Polynomial approximation and floating-point numbers
 MC2 workgroup

Sylvain Chevillard
Advisors: Nicolas Brisebarre and Jean-Michel Muller joint work with Serge Torres

Laboratoire de l'informatique du parallélisme
Arenaire team
January, 10. 2007

Contents

Scope of my researches
Approximation theory
Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete case

Conclusion

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
- we want to compute a mathematical operator Θ;
- we may use an approximation $\widehat{\Theta}$ of Θ;
- we implement it with inexact arithmetic, controlling the round-off error.

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
- we want to compute a mathematical operator Θ;
- we may use an approximation $\widehat{\Theta}$ of Θ;
- we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
- hardware implementation of mathematical functions;
- software implementation targeting IEEE correct rounding in double precision format ;
- certified software implementation with arbitrary high precision;
- certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
- we want to compute a mathematical operator Θ;
- we may use an approximation $\widehat{\Theta}$ of Θ;
- we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
- hardware implementation of mathematical functions;
- software implementation targeting IEEE correct rounding in double precision format;
- certified software implementation with arbitrary high precision ;
- certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

Why an approximation?

- Let f be a real valued function : $f: \mathbb{R} \rightarrow \mathbb{R}$.

Graph of $f: x \mapsto \arctan (x)$

Why an approximation?

- Let f be a real valued function : $f: \mathbb{R} \rightarrow \mathbb{R}$.
- The function may take irrational values: $f(x)$ is thus not exactly representable.
$\arctan (1)=\pi / 4=0.78539 \ldots$

Why an approximation?

$\arctan (1)=0.785+\varepsilon,|\varepsilon|<4 \mathrm{e}-4$

- Let f be a real valued function : $f: \mathbb{R} \rightarrow \mathbb{R}$.
- The function may take irrational values: $f(x)$ is thus not exactly representable.
- We can only compute approximated values and hopefully bound the approximation error.

About the error of approximation

- Consider a closed interval $[a, b]$. Replacing f by a polynomial p leads at each point x to :
(n : degree of the polynomial)

About the error of approximation

- Consider a closed interval $[a, b]$. Replacing f by a polynomial p leads at each point x to :
- an absolute error

$$
\varepsilon(x)=f(x)-p(x) ;
$$

- a relative error $\delta(x)=\varepsilon(x) / f(x)$.
(n : degree of the polynomial)

About the error of approximation

- Consider a closed interval $[a, b]$. Replacing f by a polynomial p leads at each point x to :
- an absolute error

$$
\varepsilon(x)=f(x)-p(x) ;
$$

- a relative error

$$
\delta(x)=\varepsilon(x) / f(x)
$$

- The worst approximation is reached when $|\varepsilon(x)|$ has its maximal value.
(n : degree of the polynomial)

About the error of approximation

(n : degree of the polynomial)

- Consider a closed interval $[a, b]$. Replacing f by a polynomial p leads at each point x to :
- an absolute error

$$
\varepsilon(x)=f(x)-p(x) ;
$$

- a relative error

$$
\delta(x)=\varepsilon(x) / f(x) .
$$

- The worst approximation is reached when $|\varepsilon(x)|$ has its maximal value.

$$
\|\varepsilon(x)\|_{\infty}=\max _{x \in[a, b]}\{|\varepsilon(x)|\}
$$

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Remark : a truncated power series is a polynomial \hookrightarrow especially nice to evaluate : it requires only additions and multiplications (fast on modern processors).

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Remark : a truncated power series is a polynomial \hookrightarrow especially nice to evaluate : it requires only additions and multiplications (fast on modern processors).
- Truncated power series are useful but...

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Remark : a truncated power series is a polynomial \hookrightarrow especially nice to evaluate : it requires only additions and multiplications (fast on modern processors).
- Truncated power series are useful but...
... usually inefficient in term of number of operations. $\hookrightarrow \exp (x)$ on $[-1 ; 2$] with an absolute error ≤ 0.01 :

7 terms of the series / a degree 4 polynomial is sufficient.

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance : a power series and a formally computed bound on the error.
- Remark : a truncated power series is a polynomial \hookrightarrow especially nice to evaluate : it requires only additions and multiplications (fast on modern processors).
- Truncated power series are useful but...
... usually inefficient in term of number of operations. $\hookrightarrow \exp (x)$ on $[-1 ; 2$] with an absolute error ≤ 0.01 :

7 terms of the series / a degree 4 polynomial is sufficient.

- Natural question : what degree should have a polynomial to give a suitable approximation?

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $\mathcal{C}([a, b])$. Bernstein gave an effective polynomial sequence.

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $\mathcal{C}([a, b])$. Bernstein gave an effective polynomial sequence.
- Th. (Chebyshev) : given n and f there is a unique polynomial p of degree $\leq n$ minimizing $\|f-p\|_{\infty}$.

Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.
$n+2$ oscillations

Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.

Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.
- Remez' algorithm : given n, computes the optimal polynomial of degree $\leq n$ (called minimax).

Representing real numbers in computers

- In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.

Representing real numbers in computers

- In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (norm IEEE-754).

Representing real numbers in computers

- In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix β and precision t is a number of the form

$$
m \cdot \beta^{e}
$$

where :

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits ;
- $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $\left[e_{\text {min }}, e_{\text {max }}\right]$.

Representing real numbers in computers

- In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix β and precision t is a number of the form

$$
m \cdot \beta^{e}
$$

where:

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits ;
- $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $\left[e_{\min }, e_{\text {max }}\right]$.
- IEEE double format: $\beta=2, t=53$, and $e \in \llbracket-1074,971 \rrbracket$.

Representing real numbers in computers

- In general a real number is not finitely representable. \hookrightarrow one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (norm IEEE-754).
- A floating-point number with radix β and precision t is a number of the form

$$
m \cdot \beta^{e}
$$

where:

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits ;
- $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $\left[e_{\text {min }}, e_{\text {max }}\right]$.
- IEEE double format: $\beta=2, t=53$, and $e \in \llbracket-1074,971 \rrbracket$.
- From now, we will assume that $\left[e_{\min }, e_{\max }\right]=[-\infty,+\infty]$.

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f :
- compute the real minimax p^{*};
- replace each coefficient a_{i} of p^{*} by the nearest floating-point number \widehat{a}_{i};
- use $\widehat{p}=\widehat{a_{0}}+\widehat{a_{1}} X+\cdots+\widehat{a_{n}} X^{n}$.

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f :
- compute the real minimax p^{*};
- replace each coefficient a_{i} of p^{*} by the nearest floating-point number $\widehat{a_{i}}$;
- use $\widehat{p}=\widehat{a_{0}}+\widehat{a_{1}} X+\cdots+\widehat{a_{n}} X^{n}$.
- \widehat{p} may be far from being optimal.

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f :
- compute the real minimax p^{*};
- replace each coefficient a_{i} of p^{*} by the nearest floating-point number \widehat{a}_{i};
- use $\widehat{p}=\widehat{a_{0}}+\widehat{a_{1}} X+\cdots+\widehat{a_{n}} X^{n}$.
- \widehat{p} may be far from being optimal.
- Example with $f(x)=\log _{2}\left(1+2^{-x}\right)$, $n=6$, on [0; 1] with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119 \cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.

Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically $t<10, n<20$).

Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically $t<10, n<20$).
- N. Brisebarre, J.-M. Muller and A. Tisserand have proposed an approach by linear programming (the implementation relies on P. Feautrier's tool PIP).

Polytope approach (Brisebarre, Muller, Tisserand)

- Idea of the method:
- let f be a continuous function on $[a, b]$;
- we try to minimize $\|f-p\|_{\infty}, p \in \mathcal{P}$. (\mathcal{P} may be $\mathbb{R}_{n}[X]$ or the subset of polynomials with floating-point coefficients, for instance)
- Let $\bar{\varepsilon}$ denote the optimal error obtained for $\bar{p} \in \mathcal{P}$.

Polytope approach (Brisebarre, Muller, Tisserand)

- Idea of the method:
- let f be a continuous function on $[a, b]$;
- we try to minimize $\|f-p\|_{\infty}, p \in \mathcal{P}$.
(\mathcal{P} may be $\mathbb{R}_{n}[X]$ or the subset of polynomials with
floating-point coefficients, for instance)
- Let $\bar{\varepsilon}$ denote the optimal error obtained for $\bar{p} \in \mathcal{P}$.
- Let $K \in \mathbb{R}_{+}$.

The set \mathcal{C}_{K} of every $\left(a_{0}, \cdots, a_{n}\right) \in \mathbb{R}^{n+1}$ such that

$$
\forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K
$$

is a convex subset of \mathbb{R}^{n+1}.

Polytope approach (Brisebarre, Muller, Tisserand)

- Idea of the method:
- let f be a continuous function on $[a, b]$;
- we try to minimize $\|f-p\|_{\infty}, p \in \mathcal{P}$.
(\mathcal{P} may be $\mathbb{R}_{n}[X]$ or the subset of polynomials with
floating-point coefficients, for instance)
- Let $\bar{\varepsilon}$ denote the optimal error obtained for $\bar{p} \in \mathcal{P}$.
- Let $K \in \mathbb{R}_{+}$.

The set \mathcal{C}_{K} of every $\left(a_{0}, \cdots, a_{n}\right) \in \mathbb{R}^{n+1}$ such that

$$
\forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K
$$

is a convex subset of \mathbb{R}^{n+1}.

- if $K<\bar{\varepsilon}$, it is empty;

Polytope approach (Brisebarre, Muller, Tisserand)

- Idea of the method:
- let f be a continuous function on $[a, b]$;
- we try to minimize $\|f-p\|_{\infty}, p \in \mathcal{P}$.
(\mathcal{P} may be $\mathbb{R}_{n}[X]$ or the subset of polynomials with
floating-point coefficients, for instance)
- Let $\bar{\varepsilon}$ denote the optimal error obtained for $\bar{p} \in \mathcal{P}$.
- Let $K \in \mathbb{R}_{+}$.

The set \mathcal{C}_{K} of every $\left(a_{0}, \cdots, a_{n}\right) \in \mathbb{R}^{n+1}$ such that

$$
\forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K
$$

is a convex subset of \mathbb{R}^{n+1}.

- if $K<\bar{\varepsilon}$, it is empty;
- if $K=\bar{\varepsilon}$, it corresponds to the solution set.

Polytope approach (2)

$\mathcal{C}_{K}: \quad \forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K$.

Polytope approach (2)

$\mathcal{C}_{K}: \quad \forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K$.

$$
\begin{aligned}
& f=\sin \\
& {[a, b]=[-0.5,0.5]} \\
& K=0.01
\end{aligned}
$$

Polytope approach (2)

$\mathcal{C}_{K}: \quad \forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K$.

$$
\begin{aligned}
& f=\sin \\
& {[a, b]=[-0.5,0.5]} \\
& K=0.01
\end{aligned}
$$

If we discretize and cleverly choose some points x_{0}, \cdots, x_{r}, we obtain a polytope containing \mathcal{C}_{K}, hopefully not much bigger.

Polytope approach (2)

$$
\mathcal{C}_{K}: \quad \forall x \in[a, b], \quad f(x)-K \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+K .
$$

$$
\begin{aligned}
& f=\sin \\
& {[a, b]=[-0.5,0.5]} \\
& K=0.01 \\
& x_{0}, x_{1}, x_{2} \text { and } x_{3}
\end{aligned}
$$

If we discretize and cleverly choose some points x_{0}, \cdots, x_{r}, we obtain a polytope containing \mathcal{C}_{K}, hopefully not much bigger.

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- But...

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- But...
- its time is exponential ;

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- But...
- its time is exponential;
- it is very sensitive to the choice of the points;

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- But...
- its time is exponential ;
- it is very sensitive to the choice of the points;
- requires to know a pretty tight over-estimation of $\bar{\varepsilon}$

Polytope approach (3)

- The polytope approach is flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, ...).
- It is certified.
- But...
- its time is exponential ;
- it is very sensitive to the choice of the points;
- requires to know a pretty tight over-estimation of $\bar{\varepsilon}$
- To find such an estimation, we developed a new method :
- fast (it is proven to run in polynomial time);
- heuristic (there is no proof that the result is always tight);
- with good practical results.

Formalization of the problem

- Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p-f\|_{\infty}$.

Formalization of the problem

- Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p-f\|_{\infty}$.
- Remark : the existence is still ensured. The unicity may be lost.

Formalization of the problem

- Problem : given n and a floating-point format, find (one of) the polynomial(s) of degree $\leq n$ with floating-point coefficients minimizing $\|p-f\|_{\infty}$.
- Remark : the existence is still ensured. The unicity may be lost.
- A simplification : we may try to guess the value of each e_{i} (assuming that \widehat{a}_{i} and a_{i} have the same order of magnitude) \hookrightarrow if e_{i} is correctly guessed, we are reduced to find $m_{i} \in \mathbb{Z}$ such that

$$
\left\|f(x)-\sum_{i=0}^{n} \frac{m_{i}}{\beta^{e_{i}}} x^{i}\right\|_{\infty}
$$

is minimal.

Description of our method

Our goal : find p of the form $\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} X+\cdots+\frac{m_{n}}{\beta^{e_{n}}} X^{n}$ with $m_{i} \in \mathbb{Z}$ which well approximates f.

Description of our method

Our goal : find p of the form $\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} X+\cdots+\frac{m_{n}}{\beta^{e_{n}}} X^{n}$ with $m_{i} \in \mathbb{Z}$ which well approximates f.

- We use the idea of interpolation :

Description of our method

Our goal : find p of the form $\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} X+\cdots+\frac{m_{n}}{\beta^{e_{n}}} X^{n}$ with $m_{i} \in \mathbb{Z}$ which well approximates f.

- We use the idea of interpolation :
- we choose $n+1$ points x_{0}, \cdots, x_{n} in $[a, b]$;

Description of our method

Our goal : find p of the form $\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} X+\cdots+\frac{m_{n}}{\beta^{e_{n}}} X^{n}$ with $m_{i} \in \mathbb{Z}$ which well approximates f.

- We use the idea of interpolation :
- we choose $n+1$ points x_{0}, \cdots, x_{n} in [a, b];
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(x_{i}\right)=\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} x_{i}+\cdots+\frac{m_{n}}{\beta^{e_{n}}} x_{i}^{n} \simeq f\left(x_{i}\right) .
$$

Description of our method

Our goal : find p of the form $\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} X+\cdots+\frac{m_{n}}{\beta^{e_{n}}} X^{n}$ with $m_{i} \in \mathbb{Z}$ which well approximates f.

- We use the idea of interpolation :
- we choose $n+1$ points x_{0}, \cdots, x_{n} in $[a, b]$;
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(x_{i}\right)=\frac{m_{0}}{\beta^{e_{0}}}+\frac{m_{1}}{\beta^{e_{1}}} x_{i}+\cdots+\frac{m_{n}}{\beta^{e_{n}}} x_{i}^{n} \simeq f\left(x_{i}\right) .
$$

- Rewritten with vectors:

$$
\underbrace{m_{0}\left(\begin{array}{c}
1 / \beta^{e_{0}} \\
1 / \beta^{e_{0}} \\
\vdots \\
1 / \beta^{e_{0}}
\end{array}\right)+\cdots+m_{n}\left(\begin{array}{c}
x_{0}^{n} / \beta^{e_{n}} \\
x_{1}^{n} / \beta^{e_{n}} \\
\vdots \\
x_{n}^{n} / \beta^{e_{n}}
\end{array}\right)}_{\Gamma \text { of the form } \mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}} \simeq \underbrace{\left(\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right)}_{\vec{t} \in \mathbb{R}^{n+1}}
$$

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space.

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

- +	+	+	+	+	+
+ +	+	$+$	+	+	+
$\overrightarrow{c_{2}}$	+	+	+	+	+
$\xrightarrow[{\overrightarrow{c_{1}}}^{+}]{ }$	+	+	+	+	+

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

Algorithmic problems

- Shortest vector problem (SVP).

Algorithmic problems

- Shortest vector problem (SVP).
- Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction ; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.

Algorithmic problems

- Shortest vector problem (SVP).
- Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction ; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
- Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n / O(\log n)}$ is not NP-hard.

Algorithmic problems

- Shortest vector problem (SVP).
- Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction ; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
- Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n / O(\log n)}$ is not NP-hard.
- There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.

Algorithmic problems

- Shortest vector problem (SVP).
- Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction ; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
- Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n / O(\log n)}$ is not NP-hard.
- There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.
- Shortest basis problem (SBP).
- Given a basis of a lattice L, find a basis $\left(b_{1}, \cdots, b_{n}\right)$ of L for which $\left\|b_{1}\right\| \cdot\left\|b_{2}\right\| \cdots\left\|b_{n}\right\|$ is minimal.

Algorithmic problems

- Shortest vector problem (SVP).
- Ajtai (1997) and Miccianco (1998) showed that SVP is NP-hard under probabilistic randomized reduction ; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
- Goldreich and Goldwasser : approximating SVP within a factor $\sqrt{n / O(\log n)}$ is not NP-hard.
- There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.
- Shortest basis problem (SBP).
- Given a basis of a lattice L, find a basis $\left(b_{1}, \cdots, b_{n}\right)$ of L for which $\left\|b_{1}\right\| \cdot\left\|b_{2}\right\| \cdots\left\|b_{n}\right\|$ is minimal.
- It is NP-hard.

Algorithmic problems

- Closest vector problem (CVP).

- +	$+$		$+$		$+$	-	$+$		+	
$\pm \quad+$		+		+		$+$		+		+
$\overrightarrow{c_{2}}$ +	$+$		$+$		+		+		\pm	
$\xrightarrow[\overrightarrow{c_{1}}]{ }+$		$+$		+		+		$+$		$+$

Algorithmic problems

- Closest vector problem (CVP).

Algorithmic problems

- Closest vector problem (CVP).

Algorithmic problems

- Closest vector problem (CVP).
- Emde Boas (1981) : CVP is NP-hard.

Algorithmic problems

- Closest vector problem (CVP).
- Emde Boas (1981) : CVP is NP-hard.
- Goldreich and al. : CVP is not easier than SVP.

Algorithmic problems

- Closest vector problem (CVP).
- Emde Boas (1981) : CVP is NP-hard.
- Goldreich and al. : CVP is not easier than SVP.
- Goldreich and Goldwasser : approximating CVP within a factor $\sqrt{n / O(\log n)}$ is not NP-hard.

LLL algorithm

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen 261, 515-534, 1982.

LLL algorithm

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen 261, 515-534, 1982.

- Gives a basis of a lattice composed of pretty short vectors.

LLL algorithm

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen 261, 515-534, 1982.

- Gives a basis of a lattice composed of pretty short vectors. $\hookrightarrow\left\|b_{1}\right\| \leq 2^{(n-1) / 2} \lambda_{1}(L)$ where $\lambda_{1}(L)$ denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most $O\left(n^{6} \ln ^{3} B\right)$ operations with $B=\max \left\|b_{i}\right\|^{2}$.

LLL algorithm

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen 261, 515-534, 1982.

- Gives a basis of a lattice composed of pretty short vectors. $\hookrightarrow\left\|b_{1}\right\| \leq 2^{(n-1) / 2} \lambda_{1}(L)$ where $\lambda_{1}(L)$ denotes the norm of a shortest nonzero vector of L.
- LLL terminates in at most $O\left(n^{6} \ln ^{3} B\right)$ operations with $B=\max \left\|b_{i}\right\|^{2}$.
- Very good practical results compared to the theoretical bounds.

LLL reduction

- Gram-Schmidt orthogonalization: to any basis $\left(b_{1}, \cdots, b_{n}\right)$ of a vector space is associated an orthogonal basis $\left(b_{1}^{*}, \cdots, b_{n}^{*}\right)$ such that $\operatorname{Span}\left(b_{1}, \cdots, b_{j}\right)=\operatorname{Span}\left(b_{1}^{*}, \cdots, b_{j}^{*}\right)$ for all j.

LLL reduction

- Gram-Schmidt orthogonalization: to any basis $\left(b_{1}, \cdots, b_{n}\right)$ of a vector space is associated an orthogonal basis $\left(b_{1}^{*}, \cdots, b_{n}^{*}\right)$ such that $\operatorname{Span}\left(b_{1}, \cdots, b_{j}\right)=\operatorname{Span}\left(b_{1}^{*}, \cdots, b_{j}^{*}\right)$ for all j. Remark : one may choose it so that $\left\|b_{1}\right\|=\left\|b_{1}^{*}\right\|$.

LLL reduction

- Gram-Schmidt orthogonalization: to any basis $\left(b_{1}, \cdots, b_{n}\right)$ of a vector space is associated an orthogonal basis $\left(b_{1}^{*}, \cdots, b_{n}^{*}\right)$ such that
$\operatorname{Span}\left(b_{1}, \cdots, b_{j}\right)=\operatorname{Span}\left(b_{1}^{*}, \cdots, b_{j}^{*}\right)$ for all j. Remark : one may choose it so that $\left\|b_{1}\right\|=\left\|b_{1}^{*}\right\|$.
- Prop.: if $\left(b_{1}, \cdots, b_{n}\right)$ is the basis of a lattice L, $\lambda_{1}(L) \geq \min \left\|b_{j}^{*}\right\|$.

LLL reduction

- Gram-Schmidt orthogonalization : to any basis $\left(b_{1}, \cdots, b_{n}\right)$ of a vector space is associated an orthogonal basis $\left(b_{1}^{*}, \cdots, b_{n}^{*}\right)$ such that
$\operatorname{Span}\left(b_{1}, \cdots, b_{j}\right)=\operatorname{Span}\left(b_{1}^{*}, \cdots, b_{j}^{*}\right)$ for all j. Remark : one may choose it so that $\left\|b_{1}\right\|=\left\|b_{1}^{*}\right\|$.
- Prop.: if $\left(b_{1}, \cdots, b_{n}\right)$ is the basis of a lattice L, $\lambda_{1}(L) \geq \min \left\|b_{j}^{*}\right\|$.
- Idea of LLL algorithm : control the Gram-Schmidt basis to make $b_{1}^{*}=b_{1}$ minimal among the vectors of the orthogonal basis.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
- approximating $f: x \mapsto \frac{2^{x}-1}{x}$
- on $[-1 / 16,1 / 16]$
- with a degree 9 polynomial.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
- approximating $f: x \mapsto \frac{2^{x}-1}{x}$
- on $[-1 / 16,1 / 16]$
- with a degree 9 polynomial.
- a degree 0 coefficient of the form : $a_{0 h}+a_{01}$ where $a_{0 h}$ and a_{01} are double extended numbers
- other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
- approximating $f: x \mapsto \frac{2^{x}-1}{x}$
- on $[-1 / 16,1 / 16]$
- with a degree 9 polynomial.
- a degree 0 coefficient of the form : $a_{0 h}+a_{01}$ where $a_{0 h}$ and a_{01} are double extended numbers
- other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
- He actually wants to have approximately 74 correct bits. (i.e. $\varepsilon \simeq 5.30 \mathrm{e}-23$)

First try

Target	Degree 8 minimax	Degree 9 minimax
$5.30 \mathrm{e}-23$	$40.1 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$

\hookrightarrow degree 9 is a good choice.

First try

Target	Degree 8 minimax	Degree 9 minimax
$5.30 \mathrm{e}-23$	$40.1 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$
\hookrightarrow		

\hookrightarrow degree 9 is a good choice.

- How to choose the points?

First try

Target	Degree 8 minimax	Degree 9 minimax
$5.30 \mathrm{e}-23$	$40.1 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$
\hookrightarrow degree 9 is a good choice		

- How to choose the points?

- We need $n+1$ points.

First try

Target	Degree 8 minimax	Degree 9 minimax
$5.30 \mathrm{e}-23$	$40.1 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$
\hookrightarrow degree 9 is a good choice.		

- How to choose the points?

- We need $n+1$ points.
- They should correspond to the interpolation intuition.

First try

Target	Degree 8 minimax	Degree 9 minimax
$5.30 \mathrm{e}-23$	$40.1 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$
\hookrightarrow degree 9 is a good choice.		

- How to choose the points?

- We need $n+1$ points.
- They should correspond to the interpolation intuition.
- Chebyshev's theorem gives $n+1$ such points.

First try : results

Target	Degree 9 minimax	our polynomial p_{1}	naive method
$5.30 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$	$5.32 \mathrm{e}-23$	$40.35 \mathrm{e}-23$

First try : results

Target	Degree 9 minimax	our polynomial p_{1}	naive method
$5.30 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$	$5.32 \mathrm{e}-23$	$40.35 \mathrm{e}-23$
\hookrightarrow pretty good but. ..			

- Our polynomial does not respect the interpolation constraint.

First try : results

Target	Degree 9 minimax	our polynomial p_{1}	naive method
$5.30 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$	$5.32 \mathrm{e}-23$	$40.35 \mathrm{e}-23$
\hookrightarrow pretty good but. .			

- Our polynomial does not respect the interpolation constraint.

- degree 1 coefficient of p_{1} :

$$
a_{1}=\circ\left(\log (2)^{2} / 2\right)
$$

First try : results

Target	Degree 9 minimax	our polynomial p_{1}	naive method
$5.30 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$	$5.32 \mathrm{e}-23$	$40.35 \mathrm{e}-23$
\hookrightarrow pretty good but. .			

- Our polynomial does not respect the interpolation constraint.

- degree 1 coefficient of p_{1} :

$$
a_{1}=\circ\left(\log (2)^{2} / 2\right)
$$

\rightarrow the slope at 0 is very constrained.

First try : results

Target	Degree 9 minimax	our polynomial p_{1}	naive method
$5.30 \mathrm{e}-23$	$0.07897 \mathrm{e}-23$	$5.32 \mathrm{e}-23$	$40.35 \mathrm{e}-23$
\hookrightarrow pretty good but. ..			

- Our polynomial does not respect the interpolation constraint.

- degree 1 coefficient of p_{1} :

$$
a_{1}=\circ\left(\log (2)^{2} / 2\right)
$$

\rightarrow the slope at 0 is very constrained.

- we have to take it into account.

Second try

- The polytope approach confirms that a_{1} has a constrained value.

Second try

- The polytope approach confirms that a_{1} has a constrained value.
- We compute the best real polynomial of the form $a_{0}+a_{2} X^{2}+\cdots+a_{9} X^{9}$ approximating $f-a_{1} X$.

Second try

- The polytope approach confirms that a_{1} has a constrained value.
- We compute the best real polynomial of the form $a_{0}+a_{2} X^{2}+\cdots+a_{9} X^{9}$ approximating $f-a_{1} X$.

Degree 9 minimax	Constrained optimum	p_{1}
$0.07897 \mathrm{e}-23$	$4.44 \mathrm{e}-23$	$5.32 \mathrm{e}-23$

Second try

- The polytope approach confirms that a_{1} has a constrained value.
- We compute the best real polynomial of the form $a_{0}+a_{2} X^{2}+\cdots+a_{9} X^{9}$ approximating $f-a_{1} X$.

Degree 9 minimax	Constrained optimum	p_{1}
$0.07897 \mathrm{e}-23$	$4.44 \mathrm{e}-23$	$5.32 \mathrm{e}-23$

- We have only 9 points, but now only 9 unknowns: it is OK.

Second try

- The polytope approach confirms that a_{1} has a constrained value.
- We compute the best real polynomial of the form $a_{0}+a_{2} X^{2}+\cdots+a_{9} X^{9}$ approximating $f-a_{1} X$.

Degree 9 minimax	Constrained optimum	p_{1}
$0.07897 \mathrm{e}-23$	$4.44 \mathrm{e}-23$	$5.32 \mathrm{e}-23$

Conclusion

- We developed an algorithm to find very good polynomial approximants with floating-point coefficients.

Conclusion

- We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.

Conclusion

- We developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
- The algorithm is flexible : each coefficient may use a different floating-point format, one may search polynomial with additional constraints.

Future work

- We need a good algorithm to find constraints minimax.

Future work

- We need a good algorithm to find constraints minimax. \hookrightarrow Remez' algorithm is not sufficient.

Future work

- We need a good algorithm to find constraints minimax. \hookrightarrow Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :

Future work

- We need a good algorithm to find constraints minimax. \hookrightarrow Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
- rational fractions;

Future work

- We need a good algorithm to find constraints minimax. \hookrightarrow Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
- rational fractions;
- trigonometric polynomials.

