
Symmetry of information and

nonuniform lower bounds

Sylvain Perifel

March 7, 2007

Outline

1. Introduction and notations

2. Advices of size nc

3. Symmetry of information

4. Polynomial-size advices

Two complexity classes

I EXP: set of languages recognized in exponential time by a

deterministic Turing machine

— uniform

EXP = ∪k≥0DTIME(2nk
).

I P/poly: set of languages recognized by a family of

polynomial-size boolean circuits (gates ∧, ∨ and ¬, one

circuit per input length)

— nonuniform

I Open question: EXP ⊂ P/poly?

I Main result: polynomial-time symmetry of information implies

EXP 6⊂ P/poly.

Two complexity classes

I EXP: set of languages recognized in exponential time by a

deterministic Turing machine

— uniform

EXP = ∪k≥0DTIME(2nk
).

I P/poly: set of languages recognized by a family of

polynomial-size boolean circuits (gates ∧, ∨ and ¬, one

circuit per input length)

— nonuniform

I Open question: EXP ⊂ P/poly?

I Main result: polynomial-time symmetry of information implies

EXP 6⊂ P/poly.

Two complexity classes

I EXP: set of languages recognized in exponential time by a

deterministic Turing machine — uniform

EXP = ∪k≥0DTIME(2nk
).

I P/poly: set of languages recognized by a family of

polynomial-size boolean circuits (gates ∧, ∨ and ¬, one

circuit per input length) — nonuniform

I Open question: EXP ⊂ P/poly?

I Main result: polynomial-time symmetry of information implies

EXP 6⊂ P/poly.

Two complexity classes

I EXP: set of languages recognized in exponential time by a

deterministic Turing machine — uniform

EXP = ∪k≥0DTIME(2nk
).

I P/poly: set of languages recognized by a family of

polynomial-size boolean circuits (gates ∧, ∨ and ¬, one

circuit per input length) — nonuniform

I Open question: EXP ⊂ P/poly?

I Main result: polynomial-time symmetry of information implies

EXP 6⊂ P/poly.

Remarks

I EXP 6= P/poly (there are undecidable languages in P/poly).

I EXP 6⊆ P (time hierarchy theorem).

I Space complexity version:

PSPACE ⊂ NC/poly?

I Even the question “EXP ⊂ L/poly?” is open.

Remarks

I EXP 6= P/poly (there are undecidable languages in P/poly).

I EXP 6⊆ P (time hierarchy theorem).

I Space complexity version:

PSPACE ⊂ NC/poly?

I Even the question “EXP ⊂ L/poly?” is open.

Remarks

I EXP 6= P/poly (there are undecidable languages in P/poly).

I EXP 6⊆ P (time hierarchy theorem).

I Space complexity version:

PSPACE ⊂ NC/poly?

I Even the question “EXP ⊂ L/poly?” is open.

Remarks

I EXP 6= P/poly (there are undecidable languages in P/poly).

I EXP 6⊆ P (time hierarchy theorem).

I Space complexity version:

PSPACE ⊂ NC/poly?

I Even the question “EXP ⊂ L/poly?” is open.

Advices

I A Turing machine can be helped by an advice (one word given

for all inputs of same size).

I If C is a complexity class and a : N→ N a function, then
C/a(n) is the set of languages A such that there exists B ∈ C
and a function c : N→ {0, 1}∗ satisfying:

I ∀n, |c(n)| ≤ a(n);
I ∀x ∈ {0, 1}∗, x ∈ A⇐⇒ (x , c(|x |)) ∈ B.

I “The class C is helped by the advice c(|x |)” (the same for all

words of each length).

Advices

I A Turing machine can be helped by an advice (one word given

for all inputs of same size).

I If C is a complexity class and a : N→ N a function, then
C/a(n) is the set of languages A such that there exists B ∈ C
and a function c : N→ {0, 1}∗ satisfying:

I ∀n, |c(n)| ≤ a(n);
I ∀x ∈ {0, 1}∗, x ∈ A⇐⇒ (x , c(|x |)) ∈ B.

I “The class C is helped by the advice c(|x |)” (the same for all

words of each length).

Advices

I A Turing machine can be helped by an advice (one word given

for all inputs of same size).

I If C is a complexity class and a : N→ N a function, then
C/a(n) is the set of languages A such that there exists B ∈ C
and a function c : N→ {0, 1}∗ satisfying:

I ∀n, |c(n)| ≤ a(n);
I ∀x ∈ {0, 1}∗, x ∈ A⇐⇒ (x , c(|x |)) ∈ B.

I “The class C is helped by the advice c(|x |)” (the same for all

words of each length).

Advices (continued)

I P/2n = ?

P({0, 1}∗).

I Even P/1 contains undecidable languages. . .

I P/poly = ∪k≥0P/nk (polynomial-size advice).

I P/poly: conversion advice ←→ boolean circuit.

Advices (continued)

I P/2n = P({0, 1}∗).

I Even P/1 contains undecidable languages. . .

I P/poly = ∪k≥0P/nk (polynomial-size advice).

I P/poly: conversion advice ←→ boolean circuit.

Advices (continued)

I P/2n = P({0, 1}∗).

I Even P/1 contains undecidable languages. . .

I P/poly = ∪k≥0P/nk (polynomial-size advice).

I P/poly: conversion advice ←→ boolean circuit.

Advices (continued)

I P/2n = P({0, 1}∗).

I Even P/1 contains undecidable languages. . .

I P/poly = ∪k≥0P/nk (polynomial-size advice).

I P/poly: conversion advice ←→ boolean circuit.

The question “EXP ⊂ P/poly?”

I Simple diagonalization fails (too many circuits).

I Kannan 1982: NEXPNP 6⊂ P/poly;

I Schnöning 1985: EXPSPACE 6⊂ P/poly.

I Homer & Mocas 1995: ∀c > 0,EXP 6⊂ P/nc .

I Here: symmetry of information (SI) ⇒ EXP 6⊂ P/poly;

I Lee & Romashchenko 2004: (SI) ⇒ EXP 6⊆ BPP
(remark: BPP ⊂ P/poly, Adleman 1978).

The question “EXP ⊂ P/poly?”

I Simple diagonalization fails (too many circuits).

I Kannan 1982: NEXPNP 6⊂ P/poly;

I Schnöning 1985: EXPSPACE 6⊂ P/poly.

I Homer & Mocas 1995: ∀c > 0,EXP 6⊂ P/nc .

I Here: symmetry of information (SI) ⇒ EXP 6⊂ P/poly;

I Lee & Romashchenko 2004: (SI) ⇒ EXP 6⊆ BPP
(remark: BPP ⊂ P/poly, Adleman 1978).

The question “EXP ⊂ P/poly?”

I Simple diagonalization fails (too many circuits).

I Kannan 1982: NEXPNP 6⊂ P/poly;

I Schnöning 1985: EXPSPACE 6⊂ P/poly.

I Homer & Mocas 1995: ∀c > 0,EXP 6⊂ P/nc .

I Here: symmetry of information (SI) ⇒ EXP 6⊂ P/poly;

I Lee & Romashchenko 2004: (SI) ⇒ EXP 6⊆ BPP
(remark: BPP ⊂ P/poly, Adleman 1978).

The question “EXP ⊂ P/poly?”

I Simple diagonalization fails (too many circuits).

I Kannan 1982: NEXPNP 6⊂ P/poly;

I Schnöning 1985: EXPSPACE 6⊂ P/poly.

I Homer & Mocas 1995: ∀c > 0,EXP 6⊂ P/nc .

I Here: symmetry of information (SI) ⇒ EXP 6⊂ P/poly;

I Lee & Romashchenko 2004: (SI) ⇒ EXP 6⊆ BPP
(remark: BPP ⊂ P/poly, Adleman 1978).

Advices of size nc

I Words of {0, 1}n are ordered lexicographically

x1 < x2 < · · · < x2n .

I We fix an “efficient” universal Turing machine U .

Lemma

If A ∈ P/nc then there exists a constant k and a family (pn) of

programs of size k + nc such that

I U(pn, x) = 1 iff x ∈ A;

I U(pn, x) works in polynomial time.

Proof.

By definition, x ∈ A⇐⇒ (x , c(|x |)) ∈ B. Then pn is merely the

concatenation of the program for B and of c(n).

Advices of size nc

I Words of {0, 1}n are ordered lexicographically

x1 < x2 < · · · < x2n .

I We fix an “efficient” universal Turing machine U .

Lemma

If A ∈ P/nc then there exists a constant k and a family (pn) of

programs of size k + nc such that

I U(pn, x) = 1 iff x ∈ A;

I U(pn, x) works in polynomial time.

Proof.

By definition, x ∈ A⇐⇒ (x , c(|x |)) ∈ B. Then pn is merely the

concatenation of the program for B and of c(n).

Advices of size nc

I Words of {0, 1}n are ordered lexicographically

x1 < x2 < · · · < x2n .

I We fix an “efficient” universal Turing machine U .

Lemma

If A ∈ P/nc then there exists a constant k and a family (pn) of

programs of size k + nc such that

I U(pn, x) = 1 iff x ∈ A;

I U(pn, x) works in polynomial time.

Proof.

By definition, x ∈ A⇐⇒ (x , c(|x |)) ∈ B. Then pn is merely the

concatenation of the program for B and of c(n).

Advices of size nc (continued)

Proposition

For all constants c1, c2 ≥ 1, there exists a sparse language A in

DTIME(2n1+c1c2) but not in DTIME(2nc1)/nc2 .

Proof.

We build A by input sizes and word by word. Let t(n) = 2n1+c1c2

and a(n) = n + nc2 . Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ a(n),

U t(n)(p, x1) = 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Advices of size nc (continued)

Proposition

For all constants c1, c2 ≥ 1, there exists a sparse language A in

DTIME(2n1+c1c2) but not in DTIME(2nc1)/nc2 .

Proof.

We build A by input sizes and word by word. Let t(n) = 2n1+c1c2

and a(n) = n + nc2 . Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ a(n),

U t(n)(p, x1) = 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Advices of size nc (continued)

Proposition

For all constants c1, c2 ≥ 1, there exists a sparse language A in

DTIME(2n1+c1c2) but not in DTIME(2nc1)/nc2 .

Proof.

We build A by input sizes and word by word. Let t(n) = 2n1+c1c2

and a(n) = n + nc2 . Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ a(n),

U t(n)(p, x1) = 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Advices of size nc (proof continued)

x2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

U t(n)(p, x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. . .

xk ∈ A⇐⇒ for at least half of the programs p ∈ Vk−1,

U t(n)(p, xk) = 0.

The process stops when Vk is empty, that is, for k = n + nc2 . We

decide that xj 6∈ A for j > k.

Advices of size nc (proof continued)

x2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

U t(n)(p, x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. . .

xk ∈ A⇐⇒ for at least half of the programs p ∈ Vk−1,

U t(n)(p, xk) = 0.

The process stops when Vk is empty, that is, for k = n + nc2 . We

decide that xj 6∈ A for j > k.

Advices of size nc (proof continued)

x2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

U t(n)(p, x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. . .

xk ∈ A⇐⇒ for at least half of the programs p ∈ Vk−1,

U t(n)(p, xk) = 0.

The process stops when Vk is empty, that is, for k = n + nc2 . We

decide that xj 6∈ A for j > k.

Advices of size nc (proof continued)

I A is sparse (at most n + nc2 elements of size n);

I A 6∈ DTIME(2nc1)/nc2 : any program with any advice makes

at least one mistake;

I A ∈ DTIME(2n1+c1c2).

Advices of size nc (proof continued)

I A is sparse (at most n + nc2 elements of size n);

I A 6∈ DTIME(2nc1)/nc2 : any program with any advice makes

at least one mistake;

I A ∈ DTIME(2n1+c1c2).

Advices of size nc (proof continued)

I A is sparse (at most n + nc2 elements of size n);

I A 6∈ DTIME(2nc1)/nc2 : any program with any advice makes

at least one mistake;

I A ∈ DTIME(2n1+c1c2).

Some consequences

Corollary

For all constant c > 0, EXP 6⊂ P/nc and

PSPACE 6⊂ (∪kDSPACE(logk n)/nc).

Corollary

For all k, PP 6⊂ DTIME(nk)/(n − log n).

Some consequences

Corollary

For all constant c > 0, EXP 6⊂ P/nc and

PSPACE 6⊂ (∪kDSPACE(logk n)/nc).

Corollary

For all k, PP 6⊂ DTIME(nk)/(n − log n).

Kolmogorov complexity

I Plain Kolmogorov complexity:

C (x |y) = min{|p| : U(p, y) = x}.

I Resource-bounded Kolmogorov complexity: U is required to

run within a time bound t

C t(x |y) = min{|p| : U t(p, y) = x}.

I Symmetry of information: C (x , y) ' C (x) + C (y |x).

≤: easy direction ≥: hard direction.

I Polynomial-time symmetry of information: easy direction still

holds; hard direction is open!

(true if P = NP, Longpré & Watanabe 1995).

Kolmogorov complexity

I Plain Kolmogorov complexity:

C (x |y) = min{|p| : U(p, y) = x}.

I Resource-bounded Kolmogorov complexity: U is required to

run within a time bound t

C t(x |y) = min{|p| : U t(p, y) = x}.

I Symmetry of information: C (x , y) ' C (x) + C (y |x).

≤: easy direction ≥: hard direction.

I Polynomial-time symmetry of information: easy direction still

holds; hard direction is open!

(true if P = NP, Longpré & Watanabe 1995).

Kolmogorov complexity

I Plain Kolmogorov complexity:

C (x |y) = min{|p| : U(p, y) = x}.

I Resource-bounded Kolmogorov complexity: U is required to

run within a time bound t

C t(x |y) = min{|p| : U t(p, y) = x}.

I Symmetry of information: C (x , y) ' C (x) + C (y |x).

≤: easy direction ≥: hard direction.

I Polynomial-time symmetry of information: easy direction still

holds; hard direction is open!

(true if P = NP, Longpré & Watanabe 1995).

Kolmogorov complexity

I Plain Kolmogorov complexity:

C (x |y) = min{|p| : U(p, y) = x}.

I Resource-bounded Kolmogorov complexity: U is required to

run within a time bound t

C t(x |y) = min{|p| : U t(p, y) = x}.

I Symmetry of information: C (x , y) ' C (x) + C (y |x).

≤: easy direction ≥: hard direction.

I Polynomial-time symmetry of information: easy direction still

holds; hard direction is open!

(true if P = NP, Longpré & Watanabe 1995).

Symmetry of information

Hypothesis (SI)

There exists a polynomial q such that for all p and all words x , y , z

of size |x |+ |y |+ |z | = n:

Cp(n)(x , y |z) ≥ Cp(n)q(n)(x |z) + Cp(n)q(n)(y |x , z)− O(log n).

Remark: stronger version than the usual one

p(n)q(n) instead of q(p(n)).

Symmetry of information

Hypothesis (SI)

There exists a polynomial q such that for all p and all words x , y , z

of size |x |+ |y |+ |z | = n:

Cp(n)(x , y |z) ≥ Cp(n)q(n)(x |z) + Cp(n)q(n)(y |x , z)− O(log n).

Remark: stronger version than the usual one

p(n)q(n) instead of q(p(n)).

Iterations of (SI)

Lemma

Suppose (SI) holds.

Let u1, . . . , un be words of size s and let z be another word. Let

m = ns + |z |. Suppose there exists k such that for all j ≤ n,

C tq(m)log n
(uj |u1, . . . , uj−1, z) ≥ k.

Then C t(u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

Proof.

Show by induction on n that ∀z , if (∀j ,C (uj |u1, . . . , uj−1, z) ≥ k)

then C (u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

C t(u1, . . . , un|z) ≥ C tq(m)(u1, . . . , un/2|z)+

C tq(m)(un/2+1, . . . , un|u1, . . . , un/2, z)− O(log m).

Iterations of (SI)

Lemma

Suppose (SI) holds.

Let u1, . . . , un be words of size s and let z be another word. Let

m = ns + |z |. Suppose there exists k such that for all j ≤ n,

C tq(m)log n
(uj |u1, . . . , uj−1, z) ≥ k.

Then C t(u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

Proof.

Show by induction on n that ∀z , if (∀j ,C (uj |u1, . . . , uj−1, z) ≥ k)

then C (u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

C t(u1, . . . , un|z) ≥ C tq(m)(u1, . . . , un/2|z)+

C tq(m)(un/2+1, . . . , un|u1, . . . , un/2, z)− O(log m).

Links Kolmogorov/nonuniform complexity

Characteristic string χn ∈ {0, 1}2n
of A=n:

χn
i = 1 ⇐⇒ xi ∈ A=n.

Lemma

Suppose that there exist infinitely many n and 1 ≤ i ≤ 2n satisfying

C ir(n)(χn[1..i]) > n + a(n).

Then A 6∈ DTIME(r(n))/a(n).

Proof.

If A ∈ DTIME(r(n))/a(n) then χn[1..i] is computed in time ir(n)

with a program of size a(n) + O(1).

Links Kolmogorov/nonuniform complexity

Characteristic string χn ∈ {0, 1}2n
of A=n:

χn
i = 1 ⇐⇒ xi ∈ A=n.

Lemma

Suppose that there exist infinitely many n and 1 ≤ i ≤ 2n satisfying

C ir(n)(χn[1..i]) > n + a(n).

Then A 6∈ DTIME(r(n))/a(n).

Proof.

If A ∈ DTIME(r(n))/a(n) then χn[1..i] is computed in time ir(n)

with a program of size a(n) + O(1).

Polynomial-size advices — the idea

I U will return χn instead of recognizing each word.

I In EXP, impossible to diagonalize over all advices of

polynomial size

I → we cut the advices into blocks of size n and diagonalize

over these blocks;

I then we “glue” these blocks back thanks to (SI).

Polynomial-size advices — the idea

I U will return χn instead of recognizing each word.

I In EXP, impossible to diagonalize over all advices of

polynomial size

I → we cut the advices into blocks of size n and diagonalize

over these blocks;

I then we “glue” these blocks back thanks to (SI).

Polynomial-size advices — the idea

I U will return χn instead of recognizing each word.

I In EXP, impossible to diagonalize over all advices of

polynomial size

I → we cut the advices into blocks of size n and diagonalize

over these blocks;

I then we “glue” these blocks back thanks to (SI).

Polynomial-size advices — the idea

I U will return χn instead of recognizing each word.

I In EXP, impossible to diagonalize over all advices of

polynomial size

I → we cut the advices into blocks of size n and diagonalize

over these blocks;

I then we “glue” these blocks back thanks to (SI).

Main result

Theorem

If (SI) holds, then EXP 6⊂ P/poly.

Proof.

We build A by input sizes and word by word. Let t(n) = nO(log3 n).

Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p) is 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Main result

Theorem

If (SI) holds, then EXP 6⊂ P/poly.

Proof.

We build A by input sizes and word by word. Let t(n) = nO(log3 n).

Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p) is 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Main result

Theorem

If (SI) holds, then EXP 6⊂ P/poly.

Proof.

We build A by input sizes and word by word. Let t(n) = nO(log3 n).

Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p) is 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.

Proof continued

We go on like this as before, discarding half of the remaining

programs at each step:

xn ∈ A⇐⇒ for at least half of the programs p ∈ Vn−1,

the n-th bit of U t(n)(p) is 0.

We call u(1) the n first bits of the characteristic string of A=n just

defined. Then:

xn+1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p, u(1)) is 0.

(at least half of the programs are wrong on xn+1, even with the

advice u(1)).

Proof continued

We go on like this as before, discarding half of the remaining

programs at each step:

xn ∈ A⇐⇒ for at least half of the programs p ∈ Vn−1,

the n-th bit of U t(n)(p) is 0.

We call u(1) the n first bits of the characteristic string of A=n just

defined. Then:

xn+1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p, u(1)) is 0.

(at least half of the programs are wrong on xn+1, even with the

advice u(1)).

Proof continued

Keep going on: call V1 the set of programs that where right at the

preceding step.

xn+2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

the second bit of U t(n)(p, u(1)) is 0.

And so on, until the next segment u(2) of size n is defined. Then:

x2n+1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p, u(1), u(2)) is 0.

(at least half of the programs make a wrong answer for x2n+1, even

with the advice u(1), u(2)).

Proof continued

Keep going on: call V1 the set of programs that where right at the

preceding step.

xn+2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

the second bit of U t(n)(p, u(1)) is 0.

And so on, until the next segment u(2) of size n is defined. Then:

x2n+1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p, u(1), u(2)) is 0.

(at least half of the programs make a wrong answer for x2n+1, even

with the advice u(1), u(2)).

Proof continued

We define nlog n segments of size n and decide that xj 6∈ A=n for

j > n × nlog n.

I A 6∈ P/poly because for all j ,

C t(n)(u(j)|u(1), . . . , u(j−1)) ≥ n − 1. Thus by iteratively

applying (SI), C t(χn[1..n1+log n]) ≥ nlog n.

I A ∈ EXP.

Conclusion

I Good idea to study (SI): if true, then EXP 6⊂ P/poly; if false,

then P 6= NP. . .

I What about the usual version of (SI) (with time bound

q(p(n)) instead of q(n)p(n))?

I Hope: unconditionnal results by using CAMD (a version of

Kolmogorov complexity based on the class AM).

Outline

1. Introduction and notations

2. Advices of size nc

3. Symmetry of information

4. Polynomial-size advices

	Introduction and notations
	Advices of size nc
	Symmetry of information
	Polynomial-size advices

