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Two complexity classes

I EXP: set of languages recognized in exponential time by a

deterministic Turing machine

— uniform

EXP = ∪k≥0DTIME(2nk
).

I P/poly: set of languages recognized by a family of

polynomial-size boolean circuits (gates ∧, ∨ and ¬, one

circuit per input length)

— nonuniform

I Open question: EXP ⊂ P/poly?

I Main result: polynomial-time symmetry of information implies

EXP 6⊂ P/poly.
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Remarks

I EXP 6= P/poly (there are undecidable languages in P/poly).

I EXP 6⊆ P (time hierarchy theorem).

I Space complexity version:

PSPACE ⊂ NC/poly?

I Even the question “EXP ⊂ L/poly?” is open.
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Advices

I A Turing machine can be helped by an advice (one word given

for all inputs of same size).

I If C is a complexity class and a : N→ N a function, then
C/a(n) is the set of languages A such that there exists B ∈ C
and a function c : N→ {0, 1}∗ satisfying:

I ∀n, |c(n)| ≤ a(n);
I ∀x ∈ {0, 1}∗, x ∈ A⇐⇒ (x , c(|x |)) ∈ B.

I “The class C is helped by the advice c(|x |)” (the same for all

words of each length).
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I P/poly: conversion advice ←→ boolean circuit.
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The question “EXP ⊂ P/poly?”

I Simple diagonalization fails (too many circuits).

I Kannan 1982: NEXPNP 6⊂ P/poly;

I Schnöning 1985: EXPSPACE 6⊂ P/poly.

I Homer & Mocas 1995: ∀c > 0,EXP 6⊂ P/nc .

I Here: symmetry of information (SI) ⇒ EXP 6⊂ P/poly;

I Lee & Romashchenko 2004: (SI) ⇒ EXP 6⊆ BPP
(remark: BPP ⊂ P/poly, Adleman 1978).
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Advices of size nc

I Words of {0, 1}n are ordered lexicographically

x1 < x2 < · · · < x2n .

I We fix an “efficient” universal Turing machine U .

Lemma

If A ∈ P/nc then there exists a constant k and a family (pn) of

programs of size k + nc such that

I U(pn, x) = 1 iff x ∈ A;

I U(pn, x) works in polynomial time.

Proof.

By definition, x ∈ A⇐⇒ (x , c(|x |)) ∈ B. Then pn is merely the

concatenation of the program for B and of c(n).
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Advices of size nc (continued)

Proposition

For all constants c1, c2 ≥ 1, there exists a sparse language A in

DTIME(2n1+c1c2 ) but not in DTIME(2nc1 )/nc2 .

Proof.

We build A by input sizes and word by word. Let t(n) = 2n1+c1c2

and a(n) = n + nc2 . Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ a(n),

U t(n)(p, x1) = 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.
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x2 ∈ A⇐⇒ for at least half of the programs p ∈ V1,

U t(n)(p, x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. . .

xk ∈ A⇐⇒ for at least half of the programs p ∈ Vk−1,

U t(n)(p, xk) = 0.

The process stops when Vk is empty, that is, for k = n + nc2 . We

decide that xj 6∈ A for j > k.
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I A is sparse (at most n + nc2 elements of size n);

I A 6∈ DTIME(2nc1 )/nc2 : any program with any advice makes

at least one mistake;

I A ∈ DTIME(2n1+c1c2 ).
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Some consequences

Corollary

For all constant c > 0, EXP 6⊂ P/nc and

PSPACE 6⊂ (∪kDSPACE(logk n)/nc).

Corollary

For all k, PP 6⊂ DTIME(nk)/(n − log n).
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Kolmogorov complexity

I Plain Kolmogorov complexity:

C (x |y) = min{|p| : U(p, y) = x}.

I Resource-bounded Kolmogorov complexity: U is required to

run within a time bound t

C t(x |y) = min{|p| : U t(p, y) = x}.

I Symmetry of information: C (x , y) ' C (x) + C (y |x).

≤: easy direction ≥: hard direction.

I Polynomial-time symmetry of information: easy direction still

holds; hard direction is open!

(true if P = NP, Longpré & Watanabe 1995).
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Symmetry of information

Hypothesis (SI)

There exists a polynomial q such that for all p and all words x , y , z

of size |x |+ |y |+ |z | = n:

Cp(n)(x , y |z) ≥ Cp(n)q(n)(x |z) + Cp(n)q(n)(y |x , z)− O(log n).

Remark: stronger version than the usual one

p(n)q(n) instead of q(p(n)).
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Iterations of (SI)

Lemma

Suppose (SI) holds.

Let u1, . . . , un be words of size s and let z be another word. Let

m = ns + |z |. Suppose there exists k such that for all j ≤ n,

C tq(m)log n
(uj |u1, . . . , uj−1, z) ≥ k.

Then C t(u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

Proof.

Show by induction on n that ∀z , if (∀j ,C (uj |u1, . . . , uj−1, z) ≥ k)

then C (u1, . . . , un|z) ≥ nk − (n − 1)O(log m).

C t(u1, . . . , un|z) ≥ C tq(m)(u1, . . . , un/2|z)+

C tq(m)(un/2+1, . . . , un|u1, . . . , un/2, z)− O(log m).
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Links Kolmogorov/nonuniform complexity

Characteristic string χn ∈ {0, 1}2n
of A=n:

χn
i = 1 ⇐⇒ xi ∈ A=n.

Lemma

Suppose that there exist infinitely many n and 1 ≤ i ≤ 2n satisfying

C ir(n)(χn[1..i ]) > n + a(n).

Then A 6∈ DTIME(r(n))/a(n).

Proof.

If A ∈ DTIME(r(n))/a(n) then χn[1..i ] is computed in time ir(n)

with a program of size a(n) + O(1).
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Polynomial-size advices — the idea

I U will return χn instead of recognizing each word.

I In EXP, impossible to diagonalize over all advices of

polynomial size

I → we cut the advices into blocks of size n and diagonalize

over these blocks;

I then we “glue” these blocks back thanks to (SI).
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Main result

Theorem

If (SI) holds, then EXP 6⊂ P/poly.

Proof.

We build A by input sizes and word by word. Let t(n) = nO(log3 n).

Let us fix n and define A=n:

x1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p) is 0.

(at least half of the programs give a wrong answer for x1).

Let V1 be the set of programs giving the right answer for x1.
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Proof continued

We go on like this as before, discarding half of the remaining

programs at each step:

xn ∈ A⇐⇒ for at least half of the programs p ∈ Vn−1,

the n-th bit of U t(n)(p) is 0.

We call u(1) the n first bits of the characteristic string of A=n just

defined. Then:

xn+1 ∈ A⇐⇒ for at least half of the programs p of size ≤ n,

the first bit of U t(n)(p, u(1)) is 0.

(at least half of the programs are wrong on xn+1, even with the

advice u(1)).
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Proof continued

We define nlog n segments of size n and decide that xj 6∈ A=n for

j > n × nlog n.

I A 6∈ P/poly because for all j ,

C t(n)(u(j)|u(1), . . . , u(j−1)) ≥ n − 1. Thus by iteratively

applying (SI), C t(χn[1..n1+log n]) ≥ nlog n.

I A ∈ EXP.



Conclusion

I Good idea to study (SI): if true, then EXP 6⊂ P/poly; if false,

then P 6= NP. . .

I What about the usual version of (SI) (with time bound

q(p(n)) instead of q(n)p(n))?

I Hope: unconditionnal results by using CAMD (a version of

Kolmogorov complexity based on the class AM).
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