Acyclicity of Preferences, Nash Equilibria, and Subgame Perfect Equilibria: a Formal and Constructive Equivalence

Stéphane Le Roux
stephane.le.roux@ens-lyon.fr
perso.ens-lyon.fr/stephane.le.roux/
LIP-École normale supérieure de Lyon, CNRS, INRIA, UCBL

27 June 2007, MC2 Seminar

Game Theory in Short

Developments I rely on

- 1950: Nash equilibrium for strategic games.
- 1953: Kuhn's Nash equilibrium existence for sequential games.
- 1965: Selten's subgame perfect equilibria.
- 2006: using Coq, Vestergaard proved part of Kuhn's result (binary trees instead of trees).

This Informal Presentation

1. Traditional sequential game theory.
2. Abstraction of sequential games.

- Generalisation of Kuhn's result.
- Fully proved using Coq.

3. Applications.
4. Another proof.

Sequential Game

- Finite rooted tree.
- Internal nodes labelled with agents.
- Leaves labelled with payoff functions (from agents to real numbers).

Play in a Sequential Game

*'s are arbitrary payoff functions.
Start

Last move

Strategy Profile and Induced Payoff Function

Strategy profile

Induced payoff function

Preference and Convertibility

Preference of agent a

Conversion ability of agent b

$\xrightarrow[b]{\text { Conv }}$

Nash Equilibrium

Given a strategy profile,

- Agent happiness: Conversion ability \cap Preference $=\emptyset$.
- Nash equilibrium: Every agent is happy.

A strategy profile not Nash equilibrium

A Nash equilibrium

Subgame Perfect Equilibrium (S.P.E.)

Nash equilibrium each of whose child is an S.P.E.

A Nash equilibrium not S.P.E.

A Subgame perfect equilibrium

Input: game below

First step
Last step: ouput

Theorem (Kuhn)
Every sequential game has a Nash equilibrium.
Proof.
"Backward induction" yields S.P.E.

Towards Abstraction

- Why only real-valued payoff functions?
- Why payoff functions?

Abstract Sequential Game

- For leaves: abstract objects named outcomes instead of concrete payoff functions.
- For preferences: arbitrary binary relations instead of the usual total order over the reals.

Traditional
Abstract

Similar notions of strategy profile, induced outcome, convertibility, Nash equilibrium with respect to given preferences.

The preference for agent a is defined by $z \xrightarrow{\text { Pref }} x \times$ only.
Game input

First step

Last step

Not Nash equilibrium

$\xrightarrow[\rightarrow]{C \cap}$

Key Lemma

Lemma

If s_{i} is a Nash equilibrium, and if agent a is happy with the following strategy profile, then it is a Nash equilibrium.

Total Ordering of Preferences Guarantees S.P.E.

Lemma
If preferences are total orders, then all games have S.P.E.
Proof.
By structural induction on strategy profiles and the key lemma (akin to Kuhn's proof).

Acyclicity of Preferences Guarantees S.P.E.

Lemma

If preferences are acyclic, then all games have S.P.E.
Proof.

- acyclicity \Rightarrow linear extensions (total order bigger preferences).
- There is S.P.E. with respect to the linear extensions (previous slide).
- It is also S.P.E. with respect to the original preferences, since smaller preferences imply more equilibria.

Nash Equilibria Requires Acyclicity of Preferences

Lemma

If there exists a cycle in the preferences, then there exists a game without Nash equilibrium.

Proof.
Assume a cycle $x_{0} \xrightarrow{\text { Pref }} x_{1} \ldots x_{n} \xrightarrow{\text { Pref }} x_{0}$.
The following game has no Nash equilibrium.

Triple Equivalence

Theorem
The following three propositions are equivalent:

- The preferences are acyclic.
- Every game has a Nash equilibrium.
- Every game has a subgame perfect equilibrium.

Multi-criteria sequential games

- 1950's: Simon and Blackwell's vector payoff.
- For each agent, payoffs are vectors of fixed length.

$$
\begin{gathered}
{\left[3,4, \prime^{a}\right]^{a}[1,2,3]} \\
\frac{\forall i \leq n, x_{i} \leq y_{i} \quad \exists k \leq n, x_{k}<y_{k}}{\left(x_{0}, \ldots, x_{n}\right)<\text { vect }\left(y_{0}, \ldots, y_{n}\right)}
\end{gathered}
$$

Corollary
Every multi-criteria sequential game has a Nash equilibrium/subgame perfect equilibrium.

Non-Deterministic Payoffs

Payoffs: real number \rightsquigarrow set of real numbers.

$$
\begin{gathered}
\{0,5\}^{a} \quad\{1,2,3\} \\
\frac{\forall x \in X, y \in Y, x \leq y \quad \exists x \in X, y \in Y, x<y}{X<_{\text {set }} Y}
\end{gathered}
$$

Corollary

Every sequential game with non-deterministic payoffs has a Nash equilibrium/subgame perfect equilibrium.

Benevolent Selfishness

Traditional sequential games, but different preferences.
Let P_{1} and P_{2} be two payoff functions.

$$
\frac{P_{1}(a)<P_{2}(a)}{P_{1}<{ }_{a} P_{2}} \quad \frac{\forall b, P_{1}(b) \leq P_{2}(b) \quad \exists b^{\prime}, P_{1}\left(b^{\prime}\right)<P_{2}\left(b^{\prime}\right)}{P_{1}<a P_{2}}
$$

Corollary
Every sequential game with selfish-benevolent agents has a Nash equilibrium/subgame perfect equilibrium.

Second Proof

Lemma

If preferences are partial orders, then all games have Nash equilibria.

Proof.

- By induction on the number of nodes in the strategy profile.
- Apply induction hypothesis to the leftmost child.
- Case split on the root agent a being "satisfiable".
- Yes case, invoke the key lemma.
- No case, track agent a down the induced path.
- Cut-and-paste, apply induction hypothesis in between.
- Agents other than a are happy.
- Agent a is happy too, by transitivity.

Acyclicity of Preferences Guarantees Nash Equilibrium

Lemma

If preferences are acyclic, then all games have a Nash equilibrium.
Proof.

- acyclicity \Rightarrow partial orders by transitive closure (bigger preferences).
- There is a Nash equilibrium with respect to the transitive closures (previous slide).
- It is also a Nash equilibriu with respect to the original preferences, since smaller preferences imply more equilibria.

Double Equivalence

Theorem
The following two propositions are equivalent:

- The preferences are acyclic.
- Every game has a Nash equilibrium.

Nothing about "every game has a subgame perfect equilibrium".

Summary

- Abstraction of sequential tree games.
- Generalisation of Kuhn's result, by structural induction.
- Converse property.
- Fully proved using Coq.
- Applications to various natural preferences.
- Second proof, by induction on the size.

