Symmetry of information and
nonuniform lower bounds

Sylvain Perifel

March 7, 2007

1. Introduction and notations
2. Advices of size n¢
3. Symmetry of information

4. Polynomial-size advices

Two complexity classes

» EXP: set of languages recognized in exponential time by a
deterministic Turing machine

EXP = UysoDTIME(2"™).

Two complexity classes

» EXP: set of languages recognized in exponential time by a
deterministic Turing machine

EXP = UysoDTIME(2"™).

» P/poly: set of languages recognized by a family of
polynomial-size boolean circuits (gates A, V and —, one
circuit per input length)

Two complexity classes

» EXP: set of languages recognized in exponential time by a
deterministic Turing machine — uniform

EXP = UysoDTIME(2"™).

» P/poly: set of languages recognized by a family of
polynomial-size boolean circuits (gates A, V and —, one
circuit per input length) — nonuniform

» Open question: EXP C P/poly?

Two complexity classes

» EXP: set of languages recognized in exponential time by a
deterministic Turing machine — uniform

EXP = UysoDTIME(2"™).

» P/poly: set of languages recognized by a family of
polynomial-size boolean circuits (gates A, V and —, one
circuit per input length) — nonuniform

» Open question: EXP C P/poly?

» Main result: polynomial-time symmetry of information implies
EXP ¢ P/poly.

» EXP # P/poly (there are undecidable languages in P/poly).

» EXP # P/poly (there are undecidable languages in P/poly).

» EXP Z P (time hierarchy theorem).

» EXP # P/poly (there are undecidable languages in P/poly).
» EXP Z P (time hierarchy theorem).

» Space complexity version:

PSPACE C NC/poly?

» EXP # P/poly (there are undecidable languages in P/poly).
» EXP Z P (time hierarchy theorem).

» Space complexity version:

PSPACE C NC/poly?

» Even the question “"EXP C L/poly?” is open.

» A Turing machine can be helped by an advice (one word given
for all inputs of same size).

» A Turing machine can be helped by an advice (one word given
for all inputs of same size).

» If C is a complexity class and a: N — N a function, then
C/a(n) is the set of languages A such that there exists B € C
and a function ¢ : N — {0, 1}* satisfying:

> Vn, [e(n)| < a(n);
» Vx €{0,1}*, x € A<= (x,¢c(|x])) € B.

» A Turing machine can be helped by an advice (one word given
for all inputs of same size).

» If C is a complexity class and a: N — N a function, then
C/a(n) is the set of languages A such that there exists B € C
and a function ¢ : N — {0, 1}* satisfying:

> Vn, [e(n)| < a(n);
» Vx €{0,1}*, x € A<= (x,¢c(|x])) € B.

» “The class C is helped by the advice c(|x|)" (the same for all
words of each length).

Advices (continued)

» P/2" =7

Advices (continued)

> P/2" = P({0,1}%).

Advices (continued)

> P/2" = P({0,1}%).

» Even P/1 contains undecidable languages. . .

Advices (continued)

» P/2" =P({0,1}*).
» Even P/1 contains undecidable languages. . .
» P/poly = Ux>oP/n* (polynomial-size advice).

» P/poly: conversion advice «— boolean circuit.

The question “EXP C P /poly?”

» Simple diagonalization fails (too many circuits).

The question “EXP C P /poly?”

» Simple diagonalization fails (too many circuits).
» Kannan 1982: NEXPNY ¢ P/poly;

» Schnodning 1985: EXPSPACE ¢ P /poly.

The question “EXP C P /poly?”

» Simple diagonalization fails (too many circuits).
» Kannan 1982: NEXPNY ¢ P/poly;
» Schnodning 1985: EXPSPACE ¢ P /poly.

» Homer & Mocas 1995: Vc > 0,EXP ¢ P/n°.

The question “EXP C P /poly?”

>

v

v

v

v

Simple diagonalization fails (too many circuits).
Kannan 1982: NEXPNY ¢ P/poly;

Schnoning 1985: EXPSPACE ¢ P/poly.

Homer & Mocas 1995: Vc > 0,EXP ¢ P/n°.

Here: symmetry of information (SI) = EXP ¢ P /poly;

Lee & Romashchenko 2004: (Sl) = EXP ¢ BPP
(remark: BPP C P/poly, Adleman 1978).

Advices of size n¢

» Words of {0,1}" are ordered lexicographically
X1 < Xop < -+ < Xon.

» We fix an “efficient” universal Turing machine U.

Advices of size n¢

» Words of {0,1}" are ordered lexicographically
X1 < Xop < -+ < Xon.

» We fix an “efficient” universal Turing machine U.

Lemma

If A € P/n€ then there exists a constant k and a family (p,) of
programs of size k + n° such that

> U(pn,x) =1 iffx € A;

» U(pn, x) works in polynomial time.

Advices of size n¢

» Words of {0,1}" are ordered lexicographically
X1 < Xop < -+ < Xon.

» We fix an “efficient” universal Turing machine U.

Lemma

If A € P/n€ then there exists a constant k and a family (p,) of
programs of size k + n° such that
> U(pn,x) =1 iffx € A;

» U(pn, x) works in polynomial time.

Proof.
By definition, x € A <= (x, ¢(|x])) € B. Then p, is merely the
concatenation of the program for B and of c¢(n). O

Advices of size n® (continued)

Proposition

For all constants c1, co > 1, there exists a sparse language A in
DTIME(2" “*2) but not in DTIME(2"")/n2.

Advices of size n® (continued)

Proposition

For all constants c1, co > 1, there exists a sparse language A in
DTIME(2" “*2) but not in DTIME(2"")/n2.

Proof.
We build A by input sizes and word by word. Let t(n) = onttae
and a(n) = n+ n®. Let us fix n and define A=":

for at least half of the programs p of size < a(n),

€A==
X1 Ut(n)(P,Xl) —0.

(at least half of the programs give a wrong answer for x1).

Advices of size n® (continued)

Proposition

For all constants c1, co > 1, there exists a sparse language A in
DTIME(2" “*2) but not in DTIME(2"")/n2.

Proof.
We build A by input sizes and word by word. Let t(n)
and a(n) = n+ n®. Let us fix n and define A=":

. 2n1+c1 [2))

for at least half of the programs p of size < a(n),

€A==
X1 Ut(n)(P,Xl) —0.

(at least half of the programs give a wrong answer for x1).

Let Vi be the set of programs giving the right answer for xi.

Advices of size n® (proof continued)

for at least half of the programs p € Vi,

€ A<—
X2 ut(n)(p7x2) = 0.

(at least half of the remaining programs are wrong on x2).

Advices of size n® (proof continued)

for at least half of the programs p € Vi,

€ A<—
X2 ut(n)(p7x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. ..

Advices of size n® (proof continued)

for at least half of the programs p € Vi,

€ A<—
X2 ut(n)(p7x2) = 0.

(at least half of the remaining programs are wrong on x2).

and so on. ..

for at least half of the programs p € Vj_1,

€A—
Xk ut(n)(P,Xk) =0.

The process stops when V. is empty, that is, for k = n+ n®2. We
decide that x; ¢ A for j > k.

Advices of size n® (proof continued)

> A is sparse (at most n+ n< elements of size n);

Advices of size n® (proof continued)

> A is sparse (at most n+ n< elements of size n);

» A ¢ DTIME(2"")/n%: any program with any advice makes
at least one mistake;

Advices of size n® (proof continued)

> A is sparse (at most n+ n< elements of size n);

» A ¢ DTIME(2"")/n%: any program with any advice makes
at least one mistake;

> A e DTIME(2" %), O

Some consequences

Corollary

For all constant ¢ > 0, EXP ¢ P/n¢ and
PSPACE ¢ (U DSPACE(log* n)/nc).

Some consequences

Corollary

For all constant ¢ > 0, EXP ¢ P/n¢ and
PSPACE ¢ (U DSPACE(log* n)/nc).

Corollary

For all k, PP ¢ DTIME(n*)/(n — log n).

Kolmogorov complexity

» Plain Kolmogorov complexity:
Clxly) = min{lp| : U(p,y) = x}.

Kolmogorov complexity

» Plain Kolmogorov complexity:
Clxly) = min{lp| : U(p,y) = x}.

» Resource-bounded Kolmogorov complexity: U is required to
run within a time bound ¢

Ct(xly) = min{|p| : U'(p,y) = x}.

Kolmogorov complexity

» Plain Kolmogorov complexity:
Clxly) = min{lp| : U(p,y) = x}.

» Resource-bounded Kolmogorov complexity: U is required to
run within a time bound ¢

Ct(xly) = min{|p| : U'(p,y) = x}.

» Symmetry of information: C(x,y) ~ C(x) + C(y|x).
<: easy direction >: hard direction.

Kolmogorov complexity

» Plain Kolmogorov complexity:
Clxly) = min{lp| : U(p,y) = x}.

» Resource-bounded Kolmogorov complexity: U is required to
run within a time bound ¢

Ct(xly) = min{|p| : U'(p,y) = x}.

» Symmetry of information: C(x,y) ~ C(x) + C(y|x).
<: easy direction >: hard direction.

» Polynomial-time symmetry of information: easy direction still
holds; hard direction is open!
(true if P = NP, Longpré & Watanabe 1995).

Symmetry of information

Hypothesis (SI)

There exists a polynomial g such that for all p and all words x, y, z
of size |x| + |y| + |z| = m:

CP(x, y|z) = CPMIN (x|2) + CPID(y|x, 2) — O(log).

Symmetry of information

Hypothesis (SI)

There exists a polynomial g such that for all p and all words x, y, z
of size |x| + |y| + |z| = n:

CP(x, y|z) = CPMIN (x|2) + CPID(y|x, 2) — O(log).

Remark: stronger version than the usual one
p(n)g(n) instead of g(p(n)).

lterations of (SI)

Lemma
Suppose (S1) holds.
Let uq,...,u, be words of size s and let z be another word. Let

m = ns + |z|. Suppose there exists k such that for all j < n,
th(m)logn(Uj‘Ul, ceey U1, Z) > k.

Then C*(u1, ..., un|z) > nk — (n—1)O(log m).

lterations of (SI)

Lemma
Suppose (S1) holds.
Let uq,...,u, be words of size s and let z be another word. Let

m = ns + |z|. Suppose there exists k such that for all j < n,
th(m)logn(uj"ul, ceey U1, Z) > k.
Then C*(u1, ..., un|z) > nk — (n—1)O(log m).

Proof.
Show by induction on n that Vz, if (Vj, C(uj|uy, ..., uj—1,2z) > k)
then C(u1, ..., uslz) > nk — (n—1)O(log m).

Ct(ula ety Un|Z) Z C.tq(m)(u17 T Un/2|Z)+

th(m)(un/ngl, s Uplu, .. up o, z) — O(log m). [

Links Kolmogorov/nonuniform complexity

Characteristic string x" € {0,1}%" of A=":
Xi =1« xe A7".

Lemma

Suppose that there exist infinitely many n and 1 < i < 2" satisfying
CrM(x"[1..1]) > n+ a(n).

Then A ¢ DTIME(r(n))/a(n).

Links Kolmogorov/nonuniform complexity

Characteristic string x" € {0,1}%" of A=":
Xi=1<+= x,€ A7".
Lemma
Suppose that there exist infinitely many n and 1 < i < 2" satisfying
CM(x"[1..1]) > n+ a(n).
Then A ¢ DTIME(r(n))/a(n).

Proof.
If Ae DTIME(r(n))/a(n) then x"[1../] is computed in time ir(n)
with a program of size a(n) + O(1). O

Polynomial-size advices — the idea

» U will return x"” instead of recognizing each word.

Polynomial-size advices — the idea

» U will return x"” instead of recognizing each word.

» In EXP, impossible to diagonalize over all advices of
polynomial size

Polynomial-size advices — the idea

» U will return x"” instead of recognizing each word.

» In EXP, impossible to diagonalize over all advices of
polynomial size

» — we cut the advices into blocks of size n and diagonalize
over these blocks;

Polynomial-size advices — the idea

» U will return x"” instead of recognizing each word.

» In EXP, impossible to diagonalize over all advices of
polynomial size

» — we cut the advices into blocks of size n and diagonalize
over these blocks;

> then we “glue” these blocks back thanks to (SI).

Main result

Theorem
If (S1) holds, then EXP ¢ P /poly.

Main result

Theorem
If (S1) holds, then EXP ¢ P /poly.
Proof.

We build A by input sizes and word by word. Let t(n) = pO(iog® n)
Let us fix n and define A=™:

for at least half of the programs p of size < n,

€A
Xl 7 the first bit of Ut (p) is 0.

(at least half of the programs give a wrong answer for x1).

Main result

Theorem
If (S1) holds, then EXP ¢ P /poly.

Proof.
We build A by input sizes and word by word. Let t(n) = n©(og*n),
Let us fix n and define A=":

for at least half of the programs p of size < n,

€A
Xl the first bit of 2/1(")(p) is 0.

(at least half of the programs give a wrong answer for x1).

Let V4 be the set of programs giving the right answer for x;.

Proof continued

We go on like this as before, discarding half of the remaining
programs at each step:

for at least half of the programs p € V,,_1,

n € A<= . .
X the n-th bit of L/ (p) is 0.

Proof continued

We go on like this as before, discarding half of the remaining
programs at each step:

for at least half of the programs p € V,,_1,

n € A<= . .
X the n-th bit of L/ (p) is 0.

We call uD) the n first bits of the characteristic string of A=" just
defined. Then:

for at least half of the programs p of size < n,

nt1 €A . . :
1 7 the first bit of Ut (p, u)y is 0.

(at least half of the programs are wrong on x,41, even with the
advice u).

Proof continued

Keep going on: call V; the set of programs that where right at the
preceding step.

for at least half of the programs p € Vi,

n A .
Xnt2 €A e second bit of Ut (p, u®yis 0.

Proof continued

Keep going on: call V; the set of programs that where right at the
preceding step.

for at least half of the programs p € Vi,

n € A
2 " the second bit of Ut (p, u®yis 0.

And so on, until the next segment u(® of size n is defined. Then:

for at least half of the programs p of size < n,

nt1 €A .
X2+ — the first bit of 41" (p, ™, u?) is 0.

(at least half of the programs make a wrong answer for xop41, even
with the advice u(, u(?),

Proof continued

We define n'°8" segments of size n and decide that xj & A=" for
j > nx nl°gn
» A ¢ P/poly because for all j,
CtM(wW)uM, .. uU=1) > n— 1. Thus by iteratively
applying (SI), Ct(x"[L..n**°e"]) > plogn,
» A€ EXP. O

Conclusion

» Good idea to study (SI): if true, then EXP ¢ P/poly; if false,
then P # NP. ..

» What about the usual version of (SI) (with time bound
a(p(n)) instead of q(n)p(n))?

» Hope: unconditionnal results by using CAMD (a version of
Kolmogorov complexity based on the class AM).

1. Introduction and notations
2. Advices of size n¢
3. Symmetry of information

4. Polynomial-size advices

	Introduction and notations
	Advices of size nc
	Symmetry of information
	Polynomial-size advices

