# Polynomial approximation and floating-point numbers

MC2 workgroup

Sylvain Chevillard Advisors: Nicolas Brisebarre and Jean-Michel Muller joint work with Serge Torres

> Laboratoire de l'informatique du parallélisme Arenaire team

> > January, 10. 2007



#### Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete case

Conclusion

► Arenaire team : the main goal is the practical computation of mathematical functions.

- ► Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
  - ightharpoonup we want to compute a mathematical operator  $\Theta$ ;
  - we may use an approximation  $\widehat{\Theta}$  of  $\Theta$ ;
  - we implement it with inexact arithmetic, controlling the round-off error.

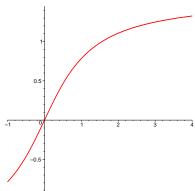
- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
  - ightharpoonup we want to compute a mathematical operator  $\Theta$ ;
  - we may use an approximation  $\widehat{\Theta}$  of  $\Theta$ ;
  - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
  - hardware implementation of mathematical functions;
  - software implementation targeting IEEE correct rounding in double precision format;
  - certified software implementation with arbitrary high precision;
  - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)



- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
  - we want to compute a mathematical operator  $\Theta$ ;
  - we may use an approximation  $\widehat{\Theta}$  of  $\Theta$ ;
  - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
  - hardware implementation of mathematical functions;
  - software implementation targeting IEEE correct rounding in double precision format;
  - certified software implementation with arbitrary high precision;
  - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)



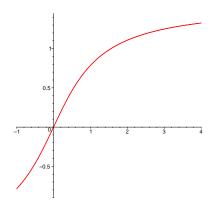
# Why an approximation?



Graph of  $f: x \mapsto \arctan(x)$ 

Let f be a real valued function :  $f : \mathbb{R} \to \mathbb{R}$ .

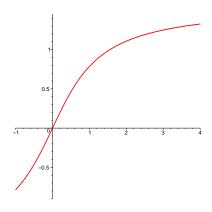
# Why an approximation?



$$\arctan(1) = \pi/4 = 0.78539...$$

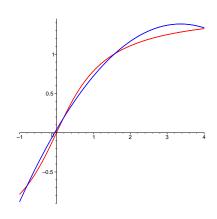
- Let f be a real valued function : f :  $\mathbb{R} \to \mathbb{R}$ .
- ► The function may take irrational values : f(x) is thus not exactly representable.

# Why an approximation?



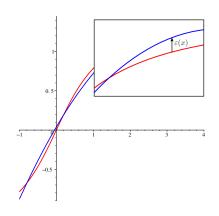
$$\arctan(1) = 0.785 + \varepsilon, |\varepsilon| < 4e-4$$

- ▶ Let f be a real valued function : f :  $\mathbb{R} \to \mathbb{R}$ .
- ► The function may take irrational values : f(x) is thus not exactly representable.
- We can only compute approximated values and hopefully bound the approximation error.



(n : degree of the polynomial)

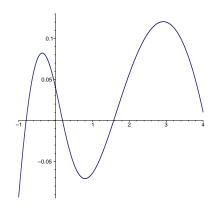
Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:



(n : degree of the polynomial)

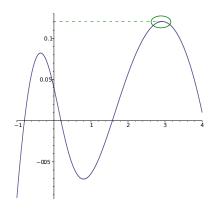
- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:
  - ▶ an absolute error  $\varepsilon(x) = f(x) p(x)$ ;
  - ► a relative error

$$\delta(x) = \varepsilon(x)/f(x).$$



(n : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :
  - ▶ an absolute error  $\varepsilon(x) = f(x) p(x)$ ;
  - a relative error  $\delta(x) = \varepsilon(x)/f(x)$ .
- ► The worst approximation is reached when  $|\varepsilon(x)|$  has its maximal value.



(n : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:
  - ▶ an absolute error  $\varepsilon(x) = f(x) p(x)$ ;
  - a relative error  $\delta(x) = \varepsilon(x)/f(x)$ .
- ► The worst approximation is reached when  $|\varepsilon(x)|$  has its maximal value.

$$\|\varepsilon(x)\|_{\infty} = \max_{x \in [a, b]} \{|\varepsilon(x)|\}$$

► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...
  - ... usually inefficient in term of number of operations.
  - $\hookrightarrow \exp(x)$  on [-1;2] with an absolute error  $\le 0.01$ :
    - 7 terms of the series / a degree 4 polynomial is sufficient.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- ► Truncated power series are useful but...
  - ... usually inefficient in term of number of operations.
  - $\hookrightarrow \exp(x)$  on [-1;2] with an absolute error  $\le 0.01$ :
    - 7 terms of the series / a degree 4 polynomial is sufficient.
- ► Natural question : what degree should have a polynomial to give a suitable approximation?



## Reminder of approximation theory

Polynomial approximation theory has been deeply studied since the XIXth century.

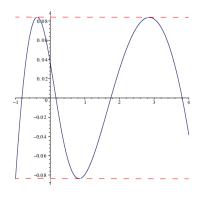
## Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ▶ Th. (Weierstrass) : the set  $\mathbb{R}[X]$  is dense in  $\mathcal{C}([a, b])$ . Bernstein gave an effective polynomial sequence.

### Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ▶ Th. (Weierstrass) : the set  $\mathbb{R}[X]$  is dense in  $\mathcal{C}([a, b])$ . Bernstein gave an effective polynomial sequence.
- ▶ Th. (Chebyshev): given n and f there is a unique polynomial p of degree  $\leq n$  minimizing  $||f p||_{\infty}$ .

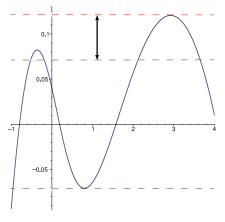
# Reminder of approximation theory (2)



► Th. (Chebyshev) : characterization of the optimal error.

n+2 oscillations

# Reminder of approximation theory (2)



- Th. (Chebyshev): characterization of the optimal error.
- ➤ Th. (La Vallée Poussin): links the quality of an approximation with its error function.

# Reminder of approximation theory (2)



- Th. (Chebyshev): characterization of the optimal error.
- Th. (La Vallée Poussin): links the quality of an approximation with its error function.
- Remez' algorithm : given n, computes the optimal polynomial of degree ≤ n (called minimax).

- ▶ In general a real number is not finitely representable.
  - $\hookrightarrow$  one has to choose a subset S and approximate the real line by the elements of S.

- ▶ A usual choice : floating-point numbers (norm IEEE-754).

- ▶ A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix  $\beta$  and precision t is a number of the form

$$m \cdot \beta^e$$

#### where:

- ▶  $m \in \mathbb{Z}$  is the mantissa and is written with exactly t digits;
- $e \in \mathbb{Z}$  is the exponent. It is usually bounded in a range  $[e_{\min}, e_{\max}]$ .

- A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix  $\beta$  and precision t is a number of the form

$$m \cdot \beta^e$$

#### where:

- ▶  $m \in \mathbb{Z}$  is the mantissa and is written with exactly t digits;
- ▶  $e \in \mathbb{Z}$  is the exponent. It is usually bounded in a range  $[e_{\min}, e_{\max}]$ .
- ▶ IEEE double format :  $\beta = 2$ , t = 53, and  $e \in [-1074, 971]$ .



- ▶ In general a real number is not finitely representable.  $\hookrightarrow$  one has to choose a subset S and approximate the real line by the elements of S.
- ▶ A usual choice : floating-point numbers (norm IEEE-754).
- ▶ A floating-point number with radix  $\beta$  and precision t is a number of the form

$$m \cdot \beta^e$$

#### where:

- $ightharpoonup m \in \mathbb{Z}$  is the mantissa and is written with exactly t digits;
- $ightharpoonup e \in \mathbb{Z}$  is the exponent. It is usually bounded in a range  $[e_{\min}, e_{\max}]$ .
- ▶ IEEE double format :  $\beta = 2$ , t = 53, and  $e \in [-1074, 971]$ .
- ▶ From now, we will assume that  $[e_{\min}, e_{\max}] = [-\infty, +\infty]$ .

► Each coefficient of a polynomial is represented by a floating-point number.

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of f :
  - compute the real minimax p\*;
  - ▶ replace each coefficient  $a_i$  of  $p^*$  by the nearest floating-point number  $\widehat{a_i}$ ;
  - use  $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$ .

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
  - compute the real minimax p\*;
  - replace each coefficient  $a_i$  of  $p^*$  by the nearest floating-point number  $\widehat{a_i}$ ;
  - use  $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$ .
- $ightharpoonup \widehat{p}$  may be far from being optimal.

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
  - compute the real minimax p\*;
  - replace each coefficient  $a_i$  of  $p^*$  by the nearest floating-point number  $\widehat{a_i}$ ;
  - use  $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$ .
- $\triangleright \hat{p}$  may be far from being optimal.
- Example with  $f(x) = \log_2(1 + 2^{-x})$ , n = 6, on [0; 1] with single precision coefficients (24 bits).

| Minimax              | Naive method        | Optimal                |
|----------------------|---------------------|------------------------|
| $8.3 \cdot 10^{-10}$ | $119\cdot 10^{-10}$ | $10.06 \cdot 10^{-10}$ |



#### Previous works

▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.

#### Previous works

- ▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- ▶ D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).

#### Previous works

- ▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- ▶ D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).
- ▶ N. Brisebarre, J.-M. Muller and A. Tisserand have proposed an approach by linear programming (the implementation relies on P. Feautrier's tool PIP).

- Idea of the method :
  - let f be a continuous function on [a, b];
  - we try to minimize  $||f p||_{\infty}$ ,  $p \in \mathcal{P}$ . ( $\mathcal{P}$  may be  $\mathbb{R}_n[X]$  or the subset of polynomials with floating-point coefficients, for instance)
  - Let  $\overline{\varepsilon}$  denote the optimal error obtained for  $\overline{p} \in \mathcal{P}$ .

- ▶ Idea of the method :
  - ▶ let f be a continuous function on [a, b];
  - we try to minimize  $||f p||_{\infty}$ ,  $p \in \mathcal{P}$ . ( $\mathcal{P}$  may be  $\mathbb{R}_n[X]$  or the subset of polynomials with floating-point coefficients, for instance)
  - Let  $\overline{\varepsilon}$  denote the optimal error obtained for  $\overline{p} \in \mathcal{P}$ .
- ▶ Let  $K \in \mathbb{R}_+$ . The set  $\mathcal{C}_K$  of every  $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$  such that

$$\forall x \in [a, b], \quad f(x) - K \leq \sum_{i=0}^{n} a_i x^i \leq f(x) + K$$

is a convex subset of  $\mathbb{R}^{n+1}$ .

- ▶ Idea of the method :
  - let f be a continuous function on [a, b];
  - we try to minimize  $||f p||_{\infty}$ ,  $p \in \mathcal{P}$ . ( $\mathcal{P}$  may be  $\mathbb{R}_n[X]$  or the subset of polynomials with floating-point coefficients, for instance)
  - Let  $\overline{\varepsilon}$  denote the optimal error obtained for  $\overline{p} \in \mathcal{P}$ .
- Let  $K \in \mathbb{R}_+$ .

The set  $\mathcal{C}_K$  of every  $(a_0, \cdots, a_n) \in \mathbb{R}^{n+1}$  such that

$$\forall x \in [a, b], \quad f(x) - K \le \sum_{i=0}^{n} a_i x^i \le f(x) + K$$

is a convex subset of  $\mathbb{R}^{n+1}$ .

• if  $K < \overline{\varepsilon}$ , it is empty;

- ▶ Idea of the method :
  - let f be a continuous function on [a, b];
  - we try to minimize  $\|f p\|_{\infty}$ ,  $p \in \mathcal{P}$ . ( $\mathcal{P}$  may be  $\mathbb{R}_n[X]$  or the subset of polynomials with floating-point coefficients, for instance)
  - Let  $\overline{\varepsilon}$  denote the optimal error obtained for  $\overline{p} \in \mathcal{P}$ .
- Let  $K \in \mathbb{R}_+$ .

The set  $\mathcal{C}_K$  of every  $(a_0, \cdots, a_n) \in \mathbb{R}^{n+1}$  such that

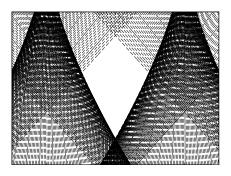
$$\forall x \in [a, b], \quad f(x) - K \leq \sum_{i=0}^{n} a_i x^i \leq f(x) + K$$

is a convex subset of  $\mathbb{R}^{n+1}$ .

- if  $K < \overline{\varepsilon}$ , it is empty;
- if  $K = \overline{\varepsilon}$ , it corresponds to the solution set.

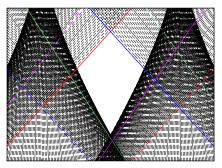
$$C_K$$
:  $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$ 

$$C_K$$
:  $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$ 



$$f = sin$$
  
[a, b] = [-0.5, 0.5]  
 $K = 0.01$ 

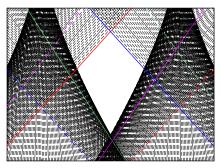
$$C_K$$
:  $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$ 



$$f = sin$$
  
[a, b] = [-0.5, 0.5]  
 $K = 0.01$ 

If we discretize and cleverly choose some points  $x_0, \dots, x_r$ , we obtain a polytope containing  $\mathcal{C}_K$ , hopefully not much bigger.

$$C_K$$
:  $\forall x \in [a, b], f(x) - K \le \sum_{i=0}^n a_i x^i \le f(x) + K.$ 



$$f = sin$$
  
 $[a, b] = [-0.5, 0.5]$   
 $K = 0.01$   
 $x_0, x_1, x_2 \text{ and } x_3$ 

If we discretize and cleverly choose some points  $x_0, \dots, x_r$ , we obtain a polytope containing  $\mathcal{C}_K$ , hopefully not much bigger.

▶ The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- ▶ But...

- ➤ The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- ▶ But...
  - its time is exponential;

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- But...
  - its time is exponential;
  - it is very sensitive to the choice of the points;

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- ▶ But...
  - its time is exponential;
  - it is very sensitive to the choice of the points;
  - lacktriangleright requires to know a pretty tight over-estimation of  $\overline{arepsilon}$

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- But...
  - its time is exponential;
  - it is very sensitive to the choice of the points;
  - lacktriangleright requires to know a pretty tight over-estimation of  $\overline{arepsilon}$
- ▶ To find such an estimation, we developed a new method :
  - fast (it is proven to run in polynomial time);
  - heuristic (there is no proof that the result is always tight);
  - with good practical results.



#### Formalization of the problem

▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree  $\leq n$  with floating-point coefficients minimizing  $\|p - f\|_{\infty}$ .

#### Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree  $\leq n$  with floating-point coefficients minimizing  $\|p f\|_{\infty}$ .
- Remark : the existence is still ensured. The unicity may be lost.

#### Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree  $\leq n$  with floating-point coefficients minimizing  $\|p f\|_{\infty}$ .
- Remark : the existence is still ensured. The unicity may be lost.
- ▶ A simplification : we may try to guess the value of each  $e_i$  (assuming that  $\widehat{a_i}$  and  $a_i$  have the same order of magnitude)  $\hookrightarrow$  if  $e_i$  is correctly guessed, we are reduced to find  $m_i \in \mathbb{Z}$  such that

$$\left\| f(x) - \sum_{i=0}^{n} \frac{\mathbf{m}_{i}}{\beta^{e_{i}}} x^{i} \right\|_{\infty}$$

is minimal.

Our goal : find p of the form  $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$  with  $m_i \in \mathbb{Z}$  which well approximates f.

Our goal : find 
$$p$$
 of the form  $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$  with

- $m_i \in \mathbb{Z}$  which well approximates f.
  - ▶ We use the idea of interpolation :

Our goal : find 
$$p$$
 of the form  $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$  with

- $m_i \in \mathbb{Z}$  which well approximates f.
  - ▶ We use the idea of interpolation :
    - we choose n+1 points  $x_0, \dots, x_n$  in [a, b];

Our goal : find 
$$p$$
 of the form  $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$  with

 $m_i \in \mathbb{Z}$  which well approximates f.

- ▶ We use the idea of interpolation :
  - we choose n+1 points  $x_0, \dots, x_n$  in [a, b];
  - we search  $m_0, \dots, m_n$  such that for all i

$$p(x_i) = \frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}} x_i + \cdots + \frac{m_n}{\beta^{e_n}} x_i^n \simeq f(x_i) .$$

Our goal : find p of the form  $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$  with  $m_i \in \mathbb{Z}$  which well approximates f.

- ▶ We use the idea of interpolation :
  - we choose n+1 points  $x_0, \dots, x_n$  in [a, b];
  - we search  $m_0, \dots, m_n$  such that for all i

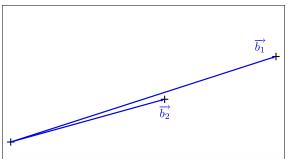
$$p(x_i) = \frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}} x_i + \cdots + \frac{m_n}{\beta^{e_n}} x_i^n \simeq f(x_i)$$

Rewritten with vectors:

$$\underbrace{ m_0 \begin{pmatrix} 1/\beta^{e_0} \\ 1/\beta^{e_0} \\ \vdots \\ 1/\beta^{e_0} \end{pmatrix} + \cdots + \underbrace{ m_n \begin{pmatrix} x_0^n/\beta^{e_n} \\ x_1^n/\beta^{e_n} \\ \vdots \\ x_n^n/\beta^{e_n} \end{pmatrix}}_{\Gamma \text{ of the form } \overrightarrow{\mathbb{Z}p} + \overrightarrow{\mathbb{Z}p} + \cdots + \overrightarrow{\mathbb{Z}p}} \simeq \underbrace{ \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}}_{\overrightarrow{t} \in \mathbb{R}^{n+1}}$$

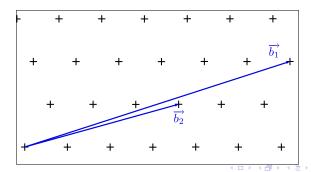
 $\Gamma$  of the form  $\mathbb{Z}\overrightarrow{b_0} + \mathbb{Z}\overrightarrow{b_1} + \cdots + \mathbb{Z}\overrightarrow{b_n}$ 

Let  $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$  be a basis of a real vector space.



Let  $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$  be a basis of a real vector space. The set of all integer combinations of the  $\overrightarrow{b_i}$  is called a lattice :

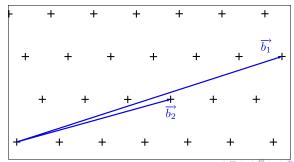
$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n} \quad .$$



Let  $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$  be a basis of a real vector space. The set of all integer combinations of the  $\overrightarrow{b_i}$  is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

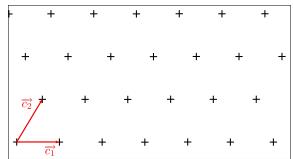
In general, a lattice has infinitely many bases.



Let  $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$  be a basis of a real vector space. The set of all integer combinations of the  $\overrightarrow{b_i}$  is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

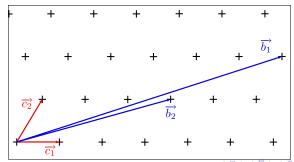
In general, a lattice has infinitely many bases.



Let  $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$  be a basis of a real vector space. The set of all integer combinations of the  $\overrightarrow{b_i}$  is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

In general, a lattice has infinitely many bases.



▶ Shortest vector problem (SVP).

- Shortest vector problem (SVP).
  - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor  $\sqrt{2}$ .

- Shortest vector problem (SVP).
  - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor  $\sqrt{2}$ .
  - ▶ Goldreich and Goldwasser : approximating SVP within a factor  $\sqrt{n/O(\log n)}$  is not NP-hard.

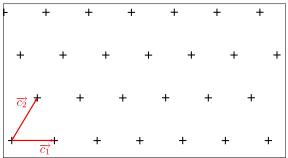
- Shortest vector problem (SVP).
  - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor  $\sqrt{2}$ .
  - ▶ Goldreich and Goldwasser : approximating SVP within a factor  $\sqrt{n/O(\log n)}$  is not NP-hard.
  - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.

- Shortest vector problem (SVP).
  - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor  $\sqrt{2}$ .
  - ▶ Goldreich and Goldwasser : approximating SVP within a factor  $\sqrt{n/O(\log n)}$  is not NP-hard.
  - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
  - ▶ Given a basis of a lattice L, find a basis  $(b_1, \dots, b_n)$  of L for which  $||b_1|| \cdot ||b_2|| \cdots ||b_n||$  is minimal.

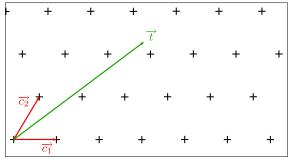
- Shortest vector problem (SVP).
  - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor  $\sqrt{2}$ .
  - ▶ Goldreich and Goldwasser : approximating SVP within a factor  $\sqrt{n/O(\log n)}$  is not NP-hard.
  - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
  - ▶ Given a basis of a lattice L, find a basis  $(b_1, \dots, b_n)$  of L for which  $||b_1|| \cdot ||b_2|| \cdots ||b_n||$  is minimal.
  - ▶ It is NP-hard.



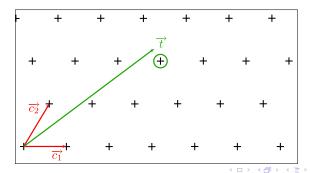
► Closest vector problem (CVP).



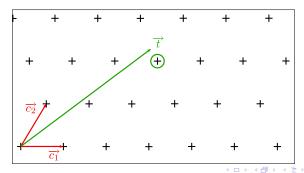
► Closest vector problem (CVP).



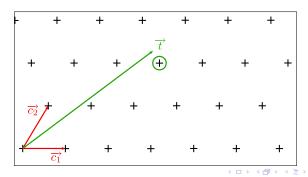
► Closest vector problem (CVP).



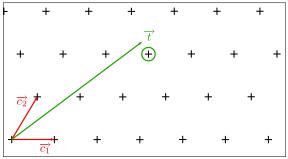
- Closest vector problem (CVP).
  - ▶ Emde Boas (1981) : CVP is NP-hard.



- Closest vector problem (CVP).
  - ▶ Emde Boas (1981) : CVP is NP-hard.
  - ▶ Goldreich and al. : CVP is not easier than SVP.



- Closest vector problem (CVP).
  - ▶ Emde Boas (1981) : CVP is NP-hard.
  - ▶ Goldreich and al. : CVP is not easier than SVP.
  - ▶ Goldreich and Goldwasser : approximating CVP within a factor  $\sqrt{n/O(\log n)}$  is not NP-hard.



Polynomial approximation and floating-point numbers

Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
  - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- Gives a basis of a lattice composed of pretty short vectors.

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
  - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- ▶ Gives a basis of a lattice composed of pretty short vectors.  $\hookrightarrow ||b_1|| \le 2^{(n-1)/2} \lambda_1(L)$  where  $\lambda_1(L)$  denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most  $O(n^6 \ln^3 B)$  operations with  $B = \max ||b_i||^2$ .

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
  - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- ▶ Gives a basis of a lattice composed of pretty short vectors.  $\hookrightarrow ||b_1|| \leq 2^{(n-1)/2} \lambda_1(L)$  where  $\lambda_1(L)$  denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most  $O(n^6 \ln^3 B)$  operations with  $B = \max ||b_i||^2$ .
- Very good practical results compared to the theoretical bounds.

▶ Gram-Schmidt orthogonalization : to any basis  $(b_1, \dots, b_n)$  of a vector space is associated an orthogonal basis  $(b_1^*, \dots, b_n^*)$  such that  $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$  for all j.

▶ Gram-Schmidt orthogonalization : to any basis  $(b_1, \dots, b_n)$  of a vector space is associated an orthogonal basis  $(b_1^*, \dots, b_n^*)$  such that  $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$  for all j. Remark : one may choose it so that  $\|b_1\| = \|b_1^*\|$ .

- ▶ Gram-Schmidt orthogonalization : to any basis  $(b_1, \dots, b_n)$  of a vector space is associated an orthogonal basis  $(b_1^*, \dots, b_n^*)$  such that  $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$  for all j. Remark : one may choose it so that  $\|b_1\| = \|b_1^*\|$ .
- ▶ Prop. : if  $(b_1, \dots, b_n)$  is the basis of a lattice L,  $\lambda_1(L) \ge \min \|b_j^*\|$ .

- ▶ Gram-Schmidt orthogonalization : to any basis  $(b_1, \dots, b_n)$  of a vector space is associated an orthogonal basis  $(b_1^*, \dots, b_n^*)$  such that  $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$  for all j. Remark : one may choose it so that  $\|b_1\| = \|b_1^*\|$ .
- ▶ Prop. : if  $(b_1, \dots, b_n)$  is the basis of a lattice L,  $\lambda_1(L) \ge \min \|b_i^*\|$ .
- ▶ Idea of LLL algorithm : control the Gram-Schmidt basis to make  $b_1^* = b_1$  minimal among the vectors of the orthogonal basis.

► Example coming from a collaboration with John Harrison from Intel.

- Example coming from a collaboration with John Harrison from Intel.
- ▶ He asked for a polynomial minimizing the absolute error
  - ▶ approximating  $f: x \mapsto \frac{2^x 1}{x}$
  - on [-1/16, 1/16]
  - with a degree 9 polynomial.

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
  - ▶ approximating  $f: x \mapsto \frac{2^x 1}{x}$
  - on [-1/16, 1/16]
  - with a degree 9 polynomial.
  - ▶ a degree 0 coefficient of the form :  $a_{0h} + a_{0l}$  where  $a_{0h}$  and  $a_{0l}$  are double extended numbers
  - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
  - ▶ approximating  $f: x \mapsto \frac{2^x 1}{x}$
  - on [-1/16, 1/16]
  - with a degree 9 polynomial.
  - ▶ a degree 0 coefficient of the form :  $a_{0h} + a_{0l}$  where  $a_{0h}$  and  $a_{0l}$  are double extended numbers
  - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
- ▶ He actually wants to have approximately 74 correct bits. (i.e.  $\varepsilon \simeq 5.30\mathrm{e}{-23}$ )



| Target   | Degree 8 minimax | Degree 9 minimax |
|----------|------------------|------------------|
| 5.30e-23 | 40.1e-23         | $0.07897e{-23}$  |

 $\hookrightarrow$  degree 9 is a good choice.

| Target   | Degree 8 minimax | Degree 9 minimax |
|----------|------------------|------------------|
| 5.30e-23 | 40.1e-23         | $0.07897e{-23}$  |

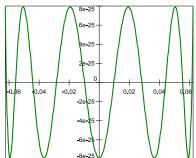
 $\hookrightarrow$  degree 9 is a good choice.

▶ How to choose the points?

| Target   | Degree 8 minimax | Degree 9 minimax |
|----------|------------------|------------------|
| 5.30e-23 | 40.1e-23         | $0.07897e{-23}$  |

 $\hookrightarrow$  degree 9 is a good choice.

How to choose the points?

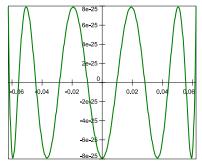


• We need n+1 points.

| Target   | Degree 8 minimax | Degree 9 minimax |
|----------|------------------|------------------|
| 5.30e-23 | 40.1e-23         | $0.07897e{-23}$  |

 $\hookrightarrow$  degree 9 is a good choice.

How to choose the points?

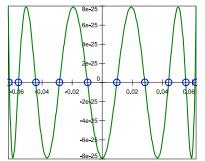


- We need n+1 points.
- They should correspond to the interpolation intuition.

| Target   | Degree 8 minimax | Degree 9 minimax |
|----------|------------------|------------------|
| 5.30e-23 | 40.1e-23         | $0.07897e{-23}$  |

 $\hookrightarrow$  degree 9 is a good choice.

How to choose the points?



- ▶ We need n+1 points.
- They should correspond to the interpolation intuition.
- ► Chebyshev's theorem gives *n* + 1 such points.



# First try : results

| Target   | Degree 9 minimax | our polynomial $p_1$ | naive method |
|----------|------------------|----------------------|--------------|
| 5.30e-23 | 0.07897e-23      | $5.32e{-23}$         | 40.35e- 23   |

# First try : results

| Target   | Degree 9 minimax | our polynomial $p_1$ | naive method |
|----------|------------------|----------------------|--------------|
| 5.30e-23 | 0.07897e-23      | $5.32e{-23}$         | 40.35e- 23   |

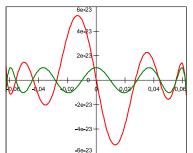
 $\hookrightarrow$  pretty good but...

▶ Our polynomial does not respect the interpolation constraint.

## First try: results

| Target   | Degree 9 minimax | our polynomial $p_1$ | naive method |
|----------|------------------|----------------------|--------------|
| 5.30e-23 | 0.07897e-23      | $5.32e{-23}$         | 40.35e- 23   |

▶ Our polynomial does not respect the interpolation constraint.



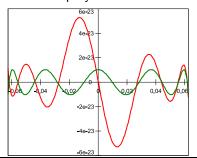
• degree 1 coefficient of  $p_1$ :

$$a_1 = \circ(\log(2)^2/2)$$

# First try: results

| Target   | Degree 9 minimax | our polynomial $p_1$ | naive method |
|----------|------------------|----------------------|--------------|
| 5.30e-23 | 0.07897e-23      | $5.32e{-23}$         | 40.35e- 23   |

▶ Our polynomial does not respect the interpolation constraint.



• degree 1 coefficient of  $p_1$ :

$$a_1 = \circ (\log(2)^2/2)$$

→ the slope at 0 is very constrained.

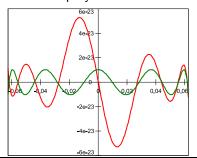


## First try: results

| Target   | Degree 9 minimax | our polynomial $p_1$ | naive method |
|----------|------------------|----------------------|--------------|
| 5.30e-23 | 0.07897e-23      | $5.32e{-23}$         | 40.35e- 23   |

 $\hookrightarrow$  pretty good but...

▶ Our polynomial does not respect the interpolation constraint.



• degree 1 coefficient of  $p_1$ :

$$a_1 = \circ (\log(2)^2/2)$$

- $\rightarrow$  the slope at 0 is very constrained.
- we have to take it into account.



▶ The polytope approach confirms that  $a_1$  has a constrained value.

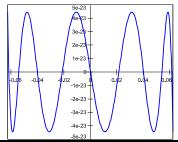
- ▶ The polytope approach confirms that  $a_1$  has a constrained value.
- ▶ We compute the best real polynomial of the form  $a_0 + a_2 X^2 + \cdots + a_9 X^9$  approximating  $f a_1 X$ .

- ▶ The polytope approach confirms that  $a_1$  has a constrained value.
- We compute the best real polynomial of the form  $a_0 + a_2 X^2 + \cdots + a_9 X^9$  approximating  $f a_1 X$ .

| Degree 9 minimax | Constrained optimum | $p_1$    |
|------------------|---------------------|----------|
| 0.07897e - 23    | 4.44e-23            | 5.32e-23 |

- ► The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form  $a_0 + a_2 X^2 + \cdots + a_9 X^9$  approximating  $f a_1 X$ .

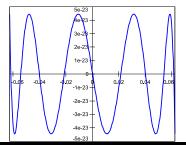
| Degree 9 minimax | Constrained optimum | $p_1$    |
|------------------|---------------------|----------|
| $0.07897e{-23}$  | $4.44e{-23}$        | 5.32e-23 |



▶ We have only 9 points, but now only 9 unknowns : it is OK.

- ► The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form  $a_0 + a_2 X^2 + \cdots + a_9 X^9$  approximating  $f a_1 X$ .

| Degree 9 minimax | Constrained optimum | $p_1$    |
|------------------|---------------------|----------|
| $0.07897e{-23}$  | $4.44e{-23}$        | 5.32e-23 |



- We have only 9 points, but now only 9 unknowns: it is OK.
- ► This time, our polynomial p<sub>2</sub> gives an error of 4.44e-23 and is practically optimal.



### Conclusion

▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.

### Conclusion

- ▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.

### Conclusion

- ▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
- ▶ The algorithm is flexible : each coefficient may use a different floating-point format, one may search polynomial with additional constraints.

▶ We need a good algorithm to find constraints minimax.

- We need a good algorithm to find constraints minimax.
  - $\hookrightarrow$  Remez' algorithm is not sufficient.

- We need a good algorithm to find constraints minimax.
- Use similar methods to find other approximants :

- We need a good algorithm to find constraints minimax.
  - $\hookrightarrow$  Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
  - rational fractions;

- We need a good algorithm to find constraints minimax.
  - $\hookrightarrow$  Remez' algorithm is not sufficient.
- ▶ Use similar methods to find other approximants :
  - rational fractions;
  - trigonometric polynomials.