Laboratoire de I'Informatique du Parallélisme

' Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL® 6668

Cosmological Simulations using Grid Middleware

Yves Caniou ,

Eddy Caron,

Benjamin Depardon , March 2007
Héléne Courtois ,

Romain Teyssier

Research ReporttN\2007-11

Ecole Normale Supérieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquel:i p@ns- 1 yon. fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Cosmological Simulations using Grid Middleware

Yves Caniou , Eddy Caron , Benjamin Depardon , Hélene Courtois gRoheyssier
March 2007

Abstract
Large problems ranging from numerical simulation can now be solved throug
the Internet using grid middleware. This report describes the diffeteipis
involved to make available a service in theed grid middleware. The cos-
mological RaMSES application is taken as an example to detail the implemen-
tation. Furthermore, several results are given in order to show thditsenfe
using DET, among which the transparent usage of numerous clusters and a
low overhead (finding the right resource and submitting the computing task).

Keywords: Grid computing, cosmological simulations, DIET

Résumé
Les problémes & large échelle issus de la simulation numérique peuvent dé-
sormais étre résolus sur des serveurs distants en utilisant des intergiciels d
grille. Ce rapport décrit les différentes étapes nécessaires padifiggi’ une
application en utilisant I'intergiciel DIET. Les détails de la mise en ceuvre sont
décrits au travers de I'application de cosmologie appekeedsEs. Enfin, nous
montrerons expérimentalement les avantages de cette approche, panelslesq
une utilisation transparente des ressources pour un faible codt.

Mots-clés: Calcul sur grille, simulations de cosmologie, DIET

Cosmological Simulations using Grid Middleware 1

1 Introduction

One way to access the aggregated power of a collection of heterogemeahines is to use a grid
middleware, such asIBT [3], GridSolve [L5] or Ninf[6]. It addresses the problem of monitoring the
resources, of handling the submissions of jobs and as an example theninttansfer of input and
output data, in place of the user.

In this paper we present how to run cosmological simulations usingAvsRs application along
with the DIET middleware. Based on this example, we will present the basic implementationeshe
one must follow in order to write the correspondingeD client and server for any service. The
remainder of the paper is organized as follows: SecBgresents the [ET middleware. Section
4 describes the Rvses cosmological software and simulations, and how to interface it wittrD
We show how to write a client and a server in Sectoririnally, Sectiort presents the experiments
realized on Grid’5000, the French Research Grid, and we concludechmng8.

2 Related Work

Several approaches exist for porting applications to grid platformsnebes include classic message-
passing, batch processing, web portals, and GridRPC sys@mEHis last approach implements a
grid version of the classic Remote Procedure Call (RPC) model. Clients schomitutation requests
to a scheduler that locates one or more servers available on the gridiuBinges frequently applied
to balance the work among the servers and a list of available servers Imsé&rio the client; the client
is then able to send the data and the request to one of the suggestes wesabre their problem. To
make effective use of today’s scalable resource platforms, it is impddanisure scalability in the
middleware layers.

Different kind of middleware are compliant to GridRPC paradigm. Among theetSblve P],
Ninf [6], OmniRPC B] and DIET (see Sectior8) have particularly pursued research involving the
GridRPC paradigm. NetSolve, developed at the University of Tennekseaville allows the con-
nection of clients to a centralized agent and requests are sent to séivisrsentralized agent main-
tains a list of available servers along with their capabilities. Servers ra@gortmation about their
status at given intervals, and scheduling is done based on simple modetegrby the application
developers. Some fault tolerance is also provided at the agent levelisiimNe s (Network Enabled
Servers) system developed at the Grid Technology Research G&li8€rin Tsukuba. Close to Net-
Solve in its initial design choices, it has evolved towards several interesgipgpaches using either
Globus [L4] or Web Services]1]. Fault tolerance is also provided using Condor and a checkpointing
library [7]. As compared to the Bis systems described above|E, developed by GRAAL project
at ENS Lyon, France is interesting because of the use of distributedidiiteto provide better scal-
ability, the ability to tune behavior using several APIs, and the useaH&2 as a core middleware.
Moreover DET provides plug-in scheduler capability, fault tolerance mechanism, a warkfian-
agement support and a batch submission manader\}e plan to use these new features for the
cosmological application described in Sectibn

2 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

3 DIET overview

3.1 DIET architecture

DIeT [3] is built upon the client/agent/server paradigmCAent is an application that usesiBr to
solve problems. Different kinds of clients should be able to connectita D from a web page, a
PSE such as Scildpor from a program written in C, C++, Java or Fortran. Computations@me ty
servers running &erver Daemons (&D). A SED encapsulates a computational server. For instance
it can be located on the entry point of a parallel computer. The informatioadstty a &D is a list

of the data available on its server, all information concerning its load (famgke available memory
and processor) and the list of problems that it can solve. The latter el@rek to its parent agent.
The hierarchy of scheduling agents is made dMaster Agent (MA) andLocal Agents (LA) (see
Figurel).

When a Master Agent receives a computation request from a clienttsagatect computation
abilities from servers (through the hierarchy) and chooses the bestamording to some scheduling
heuristics. The MA sends back a reference to the chosen server.nAadie be connected to a MA
by a specific name server or by a web page which stores the various M#dins (and the available
problems). The information stored on an agent is the list of requests, thieanwf servers that can
solve a given problem and information about the data distributed in its subfr@eperformance
reasons, the hierachy of agents should be deployed depending amdndying network topology.

Finally, on the opposite of GridSolve and Ninf which rely on a classic saok@imunication layer
(nevertheless several problems to this approach have been pointeacbuds the lack of portability
or the limitation of opened sockets),lExX uses WRBA. Indeed, distributed object environments,
such aslavg DCOM or CoRBA have proven to be a good base for building applications that manage
access to distributed services. They provide transparent communicatiogirogeneous networks,
but they also offer a framework for the large scale deployment of disérdbapplications. Moreover,
CORBA systems provide a remote method invocation facility with a high level of transparehich
does not affect performancg]|

3.2 How to add a new grid application within DIET ?

The main idea is to provide some integrated level for a grid application. Figgliews these different
kinds of level.

Theapplication servermust be written to give to [ET the ability to use the application. A simple
APl is available to easily provide a connection between tter3erver and the application. The main
goals of theDIET server are to answer to monitoring queries from its responsible Local Agent and
launch the resolution of a service, upon an application client request.

Theapplication client is the link between high-level interface and theeD client, and a simple
API is provided to easily write one. The main goals of T client are to submit requests to a
scheduler (called Master Agent) and to receive the identity of the cheseersand final step, to send
the data to the server for the computing phase.

'http: // www. sci | ab. or g/

http://www.scilab.org/

Cosmological Simulations using Grid Middleware 3

CLIENT
. ' Web page,
High Level Interface | Seilab..
3 C,C++,
1 Fortan, Java...

Client: Application view

K | C++,
DIET Client ' CORBA

Distributed scheduler

DIET

SERVER
| C++,
L DIET Server | CORBA
3 C, C++,
| Fortan, Java...

' C, C++, MPI,
1Fortran, Java...

Server: Application view

Application

Figure 1: Different interaction layers betweemeD core and application view

4 RAMSES overview

RAMSES 2 is a typical computational intensive application used by astrophysicists tg Stador-
mation of galaxies. RMSESis used, among other things, to simulate the evolution of a collisionless,
self-gravitating fluid called “dark matter” through cosmic time (see Figyréndividual trajectories

of macro-particles are integrated using a state-of-the-art “N bodyrspbaupled to a finite volume
Euler solver, based on the Adaptive Mesh Refinement technics. Theutatiopal space is decom-

posed among the available processors usimgsh partitionningtrategy based on the Peano—Hilbert
cell ordering [L2,/13].

Figure 2: Time sequence (from left to right) of the projected density fielccwsanological simulation
(large scale periodic box).

Cosmological simulations are usually divided into two main categories. La@e periodic
boxes (see Figurd) requiring massively parallel computers are performed on very longetbjime
(usually several months). The second category stands for muchdaséiscale “zoom simulations”.
One of the particularity of the HORIZONproject is that it allows the re-simulation of some areas of

ht t p: // ww. proj et - hori zon. fr/

http://www.projet-horizon.fr/

4 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

800 900 1000 1100 1200 1300

Figure 3: Re-simulation on a supercluster of galaxies to increase thetiesolu

interest for astronomers.

For example in Figur8, a supercluster of galaxies has been chosen to be re-simulated atia highe
resolution (highest number of particules) taking the initial information and tumdbary conditions
from the larger box (of lower resolution). This is the latter category werdesested in. Performing
a zoom simulation requires two steps: the first step consists of usiMsRS on a low resolution
set of initial conditiong.e., with a small number of particles) to obtain at the end of the simulation a
catalog of “dark matter halos”, seen in Figiras high-density peaks, containing each halo position,
mass and velocity. A small region is selected around each halo of the cdtalegyich we can start
the second step of the “zoom” method. This idea is to resimulate this specificttalmach better
resolution. For that, we add in the Lagrangian volume of the chosen halonmtetparticles, in order
to obtain more accurate results. Similar “zoom simulations” are performed atigddor each entry
of the halo catalog and represent the main resource consuming partobiiet.

RAMSES simulations are started from specific initial conditions, containing the initial peurtic
masses, positions and velocities. These initial conditions are read frararrbmary files, generated
using a modified version of thef@ric2 code. This application generates Gaussian random fields at

Shttp://web. nit.edu/ edbert

 http://web.mit.edu/edbert

Cosmological Simulations using Grid Middleware 5

different resolution levels, consistent with current observational alatizined by the WMAP satel-
lite observing the cosmic microwave background radiation. Two types of icibiatlitions can be
generated with GAFIC:

e single level: this is the “standard” way of generating initial conditions. Tlseltimg files are
used to perform the first, low-resolution simulation, from which the halo cgialextracted.

e multiple levels: this initial conditions are used for the “zoom simulation”. Theltesyfiles
consist of multiple, nested boxes of smaller and smaller dimensions, as feiaRua®lls. The
smallest box is centered around the halo region, for which we have locatligydigh accuracy
thanks to a much larger number of particles.

The result of the simulation is a set of “snaphots”. Given a list of time stepsxfmansion factor),
RAMSES outputs the current state of the universe.(the different parameters of each particules) in
Fortran binary files.

These files need post-processing withl&s softwares: HaloMaker, TreeMaker and Galaxy-
Maker. These three softwares are meant to be used sequentially, feheimoproducing different
kinds of information:

e HaloMaker: detects dark matter halos present AMRES output files, and creates a catalog of
halos

e TreeMaker: given the catalog of halos, TreeMaker builds a mergeritrfeows the position,
the mass, the velocity of the different particules present in the halos thamgic time

e GalaxyMaker: applies a semi-analytical model to the results of TreeMaKerro galaxies,
and creates a catalog of galaxies

Figure4 shows the sequence of softwares used to realise a whole simulation.

5 Interfacing RAMSES within D IET

5.1 Architecture of underlying deployment

The current version of RMSES requires a NFS working directory in order to write the output files,
hence restricting the possible types of solving architectures. Eaeh $2rver will be in charge of

a set of machines (typically 32 machines to ru2sé* particules simulation) belonging to the same
cluster. For each simulation the generation of the initial conditions files, tleegsong and the post-
processing are done on the same cluster: the server in charge of a simulatimges the whole
process.

5.2 Server design

The DET server is a library. So the &MSES server requires to define timai n() function, which
contains the problem profile definition and registration, and the solvingitmavhose parameter
only consists of the profile and named after the service nawleye_ser vi ceNane.

“http:// map. gsf c. nasa. gov

http://map.gsfc.nasa.gov

6 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

Retreiving simulation
parameters

Setting the MPI
environment

GRAFIC1: first run

If nb levels == 0 No zoom, no offset

rollWhiteNoise : centering
according to the offsets
cx, cy and cz
GRAFIC1: second run
with offsets
e 6 @ GRAFIC1
@ @ @ GRAFIC2
© @ GRAFIC2
@ GRAFIC2
GRAFIC2
RAMSES3d (MPI code)

HaloMaker
@ @ @ onl
shapshot
TreeMaker : per process
Post-processing @
HaloMaker’s outputs, GalaxyMaker :
Post—processing
Stopping the environme Treemaker's outputs
Sending the @)

post—processing to
the client O

Figure 4: Workflow of a simulation

The RamsEs solving function contains the calls to the different programs used for thdagion,
and which will manage the MPI environment required byMSES. It is recorded during the profile
registration.

The &ED is launched with a call tali et _SeD() in themai n() function, which will never
return (except if some errors occur). Thelsforks the solving function when requested.

Here is the main structure of abr server:

#i ncl ude "Dl ET_server. h"

/= Defining the service function */
int solve service(diet _profile_t =pb)

{ ...}

[+ Defining the main function */
int main(int argc, charx argv[])
{
/* Initialize service table with the nunber of services =*/
[+ Define the services’ profiles */

[+ Add the services =/

/* Free the profile descriptors =/

Cosmological Simulations using Grid Middleware 7

/= Launch the SeD */
}

5.2.1 Defining services

To match client requests with server services, clients and servers neusieusame problem descrip-
tion. A unified way to describe problems is to use a name and define its arguréets_AMSES
service is described by a profile description structure callegt _profil e_desc_t . Among its
fields, it contains the name of the service, an array which does not cata&inbut their character-
istics, and three integetsast _in, |ast_inout andl ast _out. The structure is defined in
Dl ET_server. h.

The array is of sizéast_out + 1. Arguments can be:

IN: Data are sent to the server. The memory is allocated by the user.

INOUT: Data, allocated by the user, are sent to the server and brbagktinto the same memory
zone after the computation has completedhout any copy. Thus freeing this memory while
the computation is performed on the server would result in a segmentationfaritdata are
brought back onto the client.

OUT: Data are created on the server and brought back into a newlyteltboane on the client. This
allocation is performed by [BT. After the call has returned, the user can find its result in the
zone pointed by thealuefield. Of course, DET cannot guess how long the user needs these
data for, so it lets him/her free the memory withet _free_data().

The fieldslast_in, last_inoutandlast_outof the structure respectively point at the indexes in the
array of the last IN, last INOUT and last OUT arguments.

Functions to create and destroy such profiles are defined with the presdigtiow. Note that if a
server can solve multiple services, each profile should be allocated.

diet profile desc_t *diet profile_desc_alloc(const char* path, int last_in,
int last_inout, int last_out);

diet profile desc_t *diet _profile_desc_alloc(int last_in, int last_inout,
int last_out);

int diet_profile_desc_free(diet_profile_desc_t *desc);

The cosmological simulation is divided in two serviceansesZoonil andr ansesZoon®,
they represent the two parts of the simulation. The first one is used to degeinteresting parts of
the universe, while the second is used to study these parts in detailsaffBes Zoon® service uses
nine data. The seven firsts are IN data, and contain the simulation parameters

¢ a file containing parameters forARISES
e resolution of the simulation (number of particules)
e size of the initial conditions (id/pc.h~1)

e center’s coordinates of the initial conditions (3 coordinatgsc, andc.)

8 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

e number of zoom levels (number of nested boxes)

The last two are integers for error controls, and a file containing thétseshtained from the simula-
tion post-processed with £&&1Ccs. This conducts to the following inclusion in the server code (note:
the same allocation must be performed on the client side, witlitie¢ _pr ofi | e_t structure):

/= arg.profile is a diet_profile_desc_t * =/
arg.profile = diet _profile_desc_alloc("ransesZoon2", 6, 6, 8);

Every argument of the profile must then be set wiitet _generi c_desc_set () defined in
DI ET_server. h, like:

di et _generic_desc_set(di et _parameter(pb,0), D ET_FILE, D ET_CHAR);
di et _generic_desc_set(di et _parameter(pb,1), D ET_SCALAR, DI ET I NT);

5.2.2 Registering services

Every defined service has to be added in the service table beforelhés$aunched. The complete
service table APl is defined iDl ET_ser ver. h:

typedef int (* diet_solve t)(diet profile t *);

int diet _service table_ init(int max_size);

int diet_service table add(diet _profile_desc_t *profile, NULL,
diet_solve_t solve func);

void diet_print_service_table();

The first parameteprofile, is a pointer on the profile previously described (secBdhl). The
second parameter concerns the convertor functionality, but this is sabpg of this paper and never
used for this application. The paramesaive_funds the type of thesol ve_ser vi ceNane()
function: a function pointer used byiBr to launch the computation. Then the prototype is:

int solve ranmsesZoon?2(diet profile_t* ph)
{

/= Set data access x/

/= Conputation =/

}

5.2.3 Data management

The first part of the solve function (callexbl ve_r ansesZoon®()) is to set data access. The
API provides useful functions to help coding the solve functog., get IN arguments, set OUT
ones, withdi et _* _get () functions defined iDl ET_dat a. h. Do not forget that the necessary
memory space for OUT arguments is allocated bgD So the user should call tli et _* _get ()
functions to retrieve the pointer to the zone his/her program should writ@tsefTNOUT and OUT
arguments, one should use theet _* _desc_set () definedinDl ET_ser ver . h. These should
be called within “solve” functions only.

diet file _get(diet _paraneter(pb,0), NULL, &arg size, &nm Path);
di et _scal ar_get (di et _paraneter(pb,1), & esol, NULL);

Cosmological Simulations using Grid Middleware 9

di et _scal ar_get (di et _paraneter(pb, 2), &size, NULL);
di et _scal ar _get (di et _paraneter(pb, 3), &cx, NULL);

di et _scal ar_get (di et _paraneter(pb, 4), &cy, NULL);

di et _scal ar_get (di et _paraneter(pb,5), &cz, NULL);

di et _scal ar_get (di et _paraneter(pb, 6), &bBox, NULL);

The results of the simulation are packed into a tarball file if it succeeded. Wauneed to return
this file and an error code to inform the client whether the file really contaisiglts or not. In the
following code, thedi et _fil e_set () function associates theiBr parameter with the current
file. Indeed, the data should be available foeD when it sends the resulting file to the client.

char+ tgzfile = NULL;

tgzfile = (charx)malloc(tarfile.length()+1);

strcpy(tgzfile, tarfile.c_str());

diet file_set(diet_paraneter(pb,7), DI ET_VOLATILE, tgzfile);
5.3 Client

In the DIET architecture, a client is an application which usegDto request a service. The goal of
the client is to connect to a Master Agent in order to dispose @@ Bhich will be able to solve the
problem. Then the client sends input data to the chosh &d, at the end of computation, retrieve
output data from the &D. DIET provides API functions to easily and transparently access the D
platform.

5.3.1 Structure of a client program

Since the client side of [BT is a library, a client program has to define the n() function: it uses
DIET through function calls. Here is the main structure of i@ Dclient:

#include "DIET client.h"
int main(int argc, char *argv[])

{

[+ Initialize a DIET session */
diet initialize(configuration file, argc, argv);

[+ Create the profile =/

[+ Set profile argunments */

/= Successive D ET calls ... =/
/* Retreive data */

[+ Free profile =/

diet_finalize();

10 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

The client program must open itsiEr session with a call tdi et _i ni ti al i ze(). It parses
the configuration file given as the first argument, to set all options and geference to the IBT
Master Agent. The session is closed with a caltteet _fi nal i ze(). It frees all resources, if
any, associated with this session on the client, servers, and agentst e memory allocated for
all INOUT and OUT arguments brought back onto the client during thé@esklence, the user can
still access them (and still has to free them !).

The client API follows the GridRPC definitiod.()]: all di et _ functions are “duplicated” with
gr pc_functions. Bottdi et _initialize() /grpc_initialize() anddiet _finalize()
/grpc_finalize() belong tothe GridRPC API.

A problem is managed throughfanction_handlethat associates a server to a service name.
The returnedunction_handlgs associated to the problem description, its profile, during the call to
diet _call ().

5.3.2 Data management

The API to the DeT data structures consists of modifier and accessor functions only: natidioc
function is required, sincdi et _profile_all oc() allocates all necessary memory for all ar-
gumentdescriptions This avoids the temptation for the user to allocate the memory for these data
structures twice (which would lead toiBr errors while reading profile arguments).

Moreover, the user should know that arguments of thet functions that are passed by pointers
arenot copied, in order to save memory. Thus, the user keeps ownership of thersneones pointed
by these pointers, and he/she must be very careful not to alter it ducialfjta DIET. An example of
prototypes:

int diet _scalar _set(diet _arg t= arg,
vVoi dx val ue,
di et _persistence_node_t node,
di et _base_type_t base_type);
int diet file set(diet_arg_ tx arg,
di et _persistence_node_t node,
char pat h);

Hence arguments used in thanmsesZoon® simulation are declared as follows:

/1 I'N paraneters
if (diet _file_set(diet_paraneter(arg.profile,Q), D ET_VOLATILE, nanelist))
{
cerr << "diet file set error on the <nanelist.nnl> file" << endl;
return 1,
}
di et _scal ar_set(di et _paraneter(arg. profile, 1),
& esol , DI ET_VOLATILE, DI ET_INT);
di et _scal ar_set(di et _paraneter(arg. profile, 2),
&size, DI ET_VOLATILE, DI ET_INT);
di et _scal ar_set(di et _paraneter(arg. profile, 3),
&arg.cx, DI ET_VOLATILE, DI ET_INT);
di et _scal ar_set (di et _paraneter(arg. profile,4),

Cosmological Simulations using Grid Middleware 11

&arg.cy, DIET_VOLATILE, DI ET_INT);
di et _scal ar_set(di et _paraneter(arg. profile,b),
&arg.cz, DIET_VOLATILE, DI ET_INT);
di et _scal ar_set(di et _paraneter(arg. profile,6),
&ar g. nbBox, DI ET_VOLATILE, DI ET_I NT);
[l OUT paraneters
di et _scal ar_set(di et_paraneter(arg.profile, 8), NULL,
DI ET_VOLATILE, DI ET_INT);
if (diet file set(diet_paraneter(arg.profile,7), DI ET_VOLATILE, NULL))
{
cerr << "diet file_set error on the QUT file" << endl;
return 1;

}

It is to be noticed that the OUT arguments should be declared even if the@svialset to NULL.
Their values will be set by the server that will execute the request.

Once the call to ET is done, we need to access the OUT data. 'F'hpa}ameter is a file and the
9" is an integer containing the error code of the simulatif the simulation succeeded):

intx returnedVal ue;

size t tgzSize = 0;

char* tgzPath = NULL;

di et _scal ar_get (di et _paraneter(sinmusz2[reqlD].profile,8),
& et ur nedVal ue, NULL);

if (!'*returnedVal ue) {

diet _file_get(diet_paraneter(sinuszZ2[reqlD].profile,7),

NULL, &t gzSize, &t gzPath);

6 Experiments

6.1 Experiments description

Grid’5000P is the French Research Grid. It is composed of 9 sites spread all amecesreach with
100 to 1000 PCs, connected by the RENATER Education and Reseatwbrikié1Gb/s or 10Gb/s).
For our experiments, we deployed aeD platform on 5 sites (6 clusters).

¢ 1 MA deployed on a single node, along with omniORB, the monitoring tools, anclidre
e 6 LA: one per cluster (2 in Lyon, and 1 in Lille, Nancy, Toulouse and $oph

e 11 SEDs: two per cluster (one cluster of Lyon had only orEBSlue to reservation restrictions),
each controlling 16 machines (AMD Opterons 246, 248, 250, 252 and 275

We studied the possibility of computing a lot of low-resolution simulations. Thetalézgjuests a
1282 particlesl00M pe.h~! simulation (first part). When it receives the results, it requests simultane-
ously 100 sub-simulations (second part). As each server cannot tempue than one simulation at
the same time, we won't be able to have more than 11 parallel computations atrtbeisie.

Sht t p: // waw. gri d5000. fr

http://www.grid5000.fr

12 Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

6.2 Results

The experiment (including both the first and the second part of the simyléisted 16h 18min 43s

(1h 15min 11s for the first part and an average of 1h 24min 1s for thendeguart). After the first

part of the simulation, eache® received 9 requests (one of them received 10 requests) to compute
the second part (see Figube left). As shown in Figurés (right) the total execution time for each
SED is not the same: about 15h for Toulouse and 10h30 for Nancy. Qaesdy, the schedule is not
optimal. The equal distribution of the requests does not take into accountableines processing
power. In fact, at the time whenIBT receives the requests (all at the same time) the second part of
the simulation has never been executed, henegx Doesn’t know anything on its processing time,
the best it can do is to share the total amount of requests on the avaikbte 8 better makespan
could be attained by writing a plug-in schedutgr[

The benefit of running the simulation in parallel on different clusters iglgl@ésible: it would
take more than 141h to run the 101 simulation sequentially. Furthermore, ttreeadeénduced by the
use of DET is extremely low. Figur® shows the time needed to find a suitabibSor each request,
as well as in log scale, the latendye(, the time needed to send the data from the client to the chosen
SED, plus the time needed to initiate the service).

The finding time is low and nearly constant (49.8ms on average). The latgoos rapidly.
Indeed, the client requests 100 sub-simulations simultaneously, and eRctaBnot compute more
than one of them at the same time. Requests cannot be proceeded untihtiietmmn of the precedent
one. This waiting time is taken into account in the latency. Note that the averagéotiinéiating
the service is 20.8ms (taken on the 12 firsts executions). The averadeaddor one simulation is
about 70.6ms, inducing a total overhead for the 101 simulations of 7s, wehigglectible compared
to the total processing time of the simulations.

7 Acknowledgment

This work was developed with financial support from the ANR (Agenegidthale de la Recherche)
through the LEGO project referenced ANR-05-CIGC-11.

8 Conclusion

In this paper, we presented the design ofiaclient and server based on the example of cosmologi-
cal simulations. As shown by the experiments; Dis capable of handling long cosmological parallel
simulations: mapping them on parallel resources of a grid, executing andgsing communication
transfers. The overhead induced by the use i&T0s neglectible compared to the execution time of
the services. Thus BT permits to explore new research axes in cosmological simulations (on various
low resolutions initial conditions), with transparent access to the servicktha data.

Currently, two points restrict the ease of use of these simulations, andéhiirmpance: the whole
simulation process is hard-coded within the server, and the schedulelmgicatly improved. A
first next step will be to use one of the lateseD feature: the workflow management system, which
uses an XML document to represent the nodes and the data depesdding@esimulation execution
sequence could be represented as a directed acyclic graph, hémgeden as a workflow. A sec-
ond step will be to write a plug-in scheduler, to best map the simulations on thiatdsaesources
according to their processing power, to lower the unbalance obseetedn the EDs. Finally,
transparence could be added to the deployment of the platform, by usifyamebatch system. It

Cosmological Simulations using Grid Middleware 13

16 T T T T T T T T
Nancyl —+— P
Nancy2 < - e

14 sophial ---*--- e 3
Sophia2 - L

12 Lillel D 2]

Lille2 I
Toulousel ----e--

10 Toulouse2 - & -
Lyonl-cap -
Lyonl-sag —v—
Lyon2-sag v

Computation time (h)

1 1
1 2 3 4 5 6 7 8 9 10
Requests

Figure 5: Simulation’s distribution over theeBs: at the top, the Gantt chart; at the bottom, the
execution time of the 100 sub-simulations for ea&bS

allows to make transparent reservations of the resources on batchmsyite OAR, and to run the
jobs by submitting a script.

References

[1] A. Amar, R. Bolze, A. Bouteiller, P.K. Chouhan, A. Chis, Y. Caniou,&Earon, H. Dail, B. De-
pardon, F. Desprez, J-S. Gay, G. Le Mahec, and A. Su. Diet: Neeigements and recent
results. InCoreGRID Workshop on Grid Middleware (in conjunction with EuroPai@)®res-
den, Germany, August 28-29 2006.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, Ka&, Z. Shi, and S. Vadhi-
yar. Users’ Guide to NetSolve V1.4. Computer Science Dept. TechniqarRES-01-467,
University of Tennessee, Knoxville, TN, July 2001.

14

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

Y. Caniou, E. Caron, B. Depardon, H. Courtois and R. Teyssier

130 ; ; ; ; 1e+08
120 +) KX RIIE KX 8 1 1e+07
110 { | 1 1e+06
% 100 Find —— -
£ Latency —<— 4100000
[} 90 |+ E £
€ >
E [| {10000 3
g &] g
2 {1000 S
[70 R
0 o 100
St I
50 B M I i ‘H‘Lmé 10
40 Il Il Il Il l
0 20 40 60 80 100

Request number

Figure 6: Finding time and latency

Eddy Caron and Frédéric Desprez. Diet: A scalable toolbox to buildari enabled servers on
the grid. International Journal of High Performance Computing Applicatiop8(3):335—-352,
2006.

A. Chis, E. Caron, F. Desprez, and A. Su. Plug-in schedulggdder a distributed grid envi-
ronment. In ACM/IFIP/USENIX, editor4th International Workshop on Middleware for Grid
Computing - MGC 2008Mielbourne, Australia, November 27th 2006. To appear. In conjunction
with ACM/IFIP/USENIX 7th International Middleware Conference 2006.

A. Denis, C. Perez, and T. Priol. Towards high performance CORBd MPI middlewares
for grid computing. In Craig A. Lee, editoBroc. of the 2nd International Workshop on Grid
Computing number 2242 in LNCS, pages 14-25, Denver, Colorado, USA, Noveg0x.
Springer-Verlag.

H. Nakada, M. Sato, and S. Sekiguchi. Design and implementations &f towards a
global computing infrastructurdsuture Generation Computing Systems, Metacomputing Issue
15:649-658, 1999.

H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The Desig Implementation of a
Fault-Tolerant RPC System: Ninf-C. Proceeding of HPC Asia 200¢ages 9-18, 2004.

M. Sato, T. Boku, and D. Takahasi. OmniRPC: a Grid RPC SystemdaalRel Programming
in Cluster and Grid Environment. Rroceedings of CCGrid200pages 206—213, Tokyo, May
2003.

K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanakae Hid-User and Middleware
APIs for GridRPC. InWorkshop on Grid Application Programming Interfaces, In conjunction
with GGF12 Brussels, Belgium, September 2004.

Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Damg@maig Lee, and Henri
Casanova. Overview of GridRPC: A Remote Procedure Call API for Gadhputing. InGrid
Computing - Grid 2002, LNCS 253pages 274-278, November 2002.

Cosmological Simulations using Grid Middleware 15

[11]

[12]

[13]

[14]

[15]

S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. &irajuNeb Services Based Im-
plementations of GridRPC. IRroceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11 2002ages 237-245, July 2002.

R. Teyssier. Cosmological hydrodynamics with adaptive mesh raéne A new high resolution
code called RAMSESAstronomy and Astrophysic385:337-364, 2002.

R. Teyssier, S. Fromang, and E. Dormy. Kinematic dynamos usingtreomed transport with
high order Godunov schemes and adaptive mesh refinedmmnal of Computational Physics
218:44-67, October 2006.

Y. Tanaka and H. Takemiya and H. Nakada and S. Sekiguchi. Bgsigplementation and Per-
formance Evaluation of GridRPC Programming Middleware for a LargéeSCamputational
Grid. In Proceedings of 5th IEEE/ACM International Workshop on Grid Computpages
298-305, 2005.

A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.dtedevelopments in gridsolve. In
Y Robert, editornternational Journal of High Performance Computing Applications (Sde
Issue: Scheduling for Large-Scale Heterogeneous Platformodyme 20. Sage Science Press,
spring 2006.

	1 Introduction
	2 Related Work
	3 DIET overview
	3.1 DIET architecture
	3.2 How to add a new grid application within Diet?

	4 Ramses overview
	5 Interfacing Ramses within Diet
	5.1 Architecture of underlying deployment
	5.2 Server design
	5.2.1 Defining services
	5.2.2 Registering services
	5.2.3 Data management

	5.3 Client
	5.3.1 Structure of a client program
	5.3.2 Data management

	6 Experiments
	6.1 Experiments description
	6.2 Results

	7 Acknowledgment
	8 Conclusion

