Polynomial approximation and floating-point numbers

MC2 workgroup

Sylvain Chevillard Advisors: Nicolas Brisebarre and Jean-Michel Muller joint work with Serge Torres

> Laboratoire de l'informatique du parallélisme Arenaire team

> > January, 10. 2007

Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete case

Conclusion

► Arenaire team : the main goal is the practical computation of mathematical functions.

- ► Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - ightharpoonup we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - ightharpoonup we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

Why an approximation?

Graph of $f: x \mapsto \arctan(x)$

Let f be a real valued function : $f : \mathbb{R} \to \mathbb{R}$.

Why an approximation?

$$\arctan(1) = \pi/4 = 0.78539...$$

- Let f be a real valued function : f : $\mathbb{R} \to \mathbb{R}$.
- ► The function may take irrational values : f(x) is thus not exactly representable.

Why an approximation?

$$\arctan(1) = 0.785 + \varepsilon, |\varepsilon| < 4e-4$$

- ▶ Let f be a real valued function : f : $\mathbb{R} \to \mathbb{R}$.
- ► The function may take irrational values : f(x) is thus not exactly representable.
- We can only compute approximated values and hopefully bound the approximation error.

(n : degree of the polynomial)

Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:

(n : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:
 - ▶ an absolute error $\varepsilon(x) = f(x) p(x)$;
 - ► a relative error

$$\delta(x) = \varepsilon(x)/f(x).$$

(n : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :
 - ▶ an absolute error $\varepsilon(x) = f(x) p(x)$;
 - a relative error $\delta(x) = \varepsilon(x)/f(x)$.
- ► The worst approximation is reached when $|\varepsilon(x)|$ has its maximal value.

(n : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to:
 - ▶ an absolute error $\varepsilon(x) = f(x) p(x)$;
 - a relative error $\delta(x) = \varepsilon(x)/f(x)$.
- ► The worst approximation is reached when $|\varepsilon(x)|$ has its maximal value.

$$\|\varepsilon(x)\|_{\infty} = \max_{x \in [a, b]} \{|\varepsilon(x)|\}$$

► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...
 - ... usually inefficient in term of number of operations.
 - $\hookrightarrow \exp(x)$ on [-1;2] with an absolute error ≤ 0.01 :
 - 7 terms of the series / a degree 4 polynomial is sufficient.

- ► The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- ► Truncated power series are useful but...
 - ... usually inefficient in term of number of operations.
 - $\hookrightarrow \exp(x)$ on [-1;2] with an absolute error ≤ 0.01 :
 - 7 terms of the series / a degree 4 polynomial is sufficient.
- ► Natural question : what degree should have a polynomial to give a suitable approximation?

Reminder of approximation theory

Polynomial approximation theory has been deeply studied since the XIXth century.

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ▶ Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $\mathcal{C}([a, b])$. Bernstein gave an effective polynomial sequence.

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ▶ Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $\mathcal{C}([a, b])$. Bernstein gave an effective polynomial sequence.
- ▶ Th. (Chebyshev): given n and f there is a unique polynomial p of degree $\leq n$ minimizing $||f p||_{\infty}$.

Reminder of approximation theory (2)

► Th. (Chebyshev) : characterization of the optimal error.

n+2 oscillations

Reminder of approximation theory (2)

- Th. (Chebyshev): characterization of the optimal error.
- ➤ Th. (La Vallée Poussin): links the quality of an approximation with its error function.

Reminder of approximation theory (2)

- Th. (Chebyshev): characterization of the optimal error.
- Th. (La Vallée Poussin): links the quality of an approximation with its error function.
- Remez' algorithm : given n, computes the optimal polynomial of degree ≤ n (called minimax).

- ▶ In general a real number is not finitely representable.
 - \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.

- ▶ A usual choice : floating-point numbers (norm IEEE-754).

- ▶ A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix β and precision t is a number of the form

$$m \cdot \beta^e$$

where:

- ▶ $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.

- A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix β and precision t is a number of the form

$$m \cdot \beta^e$$

where:

- ▶ $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- ▶ $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.
- ▶ IEEE double format : $\beta = 2$, t = 53, and $e \in [-1074, 971]$.

- ▶ In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.
- ▶ A usual choice : floating-point numbers (norm IEEE-754).
- ▶ A floating-point number with radix β and precision t is a number of the form

$$m \cdot \beta^e$$

where:

- $ightharpoonup m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- $ightharpoonup e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.
- ▶ IEEE double format : $\beta = 2$, t = 53, and $e \in [-1074, 971]$.
- ▶ From now, we will assume that $[e_{\min}, e_{\max}] = [-\infty, +\infty]$.

► Each coefficient of a polynomial is represented by a floating-point number.

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of f :
 - compute the real minimax p*;
 - ▶ replace each coefficient a_i of p^* by the nearest floating-point number $\widehat{a_i}$;
 - use $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$.

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
 - compute the real minimax p*;
 - replace each coefficient a_i of p^* by the nearest floating-point number $\widehat{a_i}$;
 - use $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$.
- $ightharpoonup \widehat{p}$ may be far from being optimal.

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
 - compute the real minimax p*;
 - replace each coefficient a_i of p^* by the nearest floating-point number $\widehat{a_i}$;
 - use $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$.
- $\triangleright \hat{p}$ may be far from being optimal.
- Example with $f(x) = \log_2(1 + 2^{-x})$, n = 6, on [0; 1] with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119\cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

Previous works

▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.

Previous works

- ▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- ▶ D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).

Previous works

- ▶ W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- ▶ D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).
- ▶ N. Brisebarre, J.-M. Muller and A. Tisserand have proposed an approach by linear programming (the implementation relies on P. Feautrier's tool PIP).

- Idea of the method :
 - let f be a continuous function on [a, b];
 - we try to minimize $||f p||_{\infty}$, $p \in \mathcal{P}$. (\mathcal{P} may be $\mathbb{R}_n[X]$ or the subset of polynomials with floating-point coefficients, for instance)
 - Let $\overline{\varepsilon}$ denote the optimal error obtained for $\overline{p} \in \mathcal{P}$.

- ▶ Idea of the method :
 - ▶ let f be a continuous function on [a, b];
 - we try to minimize $||f p||_{\infty}$, $p \in \mathcal{P}$. (\mathcal{P} may be $\mathbb{R}_n[X]$ or the subset of polynomials with floating-point coefficients, for instance)
 - Let $\overline{\varepsilon}$ denote the optimal error obtained for $\overline{p} \in \mathcal{P}$.
- ▶ Let $K \in \mathbb{R}_+$. The set \mathcal{C}_K of every $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ such that

$$\forall x \in [a, b], \quad f(x) - K \leq \sum_{i=0}^{n} a_i x^i \leq f(x) + K$$

is a convex subset of \mathbb{R}^{n+1} .

- ▶ Idea of the method :
 - let f be a continuous function on [a, b];
 - we try to minimize $||f p||_{\infty}$, $p \in \mathcal{P}$. (\mathcal{P} may be $\mathbb{R}_n[X]$ or the subset of polynomials with floating-point coefficients, for instance)
 - Let $\overline{\varepsilon}$ denote the optimal error obtained for $\overline{p} \in \mathcal{P}$.
- Let $K \in \mathbb{R}_+$.

The set \mathcal{C}_K of every $(a_0, \cdots, a_n) \in \mathbb{R}^{n+1}$ such that

$$\forall x \in [a, b], \quad f(x) - K \le \sum_{i=0}^{n} a_i x^i \le f(x) + K$$

is a convex subset of \mathbb{R}^{n+1} .

• if $K < \overline{\varepsilon}$, it is empty;

- ▶ Idea of the method :
 - let f be a continuous function on [a, b];
 - we try to minimize $\|f p\|_{\infty}$, $p \in \mathcal{P}$. (\mathcal{P} may be $\mathbb{R}_n[X]$ or the subset of polynomials with floating-point coefficients, for instance)
 - Let $\overline{\varepsilon}$ denote the optimal error obtained for $\overline{p} \in \mathcal{P}$.
- Let $K \in \mathbb{R}_+$.

The set \mathcal{C}_K of every $(a_0, \cdots, a_n) \in \mathbb{R}^{n+1}$ such that

$$\forall x \in [a, b], \quad f(x) - K \leq \sum_{i=0}^{n} a_i x^i \leq f(x) + K$$

is a convex subset of \mathbb{R}^{n+1} .

- if $K < \overline{\varepsilon}$, it is empty;
- if $K = \overline{\varepsilon}$, it corresponds to the solution set.

$$C_K$$
: $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$

$$C_K$$
: $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$

$$f = sin$$

[a, b] = [-0.5, 0.5]
 $K = 0.01$

$$C_K$$
: $\forall x \in [a, b], f(x) - K \leq \sum_{i=0}^n a_i x^i \leq f(x) + K.$

$$f = sin$$

[a, b] = [-0.5, 0.5]
 $K = 0.01$

If we discretize and cleverly choose some points x_0, \dots, x_r , we obtain a polytope containing \mathcal{C}_K , hopefully not much bigger.

$$C_K$$
: $\forall x \in [a, b], f(x) - K \le \sum_{i=0}^n a_i x^i \le f(x) + K.$

$$f = sin$$

 $[a, b] = [-0.5, 0.5]$
 $K = 0.01$
 $x_0, x_1, x_2 \text{ and } x_3$

If we discretize and cleverly choose some points x_0, \dots, x_r , we obtain a polytope containing \mathcal{C}_K , hopefully not much bigger.

▶ The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- ▶ But...

- ➤ The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- ▶ But...
 - its time is exponential;

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- But...
 - its time is exponential;
 - it is very sensitive to the choice of the points;

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- ▶ But...
 - its time is exponential;
 - it is very sensitive to the choice of the points;
 - lacktriangleright requires to know a pretty tight over-estimation of $\overline{arepsilon}$

- ► The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, . . .).
- It is certified.
- But...
 - its time is exponential;
 - it is very sensitive to the choice of the points;
 - lacktriangleright requires to know a pretty tight over-estimation of $\overline{arepsilon}$
- ▶ To find such an estimation, we developed a new method :
 - fast (it is proven to run in polynomial time);
 - heuristic (there is no proof that the result is always tight);
 - with good practical results.

Formalization of the problem

▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p - f\|_{\infty}$.

Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p f\|_{\infty}$.
- Remark : the existence is still ensured. The unicity may be lost.

Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p f\|_{\infty}$.
- Remark : the existence is still ensured. The unicity may be lost.
- ▶ A simplification : we may try to guess the value of each e_i (assuming that $\widehat{a_i}$ and a_i have the same order of magnitude) \hookrightarrow if e_i is correctly guessed, we are reduced to find $m_i \in \mathbb{Z}$ such that

$$\left\| f(x) - \sum_{i=0}^{n} \frac{\mathbf{m}_{i}}{\beta^{e_{i}}} x^{i} \right\|_{\infty}$$

is minimal.

Our goal : find p of the form $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$ with $m_i \in \mathbb{Z}$ which well approximates f.

Our goal : find
$$p$$
 of the form $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$ with

- $m_i \in \mathbb{Z}$ which well approximates f.
 - ▶ We use the idea of interpolation :

Our goal : find
$$p$$
 of the form $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$ with

- $m_i \in \mathbb{Z}$ which well approximates f.
 - ▶ We use the idea of interpolation :
 - we choose n+1 points x_0, \dots, x_n in [a, b];

Our goal : find
$$p$$
 of the form $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$ with

 $m_i \in \mathbb{Z}$ which well approximates f.

- ▶ We use the idea of interpolation :
 - we choose n+1 points x_0, \dots, x_n in [a, b];
 - we search m_0, \dots, m_n such that for all i

$$p(x_i) = \frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}} x_i + \cdots + \frac{m_n}{\beta^{e_n}} x_i^n \simeq f(x_i) .$$

Our goal : find p of the form $\frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}}X + \cdots + \frac{m_n}{\beta^{e_n}}X^n$ with $m_i \in \mathbb{Z}$ which well approximates f.

- ▶ We use the idea of interpolation :
 - we choose n+1 points x_0, \dots, x_n in [a, b];
 - we search m_0, \dots, m_n such that for all i

$$p(x_i) = \frac{m_0}{\beta^{e_0}} + \frac{m_1}{\beta^{e_1}} x_i + \cdots + \frac{m_n}{\beta^{e_n}} x_i^n \simeq f(x_i)$$

Rewritten with vectors:

$$\underbrace{ m_0 \begin{pmatrix} 1/\beta^{e_0} \\ 1/\beta^{e_0} \\ \vdots \\ 1/\beta^{e_0} \end{pmatrix} + \cdots + \underbrace{ m_n \begin{pmatrix} x_0^n/\beta^{e_n} \\ x_1^n/\beta^{e_n} \\ \vdots \\ x_n^n/\beta^{e_n} \end{pmatrix}}_{\Gamma \text{ of the form } \overrightarrow{\mathbb{Z}p} + \overrightarrow{\mathbb{Z}p} + \cdots + \overrightarrow{\mathbb{Z}p}} \simeq \underbrace{ \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}}_{\overrightarrow{t} \in \mathbb{R}^{n+1}}$$

 Γ of the form $\mathbb{Z}\overrightarrow{b_0} + \mathbb{Z}\overrightarrow{b_1} + \cdots + \mathbb{Z}\overrightarrow{b_n}$

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space.

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n} \quad .$$

Let $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

In general, a lattice has infinitely many bases.

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

In general, a lattice has infinitely many bases.

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \cdots + \mathbb{Z}\overrightarrow{b_n}$$
.

In general, a lattice has infinitely many bases.

▶ Shortest vector problem (SVP).

- Shortest vector problem (SVP).
 - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.

- Shortest vector problem (SVP).
 - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - ▶ Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n/O(\log n)}$ is not NP-hard.

- Shortest vector problem (SVP).
 - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - ▶ Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n/O(\log n)}$ is not NP-hard.
 - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.

- Shortest vector problem (SVP).
 - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - ▶ Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n/O(\log n)}$ is not NP-hard.
 - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
 - ▶ Given a basis of a lattice L, find a basis (b_1, \dots, b_n) of L for which $||b_1|| \cdot ||b_2|| \cdots ||b_n||$ is minimal.

- Shortest vector problem (SVP).
 - ▶ Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - ▶ Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n/O(\log n)}$ is not NP-hard.
 - ▶ There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
 - ▶ Given a basis of a lattice L, find a basis (b_1, \dots, b_n) of L for which $||b_1|| \cdot ||b_2|| \cdots ||b_n||$ is minimal.
 - ▶ It is NP-hard.

► Closest vector problem (CVP).

► Closest vector problem (CVP).

► Closest vector problem (CVP).

- Closest vector problem (CVP).
 - ▶ Emde Boas (1981) : CVP is NP-hard.

- Closest vector problem (CVP).
 - ▶ Emde Boas (1981) : CVP is NP-hard.
 - ▶ Goldreich and al. : CVP is not easier than SVP.

- Closest vector problem (CVP).
 - ▶ Emde Boas (1981) : CVP is NP-hard.
 - ▶ Goldreich and al. : CVP is not easier than SVP.
 - ▶ Goldreich and Goldwasser : approximating CVP within a factor $\sqrt{n/O(\log n)}$ is not NP-hard.

Polynomial approximation and floating-point numbers

Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
 - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- Gives a basis of a lattice composed of pretty short vectors.

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
 - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- ▶ Gives a basis of a lattice composed of pretty short vectors. $\hookrightarrow ||b_1|| \le 2^{(n-1)/2} \lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most $O(n^6 \ln^3 B)$ operations with $B = \max ||b_i||^2$.

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
 - Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.
- ▶ Gives a basis of a lattice composed of pretty short vectors. $\hookrightarrow ||b_1|| \leq 2^{(n-1)/2} \lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most $O(n^6 \ln^3 B)$ operations with $B = \max ||b_i||^2$.
- Very good practical results compared to the theoretical bounds.

▶ Gram-Schmidt orthogonalization : to any basis (b_1, \dots, b_n) of a vector space is associated an orthogonal basis (b_1^*, \dots, b_n^*) such that $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$ for all j.

▶ Gram-Schmidt orthogonalization : to any basis (b_1, \dots, b_n) of a vector space is associated an orthogonal basis (b_1^*, \dots, b_n^*) such that $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$ for all j. Remark : one may choose it so that $\|b_1\| = \|b_1^*\|$.

- ▶ Gram-Schmidt orthogonalization : to any basis (b_1, \dots, b_n) of a vector space is associated an orthogonal basis (b_1^*, \dots, b_n^*) such that $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$ for all j. Remark : one may choose it so that $\|b_1\| = \|b_1^*\|$.
- ▶ Prop. : if (b_1, \dots, b_n) is the basis of a lattice L, $\lambda_1(L) \ge \min \|b_j^*\|$.

- ▶ Gram-Schmidt orthogonalization : to any basis (b_1, \dots, b_n) of a vector space is associated an orthogonal basis (b_1^*, \dots, b_n^*) such that $\operatorname{Span}(b_1, \dots, b_j) = \operatorname{Span}(b_1^*, \dots, b_j^*)$ for all j. Remark : one may choose it so that $\|b_1\| = \|b_1^*\|$.
- ▶ Prop. : if (b_1, \dots, b_n) is the basis of a lattice L, $\lambda_1(L) \ge \min \|b_i^*\|$.
- ▶ Idea of LLL algorithm : control the Gram-Schmidt basis to make $b_1^* = b_1$ minimal among the vectors of the orthogonal basis.

► Example coming from a collaboration with John Harrison from Intel.

- Example coming from a collaboration with John Harrison from Intel.
- ▶ He asked for a polynomial minimizing the absolute error
 - ▶ approximating $f: x \mapsto \frac{2^x 1}{x}$
 - on [-1/16, 1/16]
 - with a degree 9 polynomial.

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - ▶ approximating $f: x \mapsto \frac{2^x 1}{x}$
 - on [-1/16, 1/16]
 - with a degree 9 polynomial.
 - ▶ a degree 0 coefficient of the form : $a_{0h} + a_{0l}$ where a_{0h} and a_{0l} are double extended numbers
 - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - ▶ approximating $f: x \mapsto \frac{2^x 1}{x}$
 - on [-1/16, 1/16]
 - with a degree 9 polynomial.
 - ▶ a degree 0 coefficient of the form : $a_{0h} + a_{0l}$ where a_{0h} and a_{0l} are double extended numbers
 - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
- ▶ He actually wants to have approximately 74 correct bits. (i.e. $\varepsilon \simeq 5.30\mathrm{e}{-23}$)

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	$0.07897e{-23}$

 \hookrightarrow degree 9 is a good choice.

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	$0.07897e{-23}$

 \hookrightarrow degree 9 is a good choice.

▶ How to choose the points?

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	$0.07897e{-23}$

 \hookrightarrow degree 9 is a good choice.

How to choose the points?

• We need n+1 points.

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	$0.07897e{-23}$

 \hookrightarrow degree 9 is a good choice.

How to choose the points?

- We need n+1 points.
- They should correspond to the interpolation intuition.

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	$0.07897e{-23}$

 \hookrightarrow degree 9 is a good choice.

How to choose the points?

- ▶ We need n+1 points.
- They should correspond to the interpolation intuition.
- ► Chebyshev's theorem gives *n* + 1 such points.

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	$5.32e{-23}$	40.35e- 23

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	$5.32e{-23}$	40.35e- 23

 \hookrightarrow pretty good but...

▶ Our polynomial does not respect the interpolation constraint.

First try: results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	$5.32e{-23}$	40.35e- 23

▶ Our polynomial does not respect the interpolation constraint.

• degree 1 coefficient of p_1 :

$$a_1 = \circ(\log(2)^2/2)$$

First try: results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	$5.32e{-23}$	40.35e- 23

▶ Our polynomial does not respect the interpolation constraint.

• degree 1 coefficient of p_1 :

$$a_1 = \circ (\log(2)^2/2)$$

→ the slope at 0 is very constrained.

First try: results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	$5.32e{-23}$	40.35e- 23

 \hookrightarrow pretty good but...

▶ Our polynomial does not respect the interpolation constraint.

• degree 1 coefficient of p_1 :

$$a_1 = \circ (\log(2)^2/2)$$

- \rightarrow the slope at 0 is very constrained.
- we have to take it into account.

▶ The polytope approach confirms that a_1 has a constrained value.

- ▶ The polytope approach confirms that a_1 has a constrained value.
- ▶ We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

- ▶ The polytope approach confirms that a_1 has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

Degree 9 minimax	Constrained optimum	p_1
0.07897e - 23	4.44e-23	5.32e-23

- ► The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

Degree 9 minimax	Constrained optimum	p_1
$0.07897e{-23}$	$4.44e{-23}$	5.32e-23

▶ We have only 9 points, but now only 9 unknowns : it is OK.

- ► The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

Degree 9 minimax	Constrained optimum	p_1
$0.07897e{-23}$	$4.44e{-23}$	5.32e-23

- We have only 9 points, but now only 9 unknowns: it is OK.
- ► This time, our polynomial p₂ gives an error of 4.44e-23 and is practically optimal.

Conclusion

▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.

Conclusion

- ▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.

Conclusion

- ▶ We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
- ▶ The algorithm is flexible : each coefficient may use a different floating-point format, one may search polynomial with additional constraints.

▶ We need a good algorithm to find constraints minimax.

- We need a good algorithm to find constraints minimax.
 - \hookrightarrow Remez' algorithm is not sufficient.

- We need a good algorithm to find constraints minimax.
- Use similar methods to find other approximants :

- We need a good algorithm to find constraints minimax.
 - \hookrightarrow Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
 - rational fractions;

- We need a good algorithm to find constraints minimax.
 - \hookrightarrow Remez' algorithm is not sufficient.
- ▶ Use similar methods to find other approximants :
 - rational fractions;
 - trigonometric polynomials.