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Abstract

In this paper, we explore the problem of mapping filtering services on large-scale
heterogeneous platforms. Two important optimization criteria should be considered
in such a framework. The period, which is the inverse of the throughput, measures
the rate at which data sets can enter the system. The latency measures the response
time of the system in order to process one single data set entirely. Both criteria are
antagonistic. For homogeneous platforms, the complexity of period minimization is
already known [1]; we derive an algorithm to solve the latency minimization problem
in the general case with service precedence constraints; for independent services we
also show that the bi-criteria problem (latency minimization without exceeding a
prescribed value for the period) is of polynomial complexity. However, when adding
heterogeneity to the platform, we prove that minimizing the period or the latency
becomes NP-hard, and that these problems cannot be approximated by any constant
factor (unless P=NP). The latter results hold true even for independent services. We
provide an integer linear program to solve both problems in the heterogeneous case
with independent services.

For period minimization on heterogeneous platforms, we design some efficient poly-
nomial time heuristics and we assess their relative and absolute performance through
a set of experiments. For small problem instances, the results are very close to the
optimal solution returned by the integer linear program.

Key words: query optimization, web service, filter, workflow, period, latency,
complexity results.
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1 Introduction

This paper deals with the problem of query optimization over web services [1, 2].
The problem is close to the problem of mapping pipelined workflows onto distributed
architectures, but involves several additional difficulties due to the filtering properties of
the services.

In a nutshell, pipelined workflows are a popular programming paradigm for streaming
applications like video and audio encoding and decoding, DSP applications etc [3, 4, 5].
A workflow graph contains several nodes, and these nodes are connected to each other
using first-in-first-out channels. Data is input into the graph using input channel(s) and
the outputs are produced on the output channel(s). The goal is to map each node onto
some processor so as to optimize some scheduling objective. Since data continually flows
through these applications, typical objectives of the scheduler are throughput maximization
(or equivalently period minimization, where the period is defined as the inverse of the
throughput) and/or latency (also called response time) minimization [6, 7, 8, 9].

In the query optimization problem, we have a collection of various services that must
be applied on a stream of consecutive data sets. As for workflows, we have a graph with
nodes (the services) and precedence edges (dependence constraints between services), with
data flowing continuously from the input node(s) to the output node(s). Also, the goal is
to map each service onto a processor, or server, so as to optimize the same objectives as
before (period and/or latency). But in addition, services can filter the data by a certain
amount, according to their selectivity. Consider a service Ci with selectivity σi: if the
incoming data is of size δ, then the outgoing data will be of size δ×σi. The initial data is
of size δ0. We see that the data is shrunk by Ci (hence the term “filter”) when σi < 1 but
it can also be expanded if σi > 1. Each service has an elementary cost ci, which represents
the volume of computations required to process a data set of size δ0. But the volume of
computations is proportional to the actual size of the input data, which may have shrunk
or expanded by the predecessors of Ci in the mapping. Altogether, the time to execute a
data set of size σ × δ0 when service Ci is mapped onto server Su of speed su is σ ci

su
. Here

σ denotes the combined selectivity of all predecessor of Ci in the mapping.
Consider now two arbitrary services Ci and Cj . If there is a precedence constraint

from Ci to Cj , we need to enforce it. But if there is none, meaning that Ci and Cj are
independent, we may still introduce a (fake) edge, say from Cj to Ci, in the mapping,
meaning that the output of Cj is fed as input to Ci. If the selectivity of Cj is small
(σj < 1), then it shrinks each data set, and Ci will operate on data sets of reduced
volume. As a result, the cost of Ci will decrease in proportion to the volume reduction,
leading to a better solution than running both services in parallel. Basically, there are
two ways to decrease the final cost of a service: (i) map it on a fast server; and (ii) map
it as a successor of a service with small selectivity. In general, we have to organize the
execution of the application by assigning a server to each service and by deciding which
service will be a predecessor of which other service (therefore building an execution graph,
or plan), with the goal of minimizing the objective function. The edges of the execution
graph must include all the original dependence edges of the application. We are free to
add more edges if it decreases the objective function. Note that the selectivity of a service
influences the execution time of all its successors, if any, in the mapping. For example if
three services C1, C2 and C3 are arranged along a linear chain, as in Figure 1, then the
cost of C2 is σ1c2 and the cost of C3 is σ1σ2c3. If Ci is mapped onto Si, for i = 1, 2, 3,
then the period is P = max

(
c1
s1
, σ1c2
s2
, σ1σ2c3

s3

)
, while the latency is L = c1

s1
+ σ1c2

s2
+ σ1σ2c3

s3
.

Here, we also note that selectivities are independent: for instance if C1 and C2 are both
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predecessors of C3, as in Figure 1 or in Figure 2, then the cost of C3 becomes σ1σ2c3.
With the mapping of Figure 2, the period is P = max

(
c1
s1
, c2s2 ,

σ1σ2c3
s3

)
, while the latency

is L = max
(
c1
s1
, c2s2

)
+ σ1σ2c3

s3
. We see from the latter formulas that the model neglects the

cost of joins when combining two services as predecessors of a third one.

C1 C2 C3

Figure 1: Chaining services.

C1

C3

C2

Figure 2: Combining selectivities

All hypotheses and mapping rules are those of Srivastava et al. [1, 2]. Although their
papers mainly deal with query optimization over web services (already an increasingly
important application with the advent of Web Service Management Systems [10, 11]), the
approach applies to general data streams [12] and to database predicate processing [13, 14].
Finally (and quite surprisingly), we note that our framework is quite similar to the problem
of scheduling unreliable jobs on parallel machines [15] where service selectivities correspond
to job failure probabilities.

As already pointed out, period and latency are both very important objectives. The
inverse of the period (the throughput) measures the aggregate rate of processing of data,
and it is the rate at which data sets can enter the system. The latency is the time elapsed
between the beginning and the end of the execution of a given data set, hence it measures
the response time of the system to process the data set entirely. Minimizing the latency
is antagonistic to minimizing the period, and tradeoffs should be found between these
criteria. Efficient mappings aim at the minimization of a single criterion, either the period
or the latency, but they can also use a bi-criteria approach, such as minimizing the latency
under period constraints (or the converse). The main objective of this work is to assess the
complexity of the previous optimization problems, first with identical servers, and then
with different-speed servers.

In this paper, we establish several new and important complexity results. First we
introduce an optimal polynomial algorithm for the latency minimization problem on a
homogeneous platform. This result nicely complements the corresponding result for period
minimization, that was shown to have polynomial complexity in [1]. We also show the
polynomial complexity of the bi-criteria problem (minimizing latency while not exceeding
a threshold period). Moving to heterogeneous resources, we prove the NP-completeness
of both the period and latency minimization problems, even for independent services.
Therefore, the bi-criteria problem also is NP-complete in this case. Furthermore, we prove
that there exists no constant factor approximation algorithms for these problems unless
P=NP and present an integer linear program to solve both problems. We also assess the
complexity of several particular problem instances.

The rest of this paper is organized as follows. First we formally state the optimization
problems that we address in Section 2. Next we detail two little examples aimed at
showing the intrinsic combinatorial complexity of the problem (Section 3). Then Section 4
is devoted to problems with identical resources (homogeneous platforms), while Section 5
is the counterpart for different-speed processors (heterogeneous platforms). We provide a
set of heuristics and experiments for period minimization in Sections 6 and 7. Finally we
give some conclusions and perspectives in Section 8.
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2 Framework

As stated above, the target application A is a set of services (or filters, or queries)
linked by precedence constraints. We write A = (F ,G) where F = {C1, C2, . . . , Cn} is
the set of services and G ⊂ F × F is the set of precedence constraints. If G = ∅, we have
independent services. A service Ci is characterized by its cost ci and its selectivity σi.

For the computing resources, we have a set S = {S1, S2, . . . , Sp} of servers. In the
case of homogeneous platforms, servers are identical while in the case of heterogeneous
platforms, each server Su is characterized by its speed su. We always assume that there are
more servers available than services (hence n ≤ p), and we search a one-to-one mapping,
or allocation, of services to servers. The one-to-one allocation function alloc associates to
each service Ci a server Salloc(i).

We also have to build a graph G = (C, E) that summarizes all precedence relations
in the mapping. The nodes of the graph are couples (Ci, Salloc(i)) ∈ C, and thus define
the allocation function. There is an arc (Ci, Cj) ∈ E if Ci precedes Cj in the execution.
There are two types of such arcs: those induced by the set of precedence constraints
G, which must be enforced in any case, and those added to reduce the period or the
latency. Ancestj(G) denotes the set of all ancestors1 of Cj in G, but only arcs from
direct predecessors are kept in E . In other words, if (Ci, Cj) ∈ G, then we must have
Ci ∈ Ancestj(G) 2. The graph G is called a plan. Given a plan G, the execution time of

a service Ci is costi(G) =
(∏

Cj∈Ancesti(G) σj

)
× ci

salloc(i)
. We note LG(Ci) the completion

time of service Ci with the plan G, which is the length of the path from an entry node to
Ci, where each node is weighted with its execution time. We can now formally define the
period P and latency L of a plan G:

P(G) = max
(Ci,Su)∈C

costi(G) and L(G) = max
(Ci,Su)∈C

LG(Ci).

In the following we study three optimization problems: (i) MinPeriod: find a plan G
that minimizes the period; (ii) MinLatency: find a plan G that minimizes the latency;
and (iii) BiCriteria: given a bound on the period K, find a plan G whose period does
not exceed K and whose latency is minimal. Each of these problems can be tackled, (a)
either with an arbitrary precedence graph G (case Prec) or with independent services
(case Indep); and (b) either with identical servers (su = s for all servers Su, homogeneous
case Hom), or with different-speed servers (heterogeneous case Het). For instance, Min-
Period-Indep-Hom is the problem of minimizing the period for independent services on
homogeneous platforms while MinLatency-Prec-Het is the problem of minimizing the
latency for arbitrary precedence constraints on heterogeneous platforms.

3 Motivating examples

In this section we deal with two little examples. The first one considers independent
services and different-speed processors (hence a problem Indep-Het), while the second
one involves precedence constraints and identical resources (Prec-Hom).

1The ancestors of a service are the services preceding it, and the predecessors of their predecessors, and
so on.

2Equivalently, G must be included, in the transitive closure of E .
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3.1 An example for the Indep-Het problem

Consider a problem instance with three independent services C1, C2 and C3. Assume
that c1 = 1, c2 = 4, c3 = 10, and that σ1 = 1

2 , σ2 = σ3 = 1
3 . Suppose that we have

three servers of respective speeds s1 = 1, s2 = 2 and s3 = 3. What is the mapping which
minimizes the period? and same question for the latency? We have to decide for an
assignment of services to servers, and to build the best plan.

For MinPeriod-Indep-Het (period optimization), we can look for a plan with a
period smaller than or equal to 1. In order to obtain an execution time smaller than or
equal to 1 for service C3, we need the selectivity of C1 and C2, and either server S2 or
server S3. Server S2 is fast enough to render the time of C3 smaller than 1, so we decide to
assign C3 to S2. Service C2 also needs the selectivity of C1 and a server of speed strictly
greater than 1 to obtain an execution time less than 1. Thus, we assign C1 to S1 and
make it a predecessor of C2. In turn we assign C2 to S3 and make it a predecessor of C3.
We obtain a period of min

(
1
1 ,

1
2

4
3 ,

1
2×3

10
2

)
= 1. It is the optimal solution. In this plan,

the latency is equal to 1 + 4
6 + 10

12 = 5
2 .

For MinLatency-Indep-Het (latency optimization), we have a first bound: 5
2 . Be-

cause of its cost, service C3 needs at least one predecessor. If C1 is the only predecessor
of C3, we have to assign C3 to S3 in order to keep the latency under 5

2 . The fastest com-
putation time that we can then obtain for C3 is 1

2 + 1
2

10
3 , with C1 assigned to S2. In this

case, the fastest completion time for C2 is 5
2 : this is achieved by letting C2 be a successor

of C1 in parallel with C3. Suppose now that C2 is a predecessor of C3, and that there
is an optimal solution in which C2 is the only predecessor of C3. Independently of the
choice of the servers assigned to C1 and C2, if we put C1 without any predecessor, it will
end before C2. So, we can make it a predecessor of C3 without increasing its completion
time. So, we are looking for a solution in which C1 and C2 are predecessors of C3. There
are three possibilities left: (i) C1 is a predecessor of C2; (ii) C2 is a predecessor of C1;
and (iii) C1 and C2 have no predecessors. In the first two cases, we compute for each
service a cost weighted by the product of the selectivities of its predecessors. Then, we
associate the fastest server to the service with the longest weighted cost and so on. We
obtain 5

2 in both cases. For the last case, we know that the real cost of C1 will have no
influence on the latency, hence we assign it to the slowest server S1. The weighted cost
of the remaining services is 4 for C2 and 10

6 for C3. So, we assign S3 to C2 and S2 to C3.
We obtain a latency of 4

3 + 1
2×3

10
2 = 13

6 . We cannot obtain a strictly faster solution if C2

is not a predecessor of C3. As a result, 13
6 is the optimal latency. In this optimal plan for

the latency, the period is 4
3 .

C3

C2

C1

C4

Figure 3: Precedence con-
straints.

C1 C2

C3

C4

Figure 4: Optimal plan for period.

C1

C4

C3

C2

Figure 5: Optimal plan for
latency.
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3.2 An example for the Prec-Hom problem

Let A = (F ,G) be the following set of 4 services : c1 = c2 = 1, c3 = c4 = 4,
σ1 = 1

2 , σ2 = 4
5 , σ3 = σ4 = 2 and G = {(C1, C2), (C1, C3)} (see Figure 3). With this

dependence set, we have 3 possible combinaisons for ordering C1, C2, C3, and for each of
these orderings, 10 possible graphs when adding C4. We target a homogeneous platform
with four identical servers of speed s = 1.

For MinPeriod-Prec-Hom, suppose that we can obtain a period strictly less than 2.
C1 is the only service that can be placed without predecessor, because c4 > 2, and both C2

and C3 need C1 as an ancestor (precedence constraints). C2 is the only remaining service
of cost strictly less than 4. It can be placed with C1 as unique predecessor. Then we place
C3 and C4 with predecessors C1 and C2. We obtain a period P = 8

5 (see Figure 4), which
is optimal.

Let us study MinLatency-Prec-Hom. With the plan shown in Figure 5, we obtain a
latency L = 1+ 1

2×4 = 3. Suppose that we can obtain a latency strictly less than 3. Again,
C1 is the only service that can be placed without any predecessor. As for MinPeriod,
C2 is the only service that can be placed after C1. But in this case, C3 and C4 cannot be
placed after C2, because it would give a latency L = 1 + 1

2 × 1 + 1
2 ×

4
5 × 4 > 3. Therefore,

3 is the optimal latency for this problem instance.

4 Homogeneous platforms

In this section we investigate the optimization problems with homogeneous resources.
Problem MinPeriod-Prec-Hom (minimizing the period with precedence constraints and
identical resources) was shown to have polynomial complexity in [1, 2]. We show that
Problem MinLatency-Prec-Hom is polynomial too. Because the algorithm is quite
complicated, we start with an optimal algorithm for the simpler problem MinLatency-
Indep-Hom. Although the polynomial complexity of the latter problem is a consequence
of the former, it is insightful to follow the derivation for independent services before dealing
with the general case. Finally, we propose optimal algorithms for BiCriteria-Indep-Hom
and BiCriteria-Prec-Hom.

4.1 Latency

We describe here optimal algorithms for MinLatency-Hom, without dependences
first, and then for the general case.

Theorem 1. (Independent services) Algorithm 1 computes the optimal plan for MinLatency-
Indep-Hom in time O(n2).

Data: n independent services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, and ordered
costs c1 ≤ · · · ≤ cp

Result: a plan G optimizing the latency
G is the graph reduced to node C1;1

for i = 2 to n do2

for j = 0 to i− 1 do3

Compute the completion time Lj(Ci) of Ci in G with predecessors C1, ..., Cj ;4

end5

Choose j such that Lj(Ci) = mink{Lk(Ci)};6

Add the node Ci and the edges C1 → Ci, . . . , Cj → Ci to G;7

end8

Algorithm 1: Optimal algorithm for MinLatency-Indep-Hom.
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Proof. We show that Algorithm 1 verifies the following properties:

• (A) LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Cp)

• (B) ∀i ≤ n, LG(Ci) is optimal

Because the latency of any plan G′ is the completion time of its last node (a node Ci
such that ∀Cj , LG′(Ci) ≥ LG′(Cj)), property (B) shows that L(G) is the optimal latency.
We prove properties (A) and (B) by induction on i: for every i we prove that LG(Ci) is
optimal and that LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Ci).

For i = 1: C1 has no predecessor in G, so LG(C1) = c1. Suppose that there exists
G′ such that LG′(C1) < LG(C1). If C1 has no predecessor in G′, then LG′(C1) = c1 =
LG(C1). Otherwise, let Ci be a predecessor of C1 in G′ such that Ci has no predecessor
itself. LG′(C1) > ci ≥ c1. In both cases, we obtain a contradiction with the hypothesis
LG′(C1) < LG(C1). So LG(C1) is optimal.

Suppose that for a fixed i ≤ p, LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Ci−1) and ∀j < i,
LG(Cj) is optimal. Suppose that there exists G′ such that LG′(Ci) is optimal. Let Ck
be the predecessor of Ci of greatest cost in G′. If ck > ci, we can choose in G′ the
same predecessors for Ci than for Ck, thus strictly reducing LG′(Ci). However, LG′(Ci) is
optimal. So, we obtain a contradiction and ck ≤ ci. Thus,

LG′(Ci) = LG′(Ck) +
(∏

Cj∈AncestLG′ (Ci)
σj

)
ci

≥ LG′(Ck) +
(∏

j≤k σj

)
ci by definition of Ck

≥ LG(Ci) by construction of G

Therefore, since LG′(Ci) is optimal by hypothesis, we have LG′(Ci) = LG(Ci).
Suppose now that LG(Ci) < LG(Ci−1). Then, Ci−1 is not a predecessor of Ci in G. We
construct G′′ such that all edges are the same as in G except those oriented to Ci−1:
predecessors of Ci−1 will be the same as predecessors of Ci. We obtain

LG′′(Ci−1) = maxk≤j LG(Ck) +
∏
k≤j σkci−1 by construction of node Ci−1

≤ maxk≤j LG(Ck) +
∏
k≤j σkci = LG(Ci)

However, LG(Ci−1) is optimal, and so LG(Ci−1) ≤ LG′′(Ci−1) ≤ LG(Ci), which leads to a
contradiction. Therefore, LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Ci).

At this point, we have proved that the placement of all services of selectivity smaller
than 1 is optimal, and that LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Cp). We now proceed with
services Cp+1 to Cn.

Suppose that for a fixed i > p, ∀j < i, LG(Cj) is optimal. For all k > p, we have

maxj≤k LG(Cj) +
∏
j≤k σj ∗ ci = maxkj=p LG(Cj) +

∏k
j=1 σj ∗ ci

≥ LG(Cp) +
∏
j≤k σj ∗ ci

> LG(Cp) +
∏
j≤p σj ∗ ci

This relation proves that in G, service Ci has no predecessor of selectivity strictly
greater than 1. Suppose that there exists G′ such that LG′(Ci) is optimal. Let Ck be the
predecessor of Ci in G′ of greatest cost. Then Ancesti(G′) ∈ {1, k} and, similarly for the
case i ≤ p, we obtain LG′(Ci) ≥ LG(Ci), and thus LG(Ci) is optimal.
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Theorem 2. (General case) Algorithm 2 computes the optimal plan for MinLatency-
Prec-Hom in time O(n6).

Data: n services, a set G of dependence constraints
Result: a plan G optimizing the latency
G is the graph reduced to the node C of minimal cost with no predecessor in G;1

for i = 2 to n do2

// At each step we add one service to G, hence the n− 1 steps;3

Let S be the set of services not yet in G and such that their set of predecessors in G is4

included in G;
for C ∈ S do5

for C ′ ∈ G do6

Compute the set S′ minimizing the product of selectivities among services of7

latency less than LG(C ′), and including all predecessors of C in G (using an
algorithm from [2], whose execution time is O(n3));

end8

Let SC be the set that minimizes the latency of C in G and LC be this latency;9

end10

Choose a service C such that LC = min{LC′ , C ′ ∈ S};11

Add to G the node C, and ∀C ′ ∈ SC , the edge C ′ → C ;12

end13

Algorithm 2: Optimal algorithm for MinLatency-Prec-Hom.

Proof. Let A = (F ,G) with F = {C1, C2, . . . , Cn) be an instance of MinLatency-
Prec-Hom. Let G be the plan produced by Algorithm 2 on this instance, and services
are renumbered so that Ci is the service added at step i of the algorithm. Then we prove
by induction on i that LG(C1) ≤ LG(C2) ≤ ... ≤ LG(Cn), and G is optimal for L(Ci),
1 ≤ i ≤ n. In the following, we say that a plan is valid if all precedence edges are included.
The plan G is valid by construction of the algorithm.

By construction, C1 has no predecessors in G. Therefore, LG(C1) = c1. Let G′

be a valid plan such that LG′(C1) is optimal. If C1 has no predecessors in G′, then
LG′(C1) = LG(C1). Otherwise, let Ci be a predecessor of C1 which has no predecessors
in G′. G′ is valid, thus Ci has no predecessors in G. And by construction of G, we
have c1 ≤ ci. Therefore, LG′(C1) ≥ ci ≥ c1 = LG(C1). Since LG′(C1) is optimal,
LG(C1) = LG′(C1) and thus LG(C1) is optimal.

Suppose that for a fixed i ≤ n, we have LG(C1) ≤ LG(C2) ≤ ... ≤ LG(Ci−1), and
∀j < i, LG(Cj) is optimal. Let us prove first that LG(Ci−1) ≤ LG(Ci). If Ci−1 is a
predecessor of Ci, then the result is true. Otherwise, and if LG(Ci−1) > LG(Ci), then Ci
would have been chosen at step i−1 of the algorithm (line 9) instead of Ci−1, which leads
to a contradiction. It remains to prove that LG(Ci) is optimal. Let us consider a valid
plan G′ such that LG′(Ci) is optimal.
(i) Suppose first that Ci has at least one predecessor Cl with l > i in G′. For such
predecessors, at least one of them has its own set of predecessors included in {C1, ..., Ci−1}.
Let Ck be the service of maximal latency LG′(Ck) of the previous set of predecessors. Thus,
k > i and the set of predecessors of Ck in G′ is included in {C1, ..., Ci−1}. Since G′ is a
valid plan, the set of predecessors of Ck in G is included in {C1, ..., Ci−1}. Then, we prove
that the value LCk computed at line 9 of the algorithm at step i verifies LCk ≤ LG′(Ck)
(see Property A below). Then LG(Ci) ≤ LCk ≤ LG′(Ck) ≤ LG′(Ci).
(ii) If the set of predecessors of Ci in G′ is included in {C1, ..., Ci−1}, then we can prove
that LG′(Ci) ≥ LCi = LG(Ci), where LCi is the value computed at step i (see Property B
below).
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In both cases (i) and (ii), since LG′(Ci) is optimal, we have LG(Ci) = LG′(Ci), thus
proving the optimality of LG(Ci).

Proof of Properties A and B. Let Ck be a service with k ≥ i (k > i for Property A, k = i
for Property B). Let G′ be a valid plan such that the set of predecessors of Ck is included
in {C1, ..., Ci−1}. Then we prove that LG′(Ck) ≥ LCk , where LCk is the value computed at
step i of the algorithm. Let S = {Cu1 , ..., Cul} be the set of predecessors of Ck in G′. Let
S′ be the set of services that are either in S, or predecessor of a service of S in G. Let us
show that

∏
Ci∈S σi ≥

∏
Ci∈S′ σi. Let S1 be the set of predecessors of Cu1 in G, S2 the set

of predecessors of Cu2 in G not in S1 ∪{Cu1} and for all i Si the set of predecessors of Cui
in G not in

⋃
j<i Sj ∪ {Cui1 , ..., Cui−1}. Suppose that for one of the sets Si, the product of

selectivities
∏
Cj∈Si σj is strictly greater than one. Then S1 ∪ ... ∪ Si−1 ∪ {Cui1 , ..., Cui−1}

is a valid subset for Cui because G′ is a valid plan and the product of selectivities on this
subset is strictly smaller than the product of selectivities of the predecessors of Cui in G.
This is in contradiction with the optimality of the set of predecessors of Cui chosen at
line 7 of the algorithm. This proves that for all i,

∏
Cj∈Si σj ≤ 1. In addition, for all j < i,

LG(Cj) is optimal. Hence the latency of Ck in G with S′ as predecessor is smaller or equal
to its latency in G′, which proves that LG′(Ck) ≥ LCk .

Thus for 1 ≤ i ≤ n, LG(Ci) is optimal, and therefore the plan computed by Algorithm 2
is optimal.

4.2 Bi-criteria problem

Theorem 3. Problem BiCriteria-Indep-Hom is polynomial and of complexity at most
O(n2). Problem BiCriteria-Prec-Hom is polynomial and of complexity at most O(n6).

Data: n services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, ordered costs
c1 ≤ · · · ≤ cp, and a maximum period K

Result: a plan G optimizing the latency with a period less than K
G is the graph reduced to node C1;1

if c1 > K then2

return false;3

end4

for i = 2 to n do5

for j = 0 to i− 1 do6

Compute the completion time tj of Ci in G with predecessors C1, ..., Cj ;7

end8

Let S = {k|ci
∏

1≤l≤k σl ≤ K};9

if S = ∅ then10

return false;11

end12

Choose j such that tj = mink∈S{tk};13

Add the node ci and the edges C1 → Ci, . . . , Cj → Ci to G;14

end15

Algorithm 3: Optimal algorithm BiCriteria-Indep-Hom.

Proposition 1. Algorithm 3 computes the optimal latency for a bounded period with
independent services (problem BiCriteria-Indep-Hom).

Proof. The proof is similar to that of Theorem 1. We restrain the choice of services that
can be assigned: we can only consider those whose cost, taking the combined selectivity
of their predecessors into account, is small enough to obtain a computation time smaller
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than or equal to K. If there is no choice for a service, then it will be impossible to assign
the next services either, and there is no solution.

Data: n services, a set G of dependence constraints and a maximum period K
Result: a plan G optimizing the latency
G is the graph reduced to the node C of minimal cost with no predecessor in G;1

if c > K then2

return false;3

end4

for i = 2 to n do5

// At each step we add one service to G, hence the n− 1 steps;6

Let S be the set of services not yet in G and such that their set of predecessors in G is7

included in G;
for C ∈ S do8

for C ′ ∈ G do9

Compute the set S′ minimizing the product of selectivities among services of10

latency less than LG(C ′), and including all predecessors of C in G (using an
algorithm from [2], whose execution time is O(n3));

end11

Let SC be the set that minimizes the latency of C in G with a period bounded by12

K, LC be this latency and PC be the computation time of C with the set of
predecessors SC ;

end13

if {C ′, C ′ ∈ S and PC ≤ K} = ∅ then14

return false;15

end16

Choose a service C such that LC = min{LC′ , C ′ ∈ S and PC ≤ K};17

Add to G the node C, and ∀C ′ ∈ SC , the edge C ′ → C ;18

end19

Algorithm 4: Optimal algorithm for BiCriteria-Prec-Hom.
Proposition 2. Algorithm 4 computes the optimal latency for a bounded period (problem
BiCriteria-Prec-Hom).

Proof. The proof is similar to that of Theorem 2. We restrain the choice of sets that can
be assigned as set of predecessors: we can only consider those whose product of selectivities
is small enough to obtain a computation time smaller than or equal to K for the service
studied. If there is no possible set for every possible services, then the bound for period
can not be obtain.

5 Heterogeneous platforms

In this section we investigate the optimization problems with heterogeneous resources.
We show that both period and latency minimization problems are NP-hard, even for
independent services. Thus, bi-criteria problems on heterogeneous platforms are NP-
hard. We also prove that there exists no approximation algorithm for MinPeriod-Indep-
Het with a constant factor, unless P=NP. We provide for MinPeriod-Indep-Het and
MinLatency-Indep-Het a formulation in terms of an integer linear program. The integer
linear program of MinPeriod-Indep-Het (on small problem instances) will be used to
assess the absolute performance of the polynomial heuristics that we derive in Section 7.

5.1 Period

In this section, we show that problem MinPeriod-Indep-Het is NP-complete. The
following property was presented in [1] for homogeneous platforms, and we extend it to

10
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Cλ(2) Cλ(p)

Figure 6: General structure for period minimization.
different-speed servers. We provide an integer linear program and assess the complexity
of some particular instances.

Proposition 3. Let (F ,S) be an instance of the problem MinPeriod-Indep-Het. We
suppose σ1, σ2, ..., σp < 1 and σp+1, ..., σn ≥ 1. Then the optimal period is obtained with a
plan as in Figure 6.

Proof. Let G be an optimal plan for this instance. We will not change the allocation
of services to servers. Hence, in the following, Ci denotes the pair (Ci, Su), with Su the
server assigned to Ci in G. Let i, j ≤ p (recall that p is the largest index of services whose
selectivity is smaller than 1). Suppose that Ci is not an ancestor of Cj and that Cj is not
an ancestor of Ci. Let A′k(G) = Ancestk(G)∩{C1, ..., Cp}. Informally, the idea is to add the
arc (Ci, Cj) to G and to update the list of ancestors of each node (in particular, removing
all nodes whose selectivity is greater than or equal to 1). Specifically, we construct the
graph G′ such that:

• for every k ≤ p such that Ci /∈ Ancestk(G) and Cj /∈ Ancestk(G), Ancestk(G′) =
A′k(G)

• for every k ≤ p such that Ci ∈ Ancestk(G) or Cj ∈ Ancestk(G), Ancestk(G′) =
A′k(G) ∪A′i(G) ∪A′j(G) ∪ {Ci, Cj}

• Ancesti(G′) = A′i(G)

• Ancestj(G′) = A′j(G) ∪A′i(G) ∪ {Ci}

• for every k > p, Ancestk(G′) = {C1, ..., Cp}

In G′, Ci is a predecessor of Cj and for all p < k ≤ n, Ck has no successor. Also,
because Ci and Cj were not linked by a precedence relation in G, G′ is always a DAG (no
cycle). In addition, for every node Ck of G, we have Ancestk(G′) ⊃ A′k(G) = Ancestk(G)∩
{C1, ..., Cp}. This property implies:

costk(G′) =
ck
su
×

∏
Cl∈Ancestk(G′)

σl ≤
ck
su
×

∏
Cl∈A′k(G)

σl ≤
ck
su
×

∏
Cl∈Ancestk(G)

σl ≤ costk(G).

Hence, P(G′) ≤ P(G) (recall that P(G) denotes the period of G). Because G was optimal,
P(G′) = P(G), and G′ is optimal too. By induction we construct a plan with the structure
of Figure 6.

We point out that only the structure of the plan is specified by Proposition 3. There
remains to find the optimal ordering of services C1 to Cp in the chain (this corresponds to
the permutation λ in Figure 6), and to find the optimal assignment of services to servers.

11



Theorem 4. MinPeriod-Indep-Het is NP-hard.

Proof. Consider the decision problem associated to MinPeriod-Indep-Het: given an
instance of the problem with n services and p ≥ n servers, and a bound K, is there a plan
whose period does not exceed K? This problem obviously is in NP: given a bound and
a mapping, it is easy to compute the period, and to check that it is valid, in polynomial
time.

To establish the completeness, we use a reduction from RN3DM, a special instance
of Numerical 3-Dimensional Matching that has been proved to be strongly NP-Complete
by Yu [16, 17]. Consider the following general instance I1 of RN3DM: given an integer
vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of
{1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (1)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n + 1), otherwise
we know that the instance has no solution. We can suppose that

∑n
i=1A[i] = n(n + 1),

otherwise we know that the instance has no solution. Then we point out that Equation 1
is equivalent to

∀1 ≤ i ≤ n, λ1(i) + λ2(i) ≥ A[i]
⇐⇒ ∀1 ≤ i ≤ n,

(
1
2

)λ1(i)−1 × 2A[i]

2λ2(i) ≤ 2
(2)

We build the following instance I2 of MinPeriod-Het with n services and p = n
servers such that ci = 2A[i], σi = 1/2, si = 2i and K = 2. The size of instance I1
is O(n log(n)), because each A[i] is bounded by 2n. In fact, because RN3DM is NP-
complete in the strong sense, we could encode I1 in unary, with a size O(n2), this does not
change the analysis. We encode the instance of I1 with a total size O(n2), because the ci
and si have size at most O(2n), hence can be encoded with O(n) bits each, and there are
O(n) of them. The size of I2 is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution. Assume first that
I1 has a solution. Then we build a plan which is a linear chain. Service Ci is at position
λ1(i), hence is filtered λ1(i) − 1 times by previous services, and it is processed by server
Sλ2(i), matching the cost in Equation 2.

Reciprocally, if we have a solution to I2, then there exists a linear chain G with period
2. Let λ1(i) be the position of service Ci in the chain, and let λ2(i) be the index of its
server. Equation 2 is satisfied for all i, hence Equation 1 is also satisfied for all i: we have
found a solution to I1. This completes the proof.

The proof also shows that the problem remains NP-complete when all service selectiv-
ities are identical.

Proposition 4. For any K > 0, there exists no K-approximation algorithm for MinPeriod-
Indep-Het, unless P=NP.

Proof. In addition, we obtain costi(G) = 2 for each i. Suppose that there exists an
optimal plan G′ that is not a chain. According to Proposition 3, it can be transformed
step by step into a chain. Suppose that this chain is G. At each step of transformation,
we consider a pair (C,C ′) and we add an edge C → C ′. Suppose that at a step, we add
the edge Ci → Cj . That means that Ancestj(G′)  Ancestj(G). However costj(G) = 2
and all the selectivities are strictly lower than 1. Then costj(G′) > 2. That contradicts
the hypothesis of optimality of G′. This proves that the only optimal plans are chains.

Suppose that there exists a polynomial algorithm that computes a K-approximation of
this problem. We use the same instance I1 of RN3DM as in the proof of theorem 4: given
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an integer vector A = (A[1], . . . , A[n]) of size n ≥ 2, does there exist two permutations
λ1 and λ2 of {1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i]. We can suppose
that 2 ≤ A[i] ≤ 2n for all i and that

∑n
i=1A[i] = n(n + 1), otherwise we know that the

instance has no solution.
Let I2 be the instance of our problem with n services with, for 1 ≤ i ≤ n, ci =

(2K)A[i]−1, σi = 1
2K , si = (2K)i and P = 1.

The only optimal solutions are the chains such that the service Ci is placed in position
λ1(i) in the chain, and it is processed by server Sλ2(i), where (λ1, λ2) is a solution of I1.
In any other solution, there is a service whose computation cost is larger than P = 1. In
addition, all computation costs are integer power of 2K. That means that in any other
solution, the period is greater or equal to 2K. Hence the only K-approximations are the
optimal solutions. If a polynomial algorithm finds such a solution, we can compute the
permutations λ1 and λ2 and solve I1 in polynomial time. This contradicts the hypothesis
P 6= NP .

5.1.1 Particular instances

In this section, we study three particular instances of MinPeriod.

Mapping services of selectivity greater than one Let I be an instance of Min-
Period-Het such that all services have a selectivity greater than 1. We want to know if
there exists a plan with a period less than K. For every service Ci, we choose the slowest
available server of speed greater than K/ci. This greedy algorithm is easily seen to be
optimal.

The same algorithm holds in the general case, for mapping the subset of services of
selectivity greater than 1. We make an hypothesis about the longest ratio cost/speed of
those services, and we allocate the slowest possible servers according to this hypothesis.
We can then deal with other services. There is a polynomial number of values for the
longest ratio cost/speed for services of selectivity greater than 1, i.e., the ratio cost/speed
for every service and server.

Case of homogeneous servers The problem MinPeriod-Hom can be solved in poly-
nomial time: see the algorithm in [1]. The structure of the solution is described in Sec-
tion 5.1, and the optimal placement of the services of selectivity less than one is done by
increasing order of costs.

Case of equal selectivities This sub-problem is NP-complete. The proof is the same
than for MinPeriod-Het: in the instance I2 used in the demonstration, the selectivities
of all services are equal (to 1/2).

5.1.2 Integer linear program

We present here a linear program to compute the optimal solution of MinPeriod-Het.
Let n be the number of services. First, we need to define a few variables:
• For each service Ci and each server Su, ti,u is a boolean variable equal to 1 if service
Ci is assigned to server Su (and 0 otherwise).
• For each pair of services Ci and Cj , si,j is a boolean variable equal to 1 if service Ci

is an ancestor of Cj (and 0 otherwise).
• M is the logarithm of the optimal period.
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We list below the constraints that need to be enforced. First, there are constraints for
the matching between services and servers and for the plan:
• Each service is mapped on exactly one server:

∀i,
∑
u

ti,u = 1

• Each server executes exactly one service:

∀u,
∑
i

ti,u = 1

• The property ”is ancestor of” is transitive: if Ci, Cj , Ck are three services such that
si,j = 1 and sj,k = 1, then si,k = 1. We write this constraint as:

∀i, j, k, si,j + sj,k − 1 ≤ si,k

• The precedence graph is acyclic:

∀i, si,i = 0

• There remains to express the logarithm of the period of each service and to constrain
it by M :

∀i, log ci −
∑
u

ti,u log su +
∑
k

sk,i log σk ≤M

In this formula,
∑

u ti,u log su accounts for the speed of the server which processes Ci,
and

∑
k sk,i log σk adds selectivities of all predecessors of Ci.

Finally, the objective function is to minimize the period M . We have O(n2) variables,
and O(n3) constraints. All variables are boolean, except M , the logarithm of the period.
This integer linear program has been implemented with CPLEX [18], and the code is
available in [19]

5.2 Latency

We first show that the optimal solution of MinLatency-Indep-Het has a particular
structure. We then use this result to derive the NP-completeness of the problem. We
provide an integer linear program and assess the complexity of some particular instances.

Definition 1. Given a plan G and a vertex v = (Ci, Su) of G, (i) v is a leaf if it has no
successor in G; and (ii) di(G) is the maximum length (number of links) in a path from v
to a leaf. If v is a leaf, then di(G) = 0.

Proposition 5. Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency. Then, the
optimal latency can be obtained with a plan G such that, for any couple of nodes of G
v1 = (Ci1 , Su1) and v2 = (Ci2 , Su2),

1. If di1(G) = di2(G), v1 and v2 have the same predecessors and the same successors
in G.

2. If di1(G) > di2(G) and σi2 ≤ 1, then ci1/su1 < ci2/su2.

3. All nodes with a service of selectivity σi > 1 are leaves (di(G) = 0).

14



Proof. Let G be an optimal plan for this instance. We will not change the allocation of
services to servers, so we can design vertices of the graph as Ci only, instead of (Ci, Su).
We want to produce a graph G′ which verifies Proposition 5.
Property 1. In order to prove Property 1 of the proposition, we recursively transform
the graph G, starting from the leaves, so that at each level every nodes have the same
predecessors and successors.

For every vertex Ci of G, we recall that di(G) is the maximum length of a path from
Ci to a leaf in G. Let Ai = {Cj | dj(G) = i}. A0 is the set of the leaves of G. We denote
by Gi the subgraph A0 ∪ ... ∪ Ai. Note that these subgraphs may change at each step of
the transformation, and they are always computed with the current graph G.
• Step 0. Let ci = maxCj∈A0 cj . Let G′ be the plan obtained from G by changing the

predecessors of every service in A0 such that the predecessors of a service of A0 in G′ are
exactly the predecessors of Ci in G. Let Bi be the set of predecessors of Ci in G and let
Cj ∈ Bi be the predecessor of Ci of maximal completion time. The completion time of a
service C` of G−A0 does not change: LG′(C`) = LG(C`). And, for each service Ck in A0,

LG′(Ck) = LG′(Cj) +
(∏

C`∈Bi σ`

)
× ck

≤ LG′(Cj) +
(∏

C`∈Bi σ`

)
× ci

≤ LG′(Ci) = LG(Ci)

Therefore, ∀Ck ∈ A0, LG′(Ck) ≤ LG(Ci). Since for Ck /∈ A0, LG′(Ck) ≤ LG(Ck), and
since G was optimal for the latency, we deduce that G′ is also optimal for the latency.
This completes the first step of the modification of the plan G.
• Step i. Let i be the largest integer such that Gi verifies Property 1. If Gi = G,

we are done since the whole graph verifies the property. Let Ci′ be a node such that
LGi(Ci′) = maxk LGi(Ck). Note that these finish times are computed in the subgraph Gi,
and thus they do not account for the previous selectivities in the whole graph G. Let Cj be
an entry node of Gi (no predecessors in Gi) in a path realizing the maximum time LGi(Ci′),
and let C` be the predecessor in G of Cj of maximal finish time LG(C`). Then G′ is the
plan obtained from G in changing the predecessors of every service of Ai such that the
predecessors of a service of Ai in G′ are the predecessors of Cj in G. For Ck ∈ G \Gi, we
have LG′(Ck) = LG(Ck). Let Ck be a node of Gi. We have:

LG′(Ck) = LG′(C`) +
(∏

Cm∈Ancestj(G′)
σm

)
× LGi(Ck)

≤ LG(C`) +
(∏

Cm∈Ancestj(G) σm

)
× LGi(Ci′)

≤ L(G)

and L(G) is optimal. So, L(G′) = L(G).
• Termination of the algorithm. Let Ck be a node of G. If Ck is a predecessor of Cj

in G or if Ck ∈ Gi, then dk(G′) = dk(G). Otherwise, every path from Ck to a leaf in G
has been removed in G′, so dk(G′) < dk(G). This proves that

∑
j dj(G) ≥

∑
j dj(G

′).
- If, at the end of step i,

∑
j dj(G) =

∑
j dj(G

′), then Gi+1 verifies Property 1, and we
can go to step i+ 1.

- However, if
∑

j dj(G) >
∑

j dj(G
′), some leaves may appear since we have removed

successors of some nodes in the graph. In this case, we start again at step 0.
The algorithm will end because at each step, either the value

∑
j dj(G) decreases

strictly, or it is equal but i increases. It finishes either if there are only leaves left in the
graph at a step with i = 0, or when we have already transformed all levels of the graph
and Gi = G.
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Property 2. Let G be an optimal graph for latency verifying Property 1. Suppose
that there exists a pair (Ci, Su) and (Cj , Sv) such that di(G) > dj(G), σJ ≤ 1, and
ci/su > cj/sv. Let G′ be the graph obtained by removing all the edges beginning and
ending by (Cj , Sv) and by choosing as predecessors of (Cj , Sv) the predecessors of (Ci, Su)
in G and as successors of Cj the successors of Ci in G. Since σj ≤ 1, the cost of successors
can only decrease. The other edges do not change. L(G′) ≤ L(G) and G is optimal, so
G′ is optimal and Property 1 of Proposition 5 is verified. We can continue this operation
until Property 2 is verified.

Property 3. The last property just states that all nodes of selectivity greater than 1
are leaves. In fact, if such a node Ci is not a leaf in G, we remove all edges from Ci to
its successors in the new graph G′, thus only potentially decreasing the finish time of its
successor nodes. Indeed, a successor will be able to start earlier and it will have less data
to process.

Lemma 1. Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het such that for
all i, ci and si are integer power of 2 and σi ≤ 1

2 . Then the optimal latency is obtained
with a plan G such that

1. Proposition 5 is verified;

2. for all nodes (Ci1 , Su1) and (Ci2 , Su2) with di1(G) = di2(G), we have ci1
su1

= ci2
su2

.

Proof. Let G be a plan verifying Proposition 5. Suppose that there exists a distance to
leaves d such that the nodes at this distance do not respect Property 2 of Lemma 1. Let
A be the set of nodes (Ci, Su) of maximal ratio ci

su
= c with di(G) = d and A′ be the set

of other nodes at distance d. Let c′ be the maximal ratio cj
sv

of nodes (Cj , Sv) ∈ A′. Since
c′ < c and c, c′ are integer power of 2, we have c′ ≤ c

2 .
We construct the plan G′ such that:

• For any node (Ci, Su) /∈ A, Ancesti(G′) = Ancesti(G)

• For any node (Ci, Su) ∈ A, Ancesti(G′) = Ancesti(G) ∪A′

The completion time of nodes of A′ and of nodes of distance strictly greater than d in
G does not change. Let Td be the completion time of the service (Ck, Sv) at distance d+ 1
of maximal ratio ck

sv
. Let (Ci, Su) be a pair of A. Let σ =

∑
Cj∈Ancesti(G) σj . Then we have

Ti(G′) = Td + σ × c′ + σ × (
∑

Cj∈A′ σj)× c
≤ Td + σ × c

2 + σ × 1
2 × c

≤ Td + σ × c
≤ Ti(G)

This proves that the completion time of the services of A does not increase between
G and G′. The completion time of services of distance smaller than d does not increase
because their sets of predecessors do not change. G is a graph corresponding to Proposi-
tion 5, that means it obtains the optimal latency and the latency of G′ is smaller or equal
to the latency of G. We can conclude that G′ is optimal for latency.

We obtain by this transformation an optimal plan G′ for latency with strictly less pairs
of nodes that does not correspond to the property of Lemma 1 than in G. In addition, G′

respect properties of Proposition 5. By induction, we can obtain a graph as described in
Lemma 1.
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Theorem 5. MinLatency-Indep-Het is NP-hard.

Proof. Consider the decision problem associated to MinLatency-Het: given an instance
of the problem with n services and p ≥ n servers, and a bound K, is there a plan whose
latency does not exceed K? This problem obviously is in NP: given a bound and a
mapping, it is easy to compute the latency, and to check that it is valid, in polynomial
time.

To establish the completness, we use a reduction from RN3DM. Consider the following
general instance I1 of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n,
does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (3)

We can suppose that
∑n

i=1A[i] = n(n + 1). We build the following instance I2 of Min-
Latency-Het such that:

• ci = 2A[i]×n+(i−1)

• σi =
(

1
2

)n
• si = 2n×(i+1)

• K = 2n − 1

The size of instance I1 is O(nlog(n)), because each A[i] is bounded by 2n. The new
instance I2 has size O(n × (n2)), since all parameters are encoded in binary. The size of
I2 is thus polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution.
Suppose first that I1 has a solution λ1, λ2. We place the services and the servers on a

chain with service Ci on server Sλ1(i) in position λ2(i) on the chain. We obtain the latency

L(G) =
∑

i
ci

sλ1(i)
∗
(

1
2n

)λ2(i)−1

=
∑

i 2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1)

=
∑

i 2(A[i]−λ1(i)−λ2(i))×n+(i−1)

=
∑n

i=1 2i−1

= 2n − 1

This proves that if I1 has a solution then I2 has a solution.
Suppose now that I2 has a solution. Let G be an optimal plan that respects properties

of Lemma 1. Let (Ci1 , Su1), (Ci2 , Su2) be two distinct nodes of G. Let a1 and a2 be two
integers such that ci1

su1
= 2a1 and ci2

su2
= 2a2 . The rest of the Euclidean division of a1 by

n is equal to i1 − 1, and the rest of the Euclidean division of a2 by n is equal to i2 − 1.
Since both nodes are distinct, i1 6= i2 and we can conclude that ci1

su1
6= ci2

su2
. The ratios

cost/speed are all different and G verifies properties of Lemma 1. As a result, G is a linear
chain.

Let λ1, λ2 be two permutations such that for all i, the service Ci is in position λ2(i)
on the server Sλ1(i). We want to achieve a latency strictly smaller than 2n, and thus for
every node (Ci, Sλ1(i)),

2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1) < 2n

⇐⇒ 2(A[i]−λ1(i)−λ2(i))×n+(i−1) < 2n

⇐⇒ A[i]− λ1(i)− λ2(i) ≤ 0

This proves that λ1, λ2 is a valid solution of I1. Thus, I1 has a solution if and only if I2
has a solution, which concludes the proof.
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Proposition 6. For any K > 0, there exists no K-approximation algorithm for MinLatency-
Indep-Het, unless P=NP.

Proof. Suppose that there exists a polynomial algorithm that compute aK-approximation
of this problem. We use RN3DM, a special instance of 3-dimensional matching. Let I1 be
an instance of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n ≥ 2, does
there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (4)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n+ 1), otherwise we
know that the instance has no solution.

Let I2 be the instance of our problem with n services such that:

• ∀i, ci = (2K)A[i]×n2+(i−1)

• ∀i, σi = ( 1
2K )n

2

• ∀i, si = (2K)n
2×(i+1)

• P = (2K)n − 1

We prove in demonstration of NP-completness of this problem that any optimal solu-
tion of such an instance has the structure of a chain. The optimal solutions are chains
where the service Ci is associated Sλ1(i) in position λ2(i), with (λ1, λ2) is a solution of
I1. In any other solution, there is a service with computation cost greatest or equal to
(2K)n

2
, that means that the latency obtain is L ≥ (2K)n

2
. If there exists an algorithm

that compute in polynomial time a K-approximation of this problem, on this instance, it
finds in polynomial time the optimal solution. We can compute in polynomial time λ1

and λ2 from this solutions, and then solve I1. That means that we can solve in polyno-
mial tima RN3DM. However, RN3DM is NP-complete. This contradicts the hypothesis:
P 6= NP . This concludes the proof.

5.2.1 Particular instances

In this section, we study four particular instances of MinLatency-Het.

MinLatency on a chain Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het.
The problem studied here is to compute the optimal latency when we impose that the plan
is a linear chain. This problem is NP-complete.

Indeed, consider the decision problems associated to this problem: given an instance
of the problem with n services and n servers, and a bound K, is there a matching whose
latency does not exceed K? This problem obviously is in NP: given a bound and a
mapping, it is easy to compute the latency, and to check that it is valid, in polynomial
time.

To establish the completeness, we use the same problem as for the completeness of
MinPeriod-Het: RN3DM. Consider the following general instance I1 of RN3DM:
given an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations
λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (5)
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We build the following instance I2 of MinLatency-Het on a chain with n services
and n servers such that ci = 2A[i], σi = 1/2, si = 2i and K = 2n. The proof is based on
the fact that for all u1, u2, . . . , un, we have

2u1 + 2u2 + · · ·+ 2un

n
≥ 2

u1+u2+···+un
n (6)

because of the convexity of the power function, and with equality if and only if all the ui
are equal. Now we show that I1 has a solution if and only if I2 has a solution. Let λ1, λ2

be a solution of I1. We assign service Ci on server Sλ1(i) at position λ2(i). We obtain a
computing time of 2 for every service and a latency of 2n. This is a solution of I2.

Reciprocally, if we have a solution to I2 λ1, λ2, we have∑
i

2A[i]−λ1(i)−λ2(i)+1 = 2n

That is the lower bound of the latency on this instance, according to the equation (6).
That means that we have ∀i, A[i]− λ1(i)− λ2(i) = 0. So, λ1, λ2 is a solution of I1. This
completes the proof of NP-completeness.

Services of same cost Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het
with for all i, ci = c. We suppose σ1 ≤ · · · ≤ σn and s1 ≥ · · · ≥ sn. We prove that
an optimal plan is obtained with the mapping (C1, S1), ..., (Cn, Sn). Let G be the graph
produced by Algorithm 1 with this mapping. Let r be a permutation of {1, ..., n}, and
G′ a plan with the mapping (Cr(1), S1), ..., (Cr(n), Sn). Let G′′ the graph obtained by
Algorithm 1 with the latter mapping.

We prove by induction on i that

• ∀i, tr(i)(G′) ≥ tr(i)(G) and

• tr(1)(G) = tr(1)(G′).

Indeed, suppose that for all j < i, tr(j)(G′) ≥ tr(j)(G).

tr(i)(G′) ≥ tr(i)(G′′)
≥ maxk<r(i){tk(G′′) +

∏
k<r(i) σkcr(i)}

≥ maxk<r(i){tk(G) +
∏
k<r(i) σkcr(i)}

≥ tr(i)(G)

When the optimal plan is a star Let C1, ..., Cn+1, S1, ..., Sn+1 be an instance of
MinLatency-Het such that σ1, ..., σn < 1, σn+1 ≥ 1. We assume that c1, ..., cn are close
enough so that the optimal plan is like in Figure 7.

We have to allocate servers to services and to choose the predecessors of Cn+1 in order
to obtain a latency L ≤ K for a certain K (in an outer procedure, we will perform a
binary search to derive the optimal value of K). We suppose that we know the server
S allocated to Cn+1 and its combined selectivity in an optimal graph. Let c′ = cn+1/s,
K ′ = max(Ci,Sj)∈V ′ ci/sj where V ′ the set of predecessors of Cn+1 and Σ = (K −K ′)/c′.
We associate to this problem a bipartite weighted graph G = (A,B, V ) with:

• A is the set of services

• B is the set of servers
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C1

Cn

Cn+1

Figure 7: When the optimal plan is a star graph.

• (Ci, Sj) ∈ V if ci/sj ≤ K

• If ci/sj ≤ K ′, then w(Ci, Sj) = − ln(σi), and otherwise w(Ci, Sj) = 0.

We can compute in polynomial time a perfect matching of maximal weight in this graph.
If the associated weight is greater than ln Σ, then the associated allocation and plan has
a latency L ≤ K. We can execute this algorithm on all servers that could be allocated to
Cn+1 and on the value of ci/sj for all couples (Ci, Sj). So this case is polynomial.

When the optimal plan is a bipartite graph Let C1, ..., Cn, S1, ..., Sn be an instance
of MinLatency-Het. We suppose in this case that we have n services with σ1, ..., σp < 1
and σp+1, ..., σn ≥ 1. We assume that c1, ..., cn are close enough so that the optimal plan
is like in Figure 8.

Cp+1

Cn

C1

Cp

Figure 8: When the optimal plan is a bipartite graph.

In this case, we make an hypothesis on c′ = maxp<i≤n ci/sθ(j), with θ the permutation
corresponding to the allocation of servers. Then we allocate each service Cp+i to the
slowest server S possible such that cp+i/s ≤ c′. We can now use the same algorithm as
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for star graphs with the remaining servers and services. We apply this algorithm on each
value cp+i/si for c′. Again, this case is polynomial

5.2.2 Integer linear program

We present here a linear program to compute the optimal solution of MinLatency-
Het. We denote by C the set of services and by S the set of servers. First, we need to
define a few variables:
• For each service Ci, for each server Su, and for any subset of services e, z(i, u, e) is

a boolean variable equal to 1 if and only if the service Ci is associated to the server
Su and its set of predecessors is e ⊂ C.
• For each service Ci, the rational variable t(i) is the completion time of Ci.
• The rational variable M is the optimal latency.

We list below the constraints that need to be enforced:
• For each server, there is exactly one service with exactly one set of predecessors:

∀u ∈ S,
∑
i∈C

∑
e⊂C

z(i, u, e) = 1

• Each service has exactly one set of predecessors and is mapped on exactly one server:

∀i ∈ C,
∑
u∈S

∑
e⊂C

z(i, u, e) = 1

• The property ”is ancestor of” is transitive:

∀i, i′ ∈ C,∀u, u′ ∈ S,∀e, e′ ⊂ C, e * e′, i ∈ e′, z(i, u, e) + z(i′, u′, e′) ≤ 1

• The graph of precedence is acyclic:

∀u ∈ S, ∀e ⊂ C, ∀i ∈ e, z(i, u, e) = 0

• There remains to express the latency of each server and to constrain it by M . First
for the case where Ci has some predecessors we write:

∀i ∈ C,∀e ⊂ C, ∀k ∈ e, t(i) ≥
∑
u∈S

z(i, u, e)

 ci
su
∗
∏
Cj∈e

σj + t(k)


But the subset of predecessors can be empty:

∀i ∈ C, t(i) ≥
∑
u

z(i, u, e)
ci
su
∗
∏
Cj∈e

σj

Then we bound the value of t(i):

∀i ∈ C, t(i) ≤M

Finally, the objective function is to minimize the latency M .
We have O(n2 ∗ 2n) variables, and O(n4 ∗ 22n) constraints. All variables are boolean,

except the latency M , and the completion times t(i) which are rational. We see that
the size of this program is exponential, and it cannot be used in practice, even for small
instances.
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6 Heuristics

We know that MinPeriod-Het and MinLatency-Het are both NP-complete, but we
only propose polynomial heuristics for MinPeriod-Het: in the experiments of Section 7,
the absolute performance of these heuristics will be assessed through a comparison with
the (optimal) solution returned by the integer linear program of Section 5.1.2. We do
not produce heuristics nor experiments for MinLatency-Het, because the integer linear
program of Section 5.2.2 is unusable (with O(2n) variables) and it is untractable for the
CPLEX optimization software.

Recall that n is the number of services. The following heuristics are working for
instances C1, ..., Cn, S1, ..., Sn such that the selectivity of each service is smaller than or
equal to 1. The code for all heuristics, implemented in C, is available on the web [19].

Notice that services with selectivity greater than 1 can always be assigned optimally.
The idea is to set a bound K for the period, and to assign the slowest possible server to
the latter services, in decreasing order of their cost. Then we run the heuristics to assign
the services whose selectivity is smaller than 1 (and decrease or increase K according to
the result). We can bound the number of iterations in the binary search to be polynomial.
Intuitively, the proof goes as follows: we encode all parameters as rational numbers of the
form αr

βr
, and we bound the number of possible values for the period as a multiple of the

least commun multiple of all the integers αr and βr. The logarithm of this latter number
is polynomial in the problem size, hence the number of iterations of the binary search
is polynomial too3. Finally, we point out that in practice we expect only a very small
number of iterations to be necessary to reach a reasonable precision.

sigma-inc In this first heuristic, we place services on a chain in increasing order of σ.
Then, we compute for each service, its cost weighted by the product of the selec-
tivities of its predecessors, and we associate the fastest server to the service with
maximum weighted cost, and so on. This heuristic is optimal when all the service
costs are equal.

In the next three heuristics, we first allocate servers to services according to some
rules. Then, we have for each service its cost weighted by the inverse of the speed of its
associated server, and the problem is similar to the homogeneous case. Indeed, we just
need to decide how to arrange services. However, we know that this problem can be solved
easily in the homogeneous case, since all selectivities are smaller than or equal to 1: we
place services on a linear chain, sorted by increasing order of (weighted) costs, regardless
of their selectivities.

short service/fast server We associate the service with smallest cost to the server with
fastest speed. The idea of this heuristic is to process first services as fast as possible
so that their selectivities will help reduce the expected larger cost/speed ratio of the
following ones.

long service/fast server We associate the service with largest cost to the server with
fastest speed. This heuristic is the opposite of the previous one. It is optimal if
all the selectivities are equal to 1. We foresee that it will also give good results for
selectivities close to 1.

opt-homo This heuristic is in part randomized. We randomly associate services to
servers, and then we use the same procedure (assigning by increasing order of
weighted cost) to create a linear chain of services.

3The interested reader will find a fully detailed proof for a very similar mapping problem in [20].
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greedy min This heuristic simply consists of successively running the previous four
heuristics on the problem instance, and returning as a result the best of the four
solutions.

random This last heuristic is fully random: we randomly associate services and servers,
and we randomly place these pairs on a linear chain.

7 Experiments

Several experiments have been conducted for MinPeriod-Het in order to assess the
performance of the heuristics described in Section 6.

We have generated a set of random applications and platforms with n = 1 to 100
services and servers. For each value of n, we have randomly generated 300 instances
of applications and platforms with similar parameters. Each value of the period in the
following plots is an average of 300 results.

We report five main sets of experiments. For each of them, we vary some key param-
eters to assess the impact of these parameters on the performance of the heuristics. In
the first experiment, the service costs and server speeds were randomly chosen as integers
between 1 and 100. The selectivities were randomly generated between σ = 0.01 to 1.
In the second and third experiments, the parameters are the same except for the selec-
tivities: in the second experiment, selectivities are randomly chosen between σ = 0.01 to
0.5 (smaller values), while in the third one they are chosen between σ = 0.51 to 1 (larger
values). In the fourth and fifth experiments, the costs and selectivities are chosen as in
the first experiment, but the server speeds are randomly chosen between 1 and 5 for the
fourth experiment (large heterogeneity), and between 6 and 10 for the fifth experiment
(reduced heterogeneity).

For each experiment we report two sets of results. Figures on the left are for a small
number of services and include the optimal solution returned by the integer linear program
in addition to the heuristics. Figures on the right are for a large number of services and
only compare the heuristics. Indeed, the integer linear program requires a prohibitive
execution time, or even fails, as soon as we have 30 services and servers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  2  4  6  8  10  12  14  16

pe
rio

d

n

sigma-inc
short service/fast server
long service/fast server

opt-homo
greedy min

random
opt

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90  100

pe
rio

d

n

sigma-inc
short service/fast server
long service/fast server

opt-homo
greedy min

random

Figure 9: Experiment 1: general experiment.

In the first experiment, we notice that the performance of two heuristics, sigma-inc
and long service/fast server , decreases with the size of n. The two curves are very similar,
and they tend towards a constant. These heuristics lead to good results for n small.
The heuristic short service/fast server obtains the best results for large n, but it is the
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worst heuristic for small values of n. The heuristic opt-homo has correct results for small
values of n, and its average period is around twice the average period of the heuristic
short service/fast server for large values of n. In this experiment, the heuristic greedy-min
always is very close to the optimal.
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Figure 10: Experiment 2: with small selectivities.

In the second experiment, the performance of the heuristic short service/fast server
is better than in the first experiment for small values of n. It is the worst heuristic only
for n ≤ 3 while it was even the worst for n = 6 in the first experiment. The heuristic
greedy-min is relatively close to the optimal in this experiment. We might have expected
short service/fast server to obtain better performances here because selectivities are small,
but it turned out not to be the case.
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Figure 11: Experiment 3: with big selectivities.

In the third experiment, we expect better results for long service/fast server and worse
results for short service/fast server , since selectivities are closer to 1. This is true for
small values of n, but the results for large values of n are similar as before. The heuristic
short service/fast server is the best when n > 20. Altogether, the combination of long
service/fast server and sigma-inc allows greedy-min to be very close to the optimal for all
the values of n tested.

The fourth experiment is very similar to the first one. We expect similar results with
a certain ratio between both experiments. The only difference is the number of cases of
equality between server speeds over the instances generated by the two experiments. In
practice, the curves of the fourth experiment tend more slowly to constants. The second
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Figure 12: Experiment 4: with high heterogeneity.

difference is the limit of the curves of the heuristics sigma-inc and long service/fast server .
The limit of sigma-inc is very high (around 12), but in this experiment, the limit of long
service/fast server is relatively good (around 2). For this experiment, the heuristics are
relatively far from the optimal.
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Figure 13: Experiment 5: with small heterogeneity.

We obtain very similar results in the last experiment: it is the only experiment in which
the performance of long service/fast server is similar to those of short service/fast server
and opt-homo. In this experiment, server speeds are close. It is then logical that the choice
of the mapping service/server has a small influence on the result. The heuristic sigma-inc
has very bad results in this experiment. The instances generated here are close to the
homogeneous case. However, the curves generated are somewhat far from the optimal

Figure 14 compares the computing times of the heuristics and of the linear program,
according to the size of n. As expected, it takes a long time to solve the linear program
(of exponential complexity), while all heuristics always take around 0.001 seconds. For
small values of n (n < 3), it can seem surprising that the linear program is faster than
the heuristics. This artefact can be explained for n = 1 by the fact that running the five
heuristics implies computing five times the same division (service cost divided by server
speed), while the linear program just performs a single addition in this case.
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8 Conclusion

In this paper, we have considered the important problem of mapping filtering service
applications onto computational platforms. Our main focus was to give an insight of the
combinatorial nature of the problem, and to assess the impact of using heterogeneous
resources on the problem complexity. We considered the two major objective functions,
minimizing the period and minimizing the latency, and also studied bi-criteria optimization
problems. Several instances of the problem have been shown NP-complete, while others
can be solved with complex polynomial algorithms, such as the optimal algorithm for
MinLatency-Prec-Hom. We believe that this exhaustive study will provide a solid
theoretical foundation for the study of single criterion or bi-criteria mappings.

For Indep-Het, all problems (period, latency, and hence bi-criteria) are NP-hard.
We provide an integer linear program and many heuristics for MinPeriod-Indep-Het,
and experiments show that in many cases our heuristics are close to the optimal solution
returned by the linear program. We also have derived an integer linear program for
MinLatency-Indep-Het, but its exponential number of variables renders it untractable,
even for small problem instances.

As future work, we intend to design heuristics for the general problems MinPeriod-
Prec-Het and MinLatency-Prec-Het, and to derive lower bounds so as to assess their
performance. Also, extending ideas of task graph replication algorithms (such as those
in [21]) to the framework of pipelined workflows with filtering services looks a promising
direction to further explore.
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