
IETF NSIS WG Overview

Julien Laganier
RESO – LIP / SUN Labs

IETF NSIS WG Overview

These slides are a digest of IETF NSIS WG
proceedings.

More information can be found at
http://www.ietf.org

Outline

• Problem statement and scope
• Design space for NSIS signalling protocol

NSIS Problem Statement and
Scope

NSIS Initiator
• Something (NI) that starts a request for

resources
• Might be

– the end system

– some other part of the network (ingress point)

• Actions triggered (directly or indirectly) by
higher layers in the end system

• Needs to map requested resources and
provide feedback information to higher
layers

NSIS Forwarder
• NF assists the NI in managing resources

further along the path
• does not interact with higher layers
• interacts with the NI and possibly others NFs
• path segment by path segment
• not required to be on the flow's data-path

• A path segment traverses an underlying
network:

• covering one or more IP hops
• using some local QoS technology
• NF maps service-specific informations to

technology-related QoS parameters

NSIS Assumptions and non-ones

• NSIS signalling could run
• end-to-end
• edge-to-edge
• network-to-network

• NFs are not constrained to a particular
location within a NSIS domain

• NSIS does not consider pure end-to-end
signalling (application layer issue, SIP WG)

NSIS Exclusions
• application and transport layer adaptation
• interaction between transport/applications

and the network layer
• QoS provisionning
• interaction between the network layer and

QoS provisionning
• interaction with resource management

capabilities
• service definitions (e.g. QoS classes)
• QoS monitoring

The Design Space for NSIS
Signaling Protocols

Overview

• Some NSIS assumptions
• “ Transport” layer
• Peer node discovery

NSIS model

• Want to support a variety of “signaling” applications
– not just QoS

�

 otherwise, why bother with 2-layer model?
– path-associated state management
– applications:

• manage data flows along path: NAT/firewall, QoS
• just along path:

– active network code deposits
– network property discovery (“traceroute-on-steroids”)
– network property management (not just NATs/firewalls)

– we are not designing all applications now, but should not lightly prevent
future use

• bidirectional signaling support with equivalent functionality
– NI

�

 NR and NR

�

 NI
– possibly NE

�

 NE

Finding NSIS peers

• The problem is not finding (all/some) NSIS
elements
– service location problem (SLP, DNS, etc.)

• but rather finding the next NE on the data path
to the NR

implicit

(send to destina tion)

explicit

active

(by probing)
passive

(by observa tion)

routing tables

next-hop router

directory
(e .g., map next AS to NSIS node)

When to discover peers

• Can be triggered by NI or NE
• May not want it automatically

– e.g., remove reservation – don’t want to be first on new path!
– good to have separation of discovery and operation

• Options:
– for every new NI-NR session

• including edge changes
– for every application-layer refresh
– requested by NI
– when detecting a route change in the middle of the network

NE NE

cannot tell (directly)

that route has changed

“ no more traffic

for session 42!”

Next-node discovery

• Basic function, regardless of *-orientation
• generally, NI needs to establish state so

that messages can flow in both directions
– implicit assumption, could have unidirectional

NI NE NE NE NR

NI NE NE NE NR

Next-node discovery

• Next-node discovery probably causes
operational distinction between path-coupled
and path-decoupled

• path-coupled:
– one of the routers downstream
– always only guess at coupling

• path-decoupled:
– some server in next AS
– anything else make (interdomain) sense?

Next-node discovery: path-coupled

• All discovery is approximate
– some node could use any feature of the

discovery packet to route it differently

presence of router
alert options?

L4 load
balancing?

load balancing

divergence causes

no signaling proxies
how to disentangle at end
system?

full 5-tuple

no signaling proxies (ICMP errors
misdirected to data source)

source &
destination
address

destination
address

constraintsdiscovery = data

Peer discovery: RSVP style

• Forward messages (Path, PathTear) addressed to NR
• Backward messages (Resv*,PathErr) sent hop-by-hop
• Path messages: discovery + special application semantics

NE NEnon

NE

Pa th

Resv

Ack

Peer node discovery: path-coupled

• With forward connection setup
• Only needed if next IP hop is not NSIS-aware
• Discovery messages: pure or application-enabled?

NE NEnon

NE

discovery

TP se tup

(if no exis ting a ssoc.)NSIS

Transport requirements

• Signaling transport users may require large data
volumes:
– active network code
– signed objects (easily several kB long if self-

contained; standard cert is ~5 kB)
– objects with authentication tokens (OSP, …)
– diagnostics accumulating data

• Signaling applications may have high rates:
– DOS attacks
– automated retry after reservation failure (“redial”)
– odd routing (load balancing over backup link)

Lower and upper layers

• Do all nodes process all NSIS messages?
• “ omnivorous”:

– all messages, even unknown signaling
protocols

– e.g., firewalls
– depends on what information is common

• common flow identification?

• “ vegetarians”:
– only things they know and can understand

Layering

• Some terminology confusion for NTLP – service vs. protocol
– we’ll take protocol (and contradict framework…)
– = functionality added to lower layer

• maybe ‘messaging layer’ is less overloaded

NTLP

reliable transport

IPv4, IPv6

UDP

?

Reliability

• Most signaling applications require that
end systems have reasonable assurance
that state was established
– if it wasn’t important, why bother sending

message to begin with ?
– often, modestly time-critical:

• human factors call setup latency

• economic fast and reliable teardown

• RSVP discovered later staged refresh
timer (RFC 2961)

Reliability options (1)
• End-to-end retransmission

– NI retransmits until confirmation by NR

�

simple – only requires NI state

�

deals with node failures
3. usually, no good RTT estimate

�

 flying blind
4. doesn’t work well for NR-initiated messages
5. node processing (incl. AAA) adds delay variability

�

 RTT very
unpredictable

• Hop-by-hop below NTLP
– share congestion state between sessions

�

 better RTT estimate
– re-use transport optimizations such as SACK
– inappropriate services?
– mandates explicit discovery (see later)

Reliability options (2)

• Hop-by-hop by NTLP per session
1. can use implicit discovery
– RFC 2961
– simple exponential back-off: no windowing, no SACK

 bad for long-delay pipes
– timer estimation difficult

• often few messages for one NSIS session
• must only have transport semantics

• Hop-by-hop by NSLP
– diversity of needs vs. cost

• what does a feature cost if not used/needed?
– what’s left for NTLP in that case?

Other transport issues

• MTU discovery
– can change during session

�

 may force end-to-end rediscovery
– NSIS packet size can change during transit
– not a problem if all messages are small (< 512 bytes?)

• Congestion control

�

 prevent network overload
– traffic burst for state synchronization
– retry after failures

• Flow control

�

 prevent NE overload
– traffic burst for state synchronization

• Security association
– needed for any channel security

• Message bundling
– probably interesting mostly for small (optimistic refresh?) messages

• DOS prevention
– need validated peer

�

 never, ever send more than one message for each
request!

Transport protocol options

• None

�

 raw IP
– limited to IPsec for NE-NE channel security
– can’t send Path via IPsec: no idea what SA

• TCP
– needs encapsulation (= one-word message length)
– HOL blocking – waiting for old message
– IPsec or TLS for channel security

• SCTP
– easier end system diversity

�

 relevant mostly for path de-coupled
– avoids HOL blocking – but effect is very hard to actually observe (see upcoming IEEE

Network article)
• DCCP

– future options, but “UDP + congestion control” may not be good fit

TCPUDP

raw IP

Transport (non-)issues

• “ But xP is stateful and we want soft-state”
– existence of transport association should not be coupled to NTLP or

NSLP state lifetime
– loss of transport does not signify anything (except maybe a reboot of the

peer)
– primarily an optimization issue: state maintenance vs. state

establishment overhead
• Multicast

– Each branch can have own transport session
– In RSVP, only Path* are multicast

• End-to-end principle
– not clear what the “ends” are here
– each NE is not just forwarding, but processing and modifying messages
– explicitly noted for performance enhancement

• Number of associations per node
– limited by select(), but not poll()

Transport (non-)issues

• State overhead
– information about next/previous hop has to be

somewhere…
• Transport header overhead

– most messages are likely >> 40 bytes
• Transport implementation overhead

– Conceivable end systems and routers already
implement IP, UDP, TCP

• TCP needed for DIAMETER, SNMP in routers
• TCP on any reasonable mobile device (HTTP, SMTP, POP,

IMAP, …)
– Less clear for SCTP

Identifiers

• Need identifiers for each logical
association/session
– know whether this path has been traversed

before
• need discovery or not

– pass to correct upper layer handler

• SIP lesson: do not overload identifiers

Identifiers should be…

• globally unique
– otherwise, they’ll have to be combined with something else

• not depend on host addresses
– NI and NR may change during session (mobility)
– NAT and RFC 1918-uniqueness issues
– RSVP SENDER_TEMPLATE and SESSION object

�

• constrains applications
• hard to match (multiple formats)
• same session has different identifiers along a path

�

 hard to manage

• probably not depend on globally unique host identifier (MAC) address
• constant length

– easy to parse and compare
• cryptographically random

– not sufficient for security, but often helps to prevent long-distance session
stealing attacks

– can often avoid a complicated hash function

Packet format issues

• Variations on type/length/value
• Type can be

– externally described (RSVP)
• meaning (“destination address”, “flowspec”)
• format (IPv4 or IPv6)

– internally described
• implied (DIAMETER)
• internal discriminator

A Two-Level Architecture for
Internet Signalling

The Signaling Problem Domain
• There are many different signaling

problems.
– QoS setup [e.g., RSVP v1] and all its variations --

E2E vs. proxies, multi-level (inter- vs. intra-
domain), mobility (?), telephony (?)

– Middlebox configuration (NATs, firewalls,...)
[e.g., TIST]

– Traffic engineering [e.g., RSVP-TE]

– Link Layer & Access Net Control
[e.g.,GMPLS-TE, PacketCable, ...]

– Network provisioning (VPNs, Diffserv DSCP, ...)

• Important WG decision: how to structure
this space

Motherhood
• Want to take an Internet-friendly approach

– Robust: cope with heterogeneity and with
failure

– Fundamentally simple but easily extensible

– General: useful for future signaling applications

– Common mechanisms

• What Can We Learn from RSVP V1?

– It has been adapted to a wide variety of
signaling problems

– That’s also the bad news ... Advanced state of
protocol chaos!

– Let’s try to do better...

Two-Level Architecture Proposal
• Define Internet Signaling Protocol Suite

(ISPS)
• (My choice for a name for the “NSIS protocol”)

• ULSP -- (generic) Upper-Level Signaling
Protocol

• CSTP -- Common Signaling Transport
Protocol

• Framework document calls these NSLP, NTLP resp.

• CSTP may use IP, UDP, and/or TCP (see later)

ULSP1

CSTP

ULSP2
ULSP3

API

Why?
(For the same reasons there is a Transport layer in the protocol stack.)

• Modularity is a Good Thing

– Simplify design of new signaling applications

– Independent evolution of signaling applications
and the underlying transport mechanism

– Key element: CSTP service model and API

• Why only two levels?

– Can we further modularize the ULSP level?

– Good idea, but moving beyond engineering into
research here.

Functional Partition
• ULSP implements E-to-E (NI-NR) semantics

• CSTP handles peer-peer communication
– Payload: Signaling App. Proto. Unit (SAPU)

H-sink

Signal msg

H-src

ISPS peers
(Normally neighbors, but not necessarily)

P-sink
(NR)

P-src
(NI)

Data & signaling

path

(Data path)

CSTP Functions
• Design goal: general building block for wide

range of signaling applications

• Proposed CSTP-level functions
– Reliable ordered delivery* of (trigger)

messages

– Soft-state refresh*

– Fragment/reasm SAPUs*

– Routing interface

– Hop/Hop security* (* = optionnal)

– Congestion control

– Neighbor discovery and up/down determination

CSTP Service Model
• Send: deliver SAPU and maintain/timeout

as soft state
• Option: deliver SAPUs reliably and in order [1].

• Tear: (H-src -> H-dest) explicitly remove
SAPU state.

• Rev-Tear: (H-dst to H-src) delete soft state.
[not in I-D]

• SendInfo: deliver SAPU (not soft state)

Note:
[1]: Can reliable delivery option be chosen internally by CSTP on hop/hop

basis, rather than chosen by the ULSP?

CSTP Service Model (2)
• CSTP service model is subtly different from Request, Release, Notify,

Accept, model ... of traditional telephony signaling.

– Send roughly analogous to ‘Request’

– Tear, Rev-Tear roughly analogous to ‘Release’

– SendInfo rough analogous to ’Notify’

– But ‘Accept’, ‘Reject’ are higher-level concept --
at ULSP level.

CSTP Protocol
• The CSTP protocol(s) proposed in the Draft

are incomplete; intended to establish
plausibility. (Move to an Appendix)

• CSTP was originally designed to provide
RSVP-style transport directly over IP

– Call this CSTP/IP.

– Could alternatively use (S)TCP connections
underneath CSTP, to obtain reliable ordered
delivery – CSTP/(S)TCP.

– Still need soft state mechanism for deleting
unused state.

More Technical Details
• Assumed that an SAPU is opaque to the

CSTP level.
– Strong assumption: e.g., CSTP layer then does

not know about flow identification, which may
be arbitrarily encoded into SAPU.
(cf. RSVP v1 Session, SenderTemplate objects)

– Then SAPU level cannot know about
previous/next hop per-flow; the ULSP has to
maintain this information for a path-coupled
signaling operation.

• Alternative approach: back off on generality, make
standard-encoding of flow identification visible to
CSTP. Needs more thought.

ULSP Level
• Every ULSP can use its own encoding for

its SAPUs.

– This flexibility is good, but it would also be
good to:

• Define a standard encoding format for
SAPUs.

– The RSVP packet format -- small fixed header
+ sequence of typed data objects -- has worked
well.

• Could define a concrete API to CSTP

– To enable 3rd-party ULSP software

NSIS Framework issues

Key Issue I
• What is the actual NTLP/NSLP divide?

– [Almost] all other issues depend on it
– Seem to be many options

• Consider a ‘core’ NSLP at every NE?
– Share application logic without putting it in

NTLP
• Capture the split explicitly with an API?

– When to start and where to put it?
• See later slides for discussion

Key Issues II and III
• Mobility interactions pop up again and again in

many places
– Very little open discussion and analysis so far
– Nature of input from seamoby unclear

• A main change from RSVP NSIS is multi
‘application’ support
– Discussion is still very QoS focussed; don’t know how

multi application support should be thought about
– Cf. other experiences of overloading: AAA, DNS,

HTTP
– What steps are needed to prevent chaos

1: Sender/Receiver
• Relates to current NI/NF/NR definitions
• Assumption:

– Layer split will make signalling transaction
initiation/response a signalling application
property

– Means NI/NF/NR become NSLP concepts

– Consequence: significant editorial updates…

2: NI/NR/NF Rights, Proxies
• Mainly an issue about authorisation

structure
• Assumption:

– Layer split will assign this as NSLP issue
– Update current discussion as QoS ‘example’

• Proxies: just back-to-back NR+NI
– Whether you like them depends on application
– Framework will impose no restrictions

• “ Signalling application can do arbitrary violence”

3: Local or Long-Distance
• Should entities relate only to peers or over

longer distances
– Affects notification handling (need for reverse

routing), “reservation identifier” meaning
• Assumption:

– Layer split will make NTLP ‘single hop’
– Applications opting out of reverse path

forwarding will have to work out how to secure
e2e notifications

– Framework will discuss for QoS, not finalise

4: Protocol Design Issues
• Addressing (peer-peer vs. e2e)

– Assumption: say both are needed, depends
on detailed design of NTLP

• Need for supporting protocol extensions
– Not identified in framework so far, leave open

• Layer split & use of supporting transport
– See later detail & leave as design question

5: Flow Identification
• What parameters to use/are needed to

identify a flow and its path and where are
they visible
– Assumption: layer split will put something

minimal in NTLP as defining the path
– Assumption: HA approaches for MIP support

are ruled out
– Assumption: framework will explain problems

with policy forwarding, up to NTLP to handle
them

6: More Mobility Issues
• Picture of NSIS signalling in overall context

of macro-mobility and seamoby-like
protocols is missing
– Impacts what optimisations are really useful

– Existing text needs update & review anyway

• Framework for “reservation identifier” is
consequently unclear
– As is what layer it lives in

7: More Complex Scenarios
• Periodically, points raised about the even-

cleverer-things that could be done
– More complex routing interactions (automatic

traffic engineering)
– More complex charging/authorisation models

• Assumption:
– Text can be included if people want to send it,

but it will be marked as out of scope for
current work

8: Pathdecoupledness
• Existing text is scattered about in

framework; could leave as is, but…
• Could say how it gets incorporated

economically, also w.r.t. layer split
– Assumption[?]: NTLP is responsible for

delivering messages to ‘right’ nodes, NSLP for
describing desired network behaviour

– Therefore[?]: Path-decoupled case is handled
by off-path NTLP variant under common
NSLP

NTLP/NSLP Split Issues

What is the NTLP? (part I)
• The framework says 'the NSIS transport

layer' is everything below the signalling
application layer and above the IP layer

Signalling Application

IP

� ��� �� ��� 	�

� � �
 �� �� �

 ��� ��

What is the NTLP? (part II)

• Prefer not to distinguish these cases at the
moment

– Do we need to?

NTLP

Signalling Application

IP

NTLP

Signalling Application

IP

TCP

IM
PO

SSIBLE

NTLP

Signalling Application

IP

TCP Router alert, etc

� �� �� � �� � 	�
 � � ��

�� � � � � 	 � � � � � � ���
�

What is the NTLP? (part III)
• What are the guiding principles?

– Should all functionality generic to many
NSLPs go into it?

• Or, expect a building block approach for them?

– Some functions just ‘go together’

– Presumably, try to include functions which
intimately interact with lower layers

• Routing? Mobility??

– Minimise ‘size’ of inter-layer API?

Agreed?

• NTLP only has simple messages (‘send data’)
• NTLP uses internal data to forward messages (i.e.

doesn’t rely on NSLP to control routing)
– This does not rule out route recording
– NTLP actions at each node cooperate to build e2e path

• NTLP should not address sender/receiver
orientation issues
– It only discovers downstream peers, but must be capable

of forwarding messages upstream
– Is reverse routing required by all NSLPs?

• Can we save on stored routing state if not?

Single-hop or Multi-hop
• Are NSLP peers joined by a single NTLP ‘hop’?

• Or, might the link between ‘like’ NSLPs run over
more than one ‘hop’ concatenated together?

• Does this non-end-to-end-ness of the NTLP
restrict the appropriate functionality?
– Or, should we design it so case (2) doesn’t arise – i.e.

enable it to ‘skip’ interior nodes?

NTLP

NSLPfoo

NTLP NTLP

NSLPfoo NSLPfoo

NTLP

NSLPfoo

NTLP NTLP

NSLPbar NSLPfoo

Should be in NTLP (if at all)
• Traditional transport-layer like functionality

– Congestion control
– Various reliability aspects

• Recovery from congestive loss?
• Guaranteed delivery?

– Bundling & Segmentation
– In order delivery
– Duplicate detection/removal
– Framing
– Flow control

• Do different NSLPs have different requirements?
– And should any of these be made optional?

Flow Identification
• Should there be flow information (e.g. 5-tuple) in

NTLP for NATing and policy routing reasons?
– NB: not full packet classifier – in signalling application
– Should wildcarding be allowed?

• Can NSLPs update objects/fields in NTLP?
– E.g. addresses, other identifiers
– Yes? When that message is locally delivered:

– Does the NTLP put any constraints on this (e.g.
timing)?

NSLP

NTLP NTLP

NB: flow of control,
not message

� � �

State Management
• Should the NTLP provide a state

management service to signalling
applications?
– Should it provide a service to NSLPs to create

opaque state blobs and manage it for them?

– Should the NTLP be used just to get opaque
data to between NSLP peers?

State Management (more)
• Different NSLPs have different qualitative state

management requirements/semantics.
– E.g. soft state (explicit or implicit refresh), timeout =

deletion or just ‘maybe not kept’, even hard state…
• Different quantitative aspects

– E.g. Lifetimes, lifetime precision, refresh criticality
• What would integration with the NTLP buy you?
• Putting state management functions in NTLP

makes the NTLP API much more complex
• If NSLP peers aren’t always NTLP peers then

even harder to define and analyse

Scoping
• Do we need message/object scoping?

– E.g. the ability to restrict certain messages to
certain ‘regions’ of the network

– Relates also to ‘last node’ problem

• Should message/object scoping be
performed in the NTLP or NSLP?
– Does the NTLP define scopes, but not enforce

them?

Rerouting / Mobility Events
• Where and how are mobility events detected?

(i.e. who cares about them – NTLP or NSLP?)
• How are they handled?

– Does NTLP or NSLP perform merging/deletion?
– Is it signalling application specific? (may depend on

authentication/authorisation aspects)

– Note: this issue relates to where any “reservation
identifier” should go

– Note: these events may involve previously non-
adjacent xxxP peers talking to each other

State/session teardown
• How are NTLP and NSLP state related?

– Does tearing down NSLP state automatically
teardown supporting NTLP state?

– Should NSLPs be allowed to do this?
• Dead peer or transport layer connectivity loss

– Does the NTLP have a concept of a connection
between peers?

– What should NTLP do if the connection fails?
• Tell NSLP (and let it make the decision)
• Deletes NSLP state
• Or, abandon the concept after all…

– When might you want NSLP state to persist in such
circumstances?

Security Aspects
• Where do we provide message protection

(confidentiality, integrity) protection?
– Peer-to-peer at NTLP?

– Peer-to-peer at NSLP only?

• Which types of DoS attack should be
prevented at the transport level?

NTLP

NSLPfoo

NTLP NTLP NTLP

NSLPfoo NSLPfooNSLPbar

NTLP

NSLPfoo

NTLP NTLP NTLP

NSLPfoo NSLPfooNSLPbar

That's it !

http://www.ietf.org

