Dynamic of cyclic automata over \mathbb{Z}^{2}

Martín Matamala - Eduardo Moreno
mmatamal@dim.uchile.cl - emoreno@dim.uchile.cl
Departamento de Ingeniería Matemática
Universidad de Chile, Santiago, Chile

Cyclic Automata Network

- Graph $G=(V, E)$
- Set of states: $Q=\{0,1, \ldots, q-1\}$
- Each vertex v has a state $x_{v} \in Q$
- Dynamic F : If a vertex v with state x_{v} has a neighbor with state $s\left(x_{v}\right)=x_{v}+1 \bmod q$ then the new state of x_{v} is $s\left(x_{v}\right)$, if not, the state does not change.

Example

Some definitions

Cycles:

Step 0 Step 1 Step 2 Step 3 Step 4

- Jump $J(C)=3$ and Length $L(C)=4$
- Period 4

Some definitions 2

Skeleton $E s(x)$: Subgraph of G with the same set of vertices. An edge connect two vertices with state p and p^{\prime} if and only if $p=s\left(p^{\prime}\right), p=p^{\prime}$ or $s(p)=p^{\prime}$.

- $E s(x) \subseteq E s(F(x))$
- In a finite number of iteration, the skeleton becomes stable.

Example

Step 0

Step 1

Step 2

Predicting the future

Proposition 1 (Goles and Matamala). Let x be an

 assignment and assume that $E s(x)$ is stable. Then for all $L \geq 1$ we have1. If $a(v, L, x) \leq 0$ then $F_{v}^{l}(x)=x_{v} \forall l \in\{1, \ldots, L\}$.
2. If $a(v, L, x)>0$ then

$$
F_{v}^{l}(x)=s^{a(v, L, x)}\left(x_{v}\right) \forall l \in\{h(v, L, x), \ldots, L\} .
$$

$a(v, L, x)$ the maximum of the jumps of all the walks of length less or equal than L starting in v on x.
$h(v, L, x)$ be the minimum of the lengths among all walks starting in x which reach the maximum jump $a(v, L, x)$.

Some definitions 3

- Efficiency of a path P : is the quotient between its jump and its length.

$$
e(P, x)=\frac{J(P, x)}{L(P)}
$$

- Efficiency of the system or global efficiency: is the maximum efficiency over all closed walks in the skeleton.

Previous results [G. \& M.]

- Closed walks of global efficiency take control of the dynamic.
- The length of the period divides the least common multiple of the length of the closed walks with global efficiency. [non-polynomial upper bound]
- This upper bound can be reached.

Reaching the upper bound

Our goal

To obtain non-polynomial periods in the 2-dimensional lattice \mathbb{Z}^{2}.

Complete Skeleton

We can decompose the skeleton in "tiles" (cycles of length 4). Its jumps could be 0,3 or 4. Property: We can sum the jump of some cycles

$$
J(\gamma, x)=J\left(\gamma_{1}, x\right)+J\left(\gamma_{2}, x\right)
$$

Some results

If the skeleton is complete, the efficiency and periods possibles are:

	$q \geq 5$	$q=4$	$q=3$
$e(x)$	0	0 or 1	$\geq 3 / 4$
Periods	1	1 or 4	any even ≥ 18

also
For $q=3$ and for any $r \in \mathbb{Q} \cup\left[\frac{3}{4}, 1\right]$ exists a Q-assignment x such that $e(x)=r$

Our main result

How to "repeat" the idea of previous construction?

Main problems:

- Construction of cycles with a desired length
- Independent evolution of cycles
- Assure the stability of the skeleton

Steps of the construction

1. Good sequences of states
2. Construction (iteratively) of a cycle with a desired length
3. Completion to a rectangle
4. Extension for to embed the construction in the plane
5. Interaction between different cycles

Good sequences \mathcal{A}

1. For every $i=0, \ldots, k p-1, a_{i+1} \bmod k p \in\left\{a_{i}, s\left(a_{i}\right)\right\}$ and $a_{i+3} \bmod k p \notin\left\{a_{i}, s\left(a_{i}\right)\right\}$.
2. The jump $J(a)$ of the sequence a is $k q$, where $J(a):=\sum_{i=0}^{k p-2} \mu\left(a_{i}, a_{i+1}\right)$.
3. For every $j \in\{0, \ldots, k-1\}$ and for every $i=0, \ldots, k p-1$ the jump of the subsequence $\left(x_{i}, \ldots, x_{i+j p \bmod k p}\right)$ belongs to $\{j q-1, j q, j q+1\}$.

Example: $(q=6) 001234450012344500123345$

Main cycles

- $\forall a \in \mathcal{A}$ the skeleton is the same.
- $F(x(a))=x(\sigma(a))$.
- $E s\left(G_{k}, F(x(a))\right)=E s\left(G_{k}, x(a)\right)$.

Completion to a rectangle

Embeding the construction in the plane

Interaction between cycles

Theorem 1. For every $q \geq 5$ and every even integer p such that $q<p \leq\left\lfloor\frac{3}{2} q\right\rfloor$ and, for every integer $m \geq 1$ and integers $k_{1}, k_{2}, \ldots, k_{m}$ there exists a Q-assignment y of K and a vertex v in K such that
$T_{v}(y)=p \cdot \operatorname{lcm}_{i=1, \ldots, m}\left\{k_{i}\right\}$.
Idea: Cycles with sequence a^{i} embedded equidistant to a particular vertex, where

$$
a^{i}=(1,2,2,3, \ldots, 0)^{\left(k_{i}-1\right)}(1,1,2,3, \ldots, 0)
$$

Final Example

- $Q=\{0,1,2,3,4,5\}$
- $e(x)=\frac{3}{4}$
- Sequences $(00123445)^{k_{i}-1}(00123345)$
- $k_{1}=2, k_{2}=3, k_{3}=5$
- Period $=8 \cdot \operatorname{lcm}(2,3,5)=240$

