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Cyclic Automata Network

• Graph G = (V, E)

• Set of states: Q = {0, 1, . . . , q − 1}

• Each vertex v has a state xv ∈ Q

• Dynamic F : If a vertex v with state xv has a
neighbor with state s(xv) = xv + 1 mod q
then the new state of xv is s(xv), if not, the
state does not change.
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Some definitions

Cycles:
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• Jump J(C) = 3 and Length L(C) = 4

• Period 4
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Some definitions 2

Skeleton Es(x): Subgraph of G with the same
set of vertices. An edge connect two vertices
with state p and p′ if and only if p = s(p′), p = p′ or
s(p) = p′.

• Es(x) ⊆ Es (F (x))

• In a finite number of iteration, the skeleton
becomes stable.
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Example
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Predicting the future

Proposition 1 (Goles and Matamala). Let x be an
assignment and assume that Es(x) is stable. Then for all
L ≥ 1 we have

1. If a(v, L, x) ≤ 0 then F l
v(x) = xv ∀l ∈ {1, . . . , L}.

2. If a(v, L, x) > 0 then

F l
v(x) = sa(v,L,x)(xv) ∀l ∈ {h(v, L, x), . . . , L}.

a(v, L, x) the maximum of the jumps of all the walks of length

less or equal than L starting in v on x.

h(v, L, x) be the minimum of the lengths among all walks starting

in x which reach the maximum jump a(v, L, x).
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Some definitions 3

• Efficiency of a path P: is the quotient between
its jump and its length.

e(P, x) =
J(P, x)

L(P )

• Efficiency of the system or global efficiency: is
the maximum efficiency over all closed walks
in the skeleton.
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Previous results [G. & M.]

• Closed walks of global efficiency take control
of the dynamic.

• The length of the period divides the least
common multiple of the length of the closed
walks with global efficiency. [non-polynomial
upper bound]

• This upper bound can be reached.

Dynamic of cyclic automata over Z
2 – p.9/21



Reaching the upper bound
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Our goal

To obtain non-polynomial periods
in the 2-dimensional lattice Z2.
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Complete Skeleton

We can decompose the skeleton in “tiles” (cycles
of length 4). Its jumps could be 0, 3 or 4.
Property: We can sum the jump of some cycles

J(γ, x) = J(γ1, x) + J(γ2, x)

2 1 0

210
γ1 γ2
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Some results

If the skeleton is complete, the efficiency and
periods possibles are:

q ≥ 5 q = 4 q = 3

e(x) 0 0 or 1 ≥ 3/4

Periods 1 1 or 4 any even ≥ 18

also

For q = 3 and for any r ∈ Q∪ [34 , 1] exists a Q-assignment

x such that e(x) = r
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Our main result

How to “repeat” the idea of previous
construction?

Main problems:
• Construction of cycles with a desired length
• Independent evolution of cycles
• Assure the stability of the skeleton
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Steps of the construction

1. Good sequences of states

2. Construction (iteratively) of a cycle with a
desired length

3. Completion to a rectangle

4. Extension for to embed the construction in the
plane

5. Interaction between different cycles
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Good sequences A

1. For every i = 0, . . . , kp − 1, ai+1 mod kp ∈ {ai, s (ai)} and
ai+3 mod kp /∈ {ai, s (ai)}.

2. The jump J (a) of the sequence a is kq, where
J (a) :=

∑kp−2

i=0
µ (ai, ai+1).

3. For every j ∈ {0, . . . , k − 1} and for every
i = 0, . . . , kp − 1 the jump of the subsequence
(xi, . . . , xi+jp mod kp) belongs to {jq − 1, jq, jq + 1}.

Example: (q = 6) 001234450012344500123345
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Main cycles
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• ∀a ∈ A the skeleton is the same.
• F (x(a)) = x(σ(a)).

• Es(Gk, F (x(a))) = Es(Gk, x(a)).
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Completion to a rectangle
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Embeding the construction in the plane
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Interaction between cycles

Theorem 1. For every q ≥ 5 and every even integer p
such that q < p ≤ b3

2qc and, for every integer m ≥ 1 and

integers k1, k2, . . . , km there exists a Q-assignment y of
K and a vertex v in K such that
Tv (y) = p · lcmi=1,...,m{ki}.

Idea: Cycles with sequence ai embedded
equidistant to a particular vertex, where

ai = (1, 2, 2, 3, . . . , 0)(ki−1)(1, 1, 2, 3, . . . , 0)
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Final Example

• Q = {0, 1, 2, 3, 4, 5}

• e(x) = 3
4

• Sequences (00123445)ki−1(00123345)

• k1 = 2, k2 = 3, k3 = 5

• Period = 8 · lcm(2, 3, 5) = 240
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