Network Emulation

Mihai Ivanovici Dr. Razvan Beuran Dr. Neil Davies

Quality of Service

- What is "quality" for a network / application
 Quality is "finite"
- How is it
 - Shared (between different traffic flows)
 - Managed (at the contention points)
 - Delivered (to the application / user)
 - Perceived (by the user)

View points

- □ Local view (at a point in network)
- □ Global view (end to end)

Application outcomes

The judgment metric: "application outcomes"

Needed elements

- Model of interaction between application and delivered quality from network
- Environment for evaluation of existing applications
- Capture process to apply to existing / proposed developments
- → Combine to create a well-defined methodology for assessing application performance

Assessing application performance

In parallel

- Measure the network QoS parameters
- Assess the UPQ for the application under test

Current emulators

Do exist

□ Mainly software based

Packet by packet systems

Independent loss and delay applied to packets – unrealistic behaviour

□ False packet reordering

□ No intra-stream contention modelled

Why another emulator?

More realistic scenarios
 Intra-stream and inter-stream contention

 Correlated loss and delay, natural induced jitter
 Phase / mode changes in network

 Topology or environment changes (e.g. wireless)

 More flexibility and control on the degradation models

Why another emulator? (II)

Safety critical / mission critical viewpoint
 How the systems operate under various network conditions
 It's not just about "normal" situations
 How and when applications fail
 Speeds up to 1 Gbps

The hardware platform

How we do it

The packet processor

10

The architecture

Network in a box

- Predictable = reproducible network behaviour and application errors
- Regression testing

The " ΔQ " concept

Total degradation in the network = aggregation of the degradation induced by each sub-network and network element on the way

Intra-stream contention

- Competition for resources
 Sharing the connection → THROUGHPUT
 Entering the queues → LOSS
 Leaving the queues → DELAY
- How applications react to quality degradation
- Model the effects of application behaviour on quality degradation

□ e.g. burst loss behaviour on TCP/IP

Inter-stream contention

- The total amount of degradation is shared between different streams
 - By use of scheduling mechanisms (e.g. SP, WRR)
- Differentially treat the traffic to achieve the best application outcomes

First versions

Fixed delay + one queue
 Constant service time

- Bandwidth limitation
- Fixed delay + one queue
 - The effect of other traffic flows sharing the same network/path emulated as server vacations

The next step

- More sophisticated network models for the "server with vacations"
- Aggregation of simple models of "queues" and "wires"

Conclusions

- We propose a methodology for assessing application performance
- Network emulation
 - □ Allows a hybrid test technique
 - Combines the advantages of simulation and real application/networks testing