Symmetry of information and nonuniform lower bounds

Sylvain Perifel

March 7, 2007

Outline

1. Introduction and notations
2. Advices of size n^{c}
3. Symmetry of information
4. Polynomial-size advices

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- P/poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length)

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine - uniform

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- $\mathrm{P} /$ poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length) - nonuniform
- Open question: EXP $\subset \mathrm{P} /$ poly?

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine - uniform

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- $\mathrm{P} /$ poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length) - nonuniform
- Open question: EXP $\subset \mathrm{P} /$ poly?
- Main result: polynomial-time symmetry of information implies EXP $\not \subset \mathrm{P} /$ poly .

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\nsubseteq \mathrm{P}$ (time hierarchy theorem).

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\nsubseteq \mathrm{P}$ (time hierarchy theorem).
- Space complexity version:

$$
\text { PSPACE } \subset N C / \text { poly? }
$$

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\nsubseteq \mathrm{P}$ (time hierarchy theorem).
- Space complexity version:

PSPACE $\subset N C /$ poly?

- Even the question "EXP $\subset \mathrm{L} /$ poly?" is open.

Advices

- A Turing machine can be helped by an advice (one word given for all inputs of same size).

Advices

- A Turing machine can be helped by an advice (one word given for all inputs of same size).
- If \mathcal{C} is a complexity class and $a: \mathbf{N} \rightarrow \mathbf{N}$ a function, then $\mathcal{C} / a(n)$ is the set of languages A such that there exists $B \in \mathcal{C}$ and a function $c: \mathbf{N} \rightarrow\{0,1\}^{*}$ satisfying:
- $\forall n,|c(n)| \leq a(n)$;
- $\forall x \in\{0,1\}^{*}, x \in A \Longleftrightarrow(x, c(|x|)) \in B$.

Advices

- A Turing machine can be helped by an advice (one word given for all inputs of same size).
- If \mathcal{C} is a complexity class and $a: \mathbf{N} \rightarrow \mathbf{N}$ a function, then $\mathcal{C} / a(n)$ is the set of languages A such that there exists $B \in \mathcal{C}$ and a function $c: \mathbf{N} \rightarrow\{0,1\}^{*}$ satisfying:
- $\forall n,|c(n)| \leq a(n)$;
- $\forall x \in\{0,1\}^{*}, x \in A \Longleftrightarrow(x, c(|x|)) \in B$.
- "The class \mathcal{C} is helped by the advice $c(|x|)$ " (the same for all words of each length).

Advices (continued)

$-\mathrm{P} / 2^{n}=?$

Advices (continued)

- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.

Advices (continued)

- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- Even $\mathrm{P} / 1$ contains undecidable languages...

Advices (continued)

- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- Even $\mathrm{P} / 1$ contains undecidable languages...
- $\mathrm{P} /$ poly $=\cup_{k \geq 0} \mathrm{P} / n^{k}$ (polynomial-size advice).
- P/poly: conversion advice \longleftrightarrow boolean circuit.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: NEXP ${ }^{\text {NP }} \not \subset \mathrm{P} /$ poly;
- Schnöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: NEXP ${ }^{\text {NP }} \not \subset \mathrm{P} /$ poly;
- Schnöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly.
- Homer \& Mocas 1995: $\forall c>0$, EXP $\not \subset \mathrm{P} / n^{c}$.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: NEXP ${ }^{\text {NP }} \not \subset \mathrm{P} /$ poly;
- Schnöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly.
- Homer \& Mocas 1995: $\forall c>0$, EXP $\not \subset \mathrm{P} / n^{c}$.
- Here: symmetry of information (SI) $\Rightarrow \mathrm{EXP} \not \subset \mathrm{P} /$ poly;
- Lee \& Romashchenko 2004: (SI) \Rightarrow EXP $\nsubseteq \mathrm{BPP}$ (remark: BPP $\subset \mathrm{P} /$ poly, Adleman 1978).

Advices of size n^{c}

- Words of $\{0,1\}^{n}$ are ordered lexicographically $x_{1}<x_{2}<\cdots<x_{2^{n}}$.
- We fix an "efficient" universal Turing machine \mathcal{U}.

Advices of size n^{c}

- Words of $\{0,1\}^{n}$ are ordered lexicographically

$$
x_{1}<x_{2}<\cdots<x_{2^{n}} .
$$

- We fix an "efficient" universal Turing machine \mathcal{U}.

Lemma

If $A \in \mathrm{P} / n^{c}$ then there exists a constant k and a family $\left(p_{n}\right)$ of programs of size $k+n^{c}$ such that

- $\mathcal{U}\left(p_{n}, x\right)=1$ iff $x \in A$;
- $\mathcal{U}\left(p_{n}, x\right)$ works in polynomial time.

Advices of size n^{c}

- Words of $\{0,1\}^{n}$ are ordered lexicographically

$$
x_{1}<x_{2}<\cdots<x_{2^{n}} .
$$

- We fix an "efficient" universal Turing machine \mathcal{U}.

Lemma

If $A \in \mathrm{P} / n^{c}$ then there exists a constant k and a family $\left(p_{n}\right)$ of programs of size $k+n^{c}$ such that

- $\mathcal{U}\left(p_{n}, x\right)=1$ iff $x \in A$;
- $\mathcal{U}\left(p_{n}, x\right)$ works in polynomial time.

Proof.
By definition, $x \in A \Longleftrightarrow(x, c(|x|)) \in B$. Then p_{n} is merely the concatenation of the program for B and of $c(n)$.

Advices of size n^{c} (continued)

Proposition

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Proof.
We build A by input sizes and word by word. Let $t(n)=2^{n^{1+c_{1} c_{2}}}$ and $a(n)=n+n^{c_{2}}$. Let us fix n and define $A^{=n}$:
$x_{1} \in A \Longleftrightarrow \begin{aligned} & \text { for at least half of the programs } p \text { of size } \leq a(n), \\ & \mathcal{U}^{t(n)}\left(p, x_{1}\right)=0 .\end{aligned}$
(at least half of the programs give a wrong answer for x_{1}).

Advices of size n^{c} (continued)

Proposition

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Proof.
We build A by input sizes and word by word. Let $t(n)=2^{n^{1+c_{1} c_{2}}}$ and $a(n)=n+n^{c_{2}}$. Let us fix n and define $A^{=n}$:
$x_{1} \in A \Longleftrightarrow \begin{aligned} & \text { for at least half of the programs } p \text { of size } \leq a(n), \\ & \mathcal{U}^{t(n)}\left(p, x_{1}\right)=0 .\end{aligned}$
(at least half of the programs give a wrong answer for x_{1}).
Let V_{1} be the set of programs giving the right answer for x_{1}.

Advices of size n^{c} (proof continued)

$$
x_{2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{1}, \\
& \mathcal{U}^{t(n)}\left(p, x_{2}\right)=0 .
\end{aligned}
$$

(at least half of the remaining programs are wrong on x_{2}).

Advices of size n^{c} (proof continued)

$$
x_{2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{1}, \\
& \mathcal{U}^{t(n)}\left(p, x_{2}\right)=0 .
\end{aligned}
$$

(at least half of the remaining programs are wrong on x_{2}).
and so on. . .

Advices of size n^{c} (proof continued)

$$
x_{2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half } c \\
& \mathcal{U}^{t(n)}\left(p, x_{2}\right)=0 .
\end{aligned}
$$

(at least half of the remaining programs are wrong on x_{2}).
and so on...

$$
x_{k} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{k-1}, \\
& \mathcal{U}^{t(n)}\left(p, x_{k}\right)=0 .
\end{aligned}
$$

The process stops when V_{k} is empty, that is, for $k=n+n^{c_{2}}$. We decide that $x_{j} \notin A$ for $j>k$.

Advices of size n^{c} (proof continued)

- A is sparse (at most $n+n^{c_{2}}$ elements of size n);

Advices of size n^{c} (proof continued)

- A is sparse (at most $n+n^{c_{2}}$ elements of size n);
- $A \notin \operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$: any program with any advice makes at least one mistake;

Advices of size n^{c} (proof continued)

- A is sparse (at most $n+n^{c_{2}}$ elements of size n);
- $A \notin \operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$: any program with any advice makes at least one mistake;
- $A \in \operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$.

Some consequences

Corollary

For all constant $c>0, \operatorname{EXP} \not \subset \mathrm{P} / n^{c}$ and PSPACE $\not \subset\left(\cup_{k} \operatorname{DSPACE}\left(\log ^{k} n\right) / n^{c}\right)$.

Some consequences

Corollary

For all constant $c>0, \operatorname{EXP} \not \subset \mathrm{P} / n^{c}$ and PSPACE $\not \subset\left(\cup_{k} \operatorname{DSPACE}\left(\log ^{k} n\right) / n^{c}\right)$.

Corollary

For all $k, \operatorname{PP} \not \subset \operatorname{DTIME}\left(n^{k}\right) /(n-\log n)$.

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

- Resource-bounded Kolmogorov complexity: \mathcal{U} is required to run within a time bound t

$$
C^{t}(x \mid y)=\min \left\{|p|: \mathcal{U}^{t}(p, y)=x\right\}
$$

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

- Resource-bounded Kolmogorov complexity: \mathcal{U} is required to run within a time bound t

$$
C^{t}(x \mid y)=\min \left\{|p|: \mathcal{U}^{t}(p, y)=x\right\}
$$

- Symmetry of information: $C(x, y) \simeq C(x)+C(y \mid x)$.
\leq : easy direction $\quad \geq$: hard direction.

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

- Resource-bounded Kolmogorov complexity: \mathcal{U} is required to run within a time bound t

$$
C^{t}(x \mid y)=\min \left\{|p|: \mathcal{U}^{t}(p, y)=x\right\}
$$

- Symmetry of information: $C(x, y) \simeq C(x)+C(y \mid x)$.
\leq : easy direction $\quad \geq$: hard direction.
- Polynomial-time symmetry of information: easy direction still holds; hard direction is open! (true if $\mathrm{P}=\mathrm{NP}$, Longpré \& Watanabe 1995).

Symmetry of information

Hypothesis (SI)

There exists a polynomial q such that for all p and all words x, y, z of size $|x|+|y|+|z|=n$:

$$
C^{p(n)}(x, y \mid z) \geq C^{p(n) q(n)}(x \mid z)+C^{p(n) q(n)}(y \mid x, z)-O(\log n)
$$

Symmetry of information

Hypothesis (SI)

There exists a polynomial q such that for all p and all words x, y, z of size $|x|+|y|+|z|=n$:

$$
C^{p(n)}(x, y \mid z) \geq C^{p(n) q(n)}(x \mid z)+C^{p(n) q(n)}(y \mid x, z)-O(\log n)
$$

Remark: stronger version than the usual one $p(n) q(n)$ instead of $q(p(n))$.

Iterations of (SI)

Lemma

Suppose (SI) holds.
Let u_{1}, \ldots, u_{n} be words of size s and let z be another word. Let $m=n s+|z|$. Suppose there exists k such that for all $j \leq n$,

$$
C^{\operatorname{tg}(m)^{\log n}}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}, z\right) \geq k
$$

Then $C^{t}\left(u_{1}, \ldots, u_{n} \mid z\right) \geq n k-(n-1) O(\log m)$.

Iterations of (SI)

Lemma

Suppose (SI) holds.
Let u_{1}, \ldots, u_{n} be words of size s and let z be another word. Let $m=n s+|z|$. Suppose there exists k such that for all $j \leq n$,

$$
C^{t g(m)^{\log n}}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}, z\right) \geq k
$$

Then $C^{t}\left(u_{1}, \ldots, u_{n} \mid z\right) \geq n k-(n-1) O(\log m)$.
Proof.
Show by induction on n that $\forall z$, if $\left(\forall j, C\left(u_{j} \mid u_{1}, \ldots, u_{j-1}, z\right) \geq k\right)$ then $C\left(u_{1}, \ldots, u_{n} \mid z\right) \geq n k-(n-1) O(\log m)$.

$$
\begin{gathered}
C^{t}\left(u_{1}, \ldots, u_{n} \mid z\right) \geq C^{t q(m)}\left(u_{1}, \ldots, u_{n / 2} \mid z\right)+ \\
C^{t g(m)}\left(u_{n / 2+1}, \ldots, u_{n} \mid u_{1}, \ldots, u_{n / 2}, z\right)-O(\log m)
\end{gathered}
$$

\square

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^{n} \in\{0,1\}^{2^{n}}$ of $A^{=n}$:

$$
\chi_{i}^{n}=1 \Longleftrightarrow x_{i} \in A^{=n} .
$$

Lemma

Suppose that there exist infinitely many n and $1 \leq i \leq 2^{n}$ satisfying

$$
C^{i r(n)}\left(\chi^{n}[1 . . i]\right)>n+a(n)
$$

Then $A \notin \operatorname{DTIME}(r(n)) / a(n)$.

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^{n} \in\{0,1\}^{2^{n}}$ of $A^{=n}$:

$$
\chi_{i}^{n}=1 \Longleftrightarrow x_{i} \in A^{=n} .
$$

Lemma

Suppose that there exist infinitely many n and $1 \leq i \leq 2^{n}$ satisfying

$$
C^{i r(n)}\left(\chi^{n}[1 . . i]\right)>n+a(n)
$$

Then $A \notin \operatorname{DTIME}(r(n)) / a(n)$.
Proof.
If $A \in \operatorname{DTIME}(r(n)) / a(n)$ then $\chi^{n}[1 . . i]$ is computed in time $i r(n)$ with a program of size $a(n)+O(1)$.

Polynomial-size advices - the idea

- \mathcal{U} will return χ^{n} instead of recognizing each word.

Polynomial-size advices - the idea

- \mathcal{U} will return χ^{n} instead of recognizing each word.
- In EXP, impossible to diagonalize over all advices of polynomial size

Polynomial-size advices — the idea

- \mathcal{U} will return χ^{n} instead of recognizing each word.
- In EXP, impossible to diagonalize over all advices of polynomial size
- \rightarrow we cut the advices into blocks of size n and diagonalize over these blocks;

Polynomial-size advices - the idea

- \mathcal{U} will return χ^{n} instead of recognizing each word.
- In EXP, impossible to diagonalize over all advices of polynomial size
- \rightarrow we cut the advices into blocks of size n and diagonalize over these blocks;
- then we "glue" these blocks back thanks to (SI).

Main result

Theorem

If (SI) holds, then EXP $\not \subset \mathrm{P} /$ poly .

Main result

Theorem

If (SI) holds, then EXP $\not \subset \mathrm{P} /$ poly .
Proof.
We build A by input sizes and word by word. Let $t(n)=n^{O\left(\log ^{3} n\right)}$. Let us fix n and define $A^{=n}$:
$x_{1} \in A \Longleftrightarrow$ for at least half of the programs p of size $\leq n$, the first bit of $\mathcal{U}^{t(n)}(p)$ is 0 .
(at least half of the programs give a wrong answer for x_{1}).

Main result

Theorem

If (SI) holds, then EXP $\not \subset \mathrm{P} /$ poly .
Proof.
We build A by input sizes and word by word. Let $t(n)=n^{O\left(\log ^{3} n\right)}$. Let us fix n and define $A^{=n}$:
$x_{1} \in A \Longleftrightarrow$ for at least half of the programs p of size $\leq n$, the first bit of $\mathcal{U}^{t(n)}(p)$ is 0 .
(at least half of the programs give a wrong answer for x_{1}).
Let V_{1} be the set of programs giving the right answer for x_{1}.

Proof continued

We go on like this as before, discarding half of the remaining programs at each step:

$$
x_{n} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{n-1}, \\
& \text { the } n \text {-th bit of } \mathcal{U}^{t(n)}(p) \text { is } 0 .
\end{aligned}
$$

Proof continued

We go on like this as before, discarding half of the remaining programs at each step:

$$
x_{n} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{n-1}, \\
& \text { the } n \text {-th bit of } \mathcal{U}^{t(n)}(p) \text { is } 0 .
\end{aligned}
$$

We call $u^{(1)}$ the n first bits of the characteristic string of $A^{=n}$ just defined. Then:

$$
x_{n+1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \text { the first bit of } \mathcal{U}^{t(n)}\left(p, u^{(1)}\right) \text { is } 0 .
\end{aligned}
$$

(at least half of the programs are wrong on x_{n+1}, even with the advice $\left.u^{(1)}\right)$.

Proof continued

Keep going on: call V_{1} the set of programs that where right at the preceding step.

$$
x_{n+2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in \\
& \text { the second bit of } \mathcal{U}^{t(n)}\left(p, u^{(1)}\right) \text { is } 0 .
\end{aligned}
$$

Proof continued

Keep going on: call V_{1} the set of programs that where right at the preceding step.

$$
x_{n+2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{1}, \\
& \text { the second bit of } \mathcal{U}^{t(n)}\left(p, u^{(1)}\right) \text { is } 0 .
\end{aligned}
$$

And so on, until the next segment $u^{(2)}$ of size n is defined. Then:

$$
x_{2 n+1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \text { the first bit of } \mathcal{U}^{t(n)}\left(p, u^{(1)}, u^{(2)}\right) \text { is } 0 .
\end{aligned}
$$

(at least half of the programs make a wrong answer for $x_{2 n+1}$, even with the advice $\left.u^{(1)}, u^{(2)}\right)$.

Proof continued

We define $n^{\log n}$ segments of size n and decide that $x_{j} \notin A^{=n}$ for $j>n \times n^{\log n}$.

- $A \notin \mathrm{P} /$ poly because for all j, $C^{t(n)}\left(u^{(j)} \mid u^{(1)}, \ldots, u^{(j-1)}\right) \geq n-1$. Thus by iteratively applying (SI), $C^{t}\left(\chi^{n}\left[1 . . n^{1+\log n}\right]\right) \geq n^{\log n}$.
- $A \in$ EXP.

Conclusion

- Good idea to study (SI): if true, then EXP $\not \subset \mathrm{P} /$ poly; if false, then $\mathrm{P} \neq \mathrm{NP}$...
- What about the usual version of (SI) (with time bound $q(p(n))$ instead of $q(n) p(n))$?
- Hope: unconditionnal results by using CAMD (a version of Kolmogorov complexity based on the class AM).

Outline

1. Introduction and notations
2. Advices of size n^{c}
3. Symmetry of information
4. Polynomial-size advices
