm
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V≺
0 := O

V0
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V≺
1 := {u ∈ V \V≺

0 s.t. ∃v ∈ V≺
0 ,N(v)\V≺

0 = {u}}

V0
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V≺
1 := {u ∈ V \V≺

0 s.t. ∃v ∈ V≺
0 ,N(v)\V≺

0 = {u}}

V0
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V≺
1 := {u ∈ V \V≺

0 s.t. ∃v ∈ V≺
0 ,N(v)\V≺

0 = {u}}

1 0VV

If V≺
1 ∪V≺

0 = V then ‘YES’, if V≺
1 = /0 then ‘NO’
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V≺
2 := {u ∈ V \L2 s.t. ∃v ∈ L2,N(v)\L2 = {u}}

where L2 = V≺
1 ∪V≺

0

1 0VV
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V≺
2 := {u ∈ V \L2 s.t. ∃v ∈ L2,N(v)\L2 = {u}}

where L2 = V≺
1 ∪V≺

0

1V
0V
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V≺
2 := {u ∈ V \L2 s.t. ∃v ∈ L2,N(v)\L2 = {u}}

where L2 = V≺
1 ∪V≺

0

2 0V1V V
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V≺
3 := {u ∈ V \L3 s.t. ∃v ∈ L3,N(v)\L3 = {u}}

where L3 = V≺
2 ∪V≺

1 ∪V≺
0

2 V
0V1V
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3 := {u ∈ V \L3 s.t. ∃v ∈ L3,N(v)\L3 = {u}}

where L3 = V≺
2 ∪V≺

1 ∪V≺
0

2 V
0V1V
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V
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Greedy backward algorithm

For a given open graph (G, I,O)

L := O;
while L 6= V do

C := /0
for all v ∈ L do

if |N(v)\L| = 1 then C := C∪ (N(v)\L);
endfor
if C = /0 then ’no’ ;
L := L∪C;

endwhile
’yes’
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Correction

The produced flow (f ,≺) is a causal flow of the input open graph (G, I,O).

Completeness

The algorithm produces a flow if the input open graph has a causal flow.

Complexity

O(m) operations (model of adjacency list and adapted data structures)

Theorem (Optimal Flow)

The causal flow produced by the algorithm is optimal : there is no causal flow
for the same open graph which has a smaller depth.

Mhalla, Perdrix Finding Optimal Flows Efficiently



Introduction Causal flow Generalized flow Conclusion

Correction

The produced flow (f ,≺) is a causal flow of the input open graph (G, I,O).

Completeness

The algorithm produces a flow if the input open graph has a causal flow.

Complexity

O(m) operations (model of adjacency list and adapted data structures)

Theorem (Optimal Flow)

The causal flow produced by the algorithm is optimal : there is no causal flow
for the same open graph which has a smaller depth.

Mhalla, Perdrix Finding Optimal Flows Efficiently



Introduction Causal flow Generalized flow Conclusion

Correction

The produced flow (f ,≺) is a causal flow of the input open graph (G, I,O).

Completeness

The algorithm produces a flow if the input open graph has a causal flow.

Complexity

O(m) operations (model of adjacency list and adapted data structures)

Theorem (Optimal Flow)

The causal flow produced by the algorithm is optimal : there is no causal flow
for the same open graph which has a smaller depth.

Mhalla, Perdrix Finding Optimal Flows Efficiently



Introduction Causal flow Generalized flow Conclusion

Correction

The produced flow (f ,≺) is a causal flow of the input open graph (G, I,O).

Completeness

The algorithm produces a flow if the input open graph has a causal flow.

Complexity

O(m) operations (model of adjacency list and adapted data structures)

Theorem (Optimal Flow)

The causal flow produced by the algorithm is optimal : there is no causal flow
for the same open graph which has a smaller depth.

Mhalla, Perdrix Finding Optimal Flows Efficiently



Introduction Causal flow Generalized flow Conclusion

1 Context and Definitions

2 Causal Flow Algorithm

3 Generalized Flow

4 Conclusion

Mhalla, Perdrix Finding Optimal Flows Efficiently



Introduction Causal flow Generalized flow Conclusion

Definition (Generalized Flow)

(g,≺) is a generalized flow of (G, I,O), where g : V \O →℘(V \ I)\ { /0}, if
for any u,

— if v ∈ g(u), then u ≺ v
— u ∈ Odd(g(u)) = {v ∈ V, |N(v)∩g(u)| = 1[2]}
— if v ∈ Odd(g(u))\ {u} then u ≺ v

u

Past Present Future

g(u)
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Theorem (Perdrix 06)

Generalized flow is sufficient for determinism.

Theorem (Browne, Kashefi, Mhalla, Perdrix 07)

Generalized flow is necessary for uniform, strong and stepwise determinism.
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g(a  )

b

1V

3

1a

a2

a3 V0

b1

b2

b
3

0

∀i = 1 . . .3,g(ai) = {b0,bi}
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Speed up

There exists an open graph of size 3n having an optimal causal flow of depth
n + 1 but a generalized flow of depth 2.

c1

b2

b1

a3

a1

a2

c3

c2

b3

4

0VV1

V

V

2

3

V

c3

c2

c1

b3

b2

b1

a3

a1

a2

V 0VV12

...
...

f (ai) = bi and f (bi) = ci g(ai) = {bk}k≤i and g(bi) = {ci}
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Open Question [Browne, Kashefi, Mhalla, Perdrix 06]

Is there an efficient (poly-time) algorithm for finding a generalized flow ?

Generalized Flow Algorithm [Mhalla, Perdrix 07]

O(n4) algorithm for finding generalized flow of a given open graph (G, I,O).
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Property

If (g,≺) is a maximally delayed generalized flow then V≺
0 = O.

Property

If (g,≺) is a maximally delayed generalized flow then
V≺

1 = {u ∈ V \V≺
0 ,∃X ⊆ V≺

0 ,Odd(X)\V≺
0 = {u}}

Property (Inductive Structure)

If (g,≺) is a maximally delayed generalized flow then
V≺

k = {u ∈ V \Lk,∃X ⊆ Lk,Odd(X)\Lk = {u}}
where Lk =

S

i=0..k−1 V≺
i
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Greedy backward algorithm

For a given open graph (G, I,O)

L := O;
while L 6= V do

C := /0
for all X ⊆ L do

if |Odd(X)\L|= 1 then
C := C∪ (Odd(X)\L);

endfor
if C = /0 then ’no’ ;
L := L∪C;

endwhile
’yes’
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Greedy backward algorithm

For a given open graph (G, I,O)

L := O; L := O;
while L 6= V do while L 6= V do

C := /0 C := /0
for all X ⊆ L do for all u ∈ V \L do

if |Odd(X)\L|= 1 then Solve Odd(X)\L = {u}
C := C∪ (Odd(X)\L); if there is a solution then

endfor C := C∪{u};
if C = /0 then ’no’ ; endfor
L := L∪C; if C = /0 then ’no’ ;

endwhile L := L∪C;
’yes’ endwhile

’yes’
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Solve Odd(X)\L = {u}

X

L

Definition (Cut-matrix)

Γ(V\L)×L is the |V \L|× |L| sub adjacency matrix:

Γ =

(

. .
Γ(V\L)×L .

)

Linear System

Odd(X)\L = {u} ⇐⇒ Γ(V\L)×L.I
L
X = I

V\L
{u} in F2

where I
A
X is |A|-vector such that ∀u ∈ A,IA

X(u) =

{

1 u ∈ X

0 u /∈ X
.
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Theorem (Optimal Flow)

The generalized flow produced by the algorithm is optimal : there is no
generalized flow for the same open graph which has a smaller depth.
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Deterministic One-way QC as the existence of a causal flow or a
generalized flow on a graph

Polytime algorithm [De Beaudrap 07] for finding causal flow if |I| = |O|
(I: input vertices, O: output vertices)

Faster polytime algorithm for finding causal flow (even if |I| 6= |O|)
Polytime algorithm for finding generalized flow.

These last two algorithms produce optimal flows, minimizing the depth
of the One-way QC.

Automatic parallelisation of one-way QCs (or quantum circuits).
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