
This document presents the different classes and their usage of the Network
eXperiment Engine software.

1 NXE

This is the entry point of the NXE software, providing the glue between all the
classes. It takes exactly one argument, the name of a XML file corresponding to
the description of the experiment that should be run.

1.1 Variables

In this section, we present the variables that are globally defined in the software.

1.2 Functions

• parsing_config(filename)

• handling_reservation(siteList, frontalList, nodeList, date)

• handling_deployment(siteList, frontalList)

• ip_instanciation(nodeList, nodeIPAssociation)

• linking_profile_steps(nodeList, profileStepList)

• pairing_nodes(nodeList)

• handling_BDTS(nodeList, BDTSprogram)

• preparing_schedule(nodeList, threadList, timeout, file, datelabel)

• running(threadList)

• retrieving_logs(nodeList, archivefolder, timelinelog)

• syncing_scripts(nodeList, scriptpath, user)

• generating_stats(siteList, datelabel, applicationtype)

• cleaning(siteList, frontalList, nodeList)

• creating_folders(archivepath)

1



Name Description Type Default
currentState Indicate at which stage of the run we currently are Enum

pid Pid of the current instance of the NXE software Integer -
spoofed Indicate that we are spoofing the pid of different NXE instance Boolean False

tmpfolder Indicates where the temp files will be copied String
archivefolder Indicates where the results will be saved String
errorStream Pointer to the error stream used File stderr

outputStream Pointer to the output stream used File stdout
config contains the global configuration of the application NXEParser.ConfigParser -

scenario contains the experiment scenario NXEParser.ScenarioParser -
topology contains the description of the topology NXEParser.TopologyParser -
profile contains the description of the bandwidth profile NXEParser.BDTSProfileParser -

Table 1: Global variables used in the NXE software

2



2 NXEParser

This module contains all the classes responsible for the parsing of the XML input
file. It is based on the Python XML Expat library and it is using a SAX model. A
good addition to this section is the document that presents the XML format that is
used to describe the scenarios.

2.1 TopologyParser

This class is responsible for the topology part of the scenario.

2.2 BDTSProfileParser

2.3 ConfigurationParser

2.4 ScenarioParser

3 NXEUtils

A module that contains the miscellanous stuff that wasn’t fit to be in a given partic-
ular class. Mainly we have utility functions used for the repetitive tasks of handling
dates and time or string manipulation/

4 NXETypes

A module that contains the definition of the business object model that are used to
represent the objects needed for the run of an experiment.

4.1 Node

This class contains all the information necessary to contact a given node and the
needed information to execute the scenario steps relevant to that node. Itis in-
stanced during the parsing of the input file.

We are also storing the pointer to the SSH connexion unto the actual node, so
as to avoid the overhead of opening a new one everytime we need to issue a new
command to the node. SSH channels are used to execute the command.

A recent addition is the use of two NXERandom objects to represent the dis-
tribution law used for the sizes of the transferts and the interwait times between
two transferts (but it could be used for almost anything else that require two sets of
random numbers)

3



4.2 execStep

This class represents a step of a scenario to execute. As we are using a command
pattern, so we are storing a date at which the execution step should start and the
command and its parameters that should be executed

A label is also assigned to the execStep to have a string to describe the effect
of the execution stepe.g. the particular value of the parameter we are evaluating in
the scenatio.

4.3 profileStep

This class describes a step of a bandwidth profile. This is no longer used aswe are
only storing a string to keep the bandwidth profile.

4.4 topologySite

This class is the equivalent of the topology used inside the configuration file.It is
used to describe a site (e.g. a cluster) containing resources (e.g. computation nodes)
that can be used during an networking experiment.

4.5 topologyFrontal

This class is associated with the topologySite and contains all the necessary in-
formation needed to contact the resource management services such as the kernel
image deployment software (e.g. kadeploy in Grid’5000) and the node reservation
software (e.g. OAR in Grid’5000).

4.6 topologyAggregator

This class describes the interaction in terms of network connectivity betweenthe
different sites involved in the experiment. It introduces a virtual point (orphysical
point as an aggregator can be a router or a switch somewhere in the network) where
the flows send by the end hosts are gathered.

It is not currently an essential part of the NXE software but it should beused
to help selecting groups of sites that need to be taken simultaneously into consid-
eration when generating the statistics and graphs from an experiment.

4.7 topologyLink

This class represents a (virtual or physical) link that exists between a site and an
aggregator or between two aggregators.

4



5 NXERandom

This class is used to store and generate random numbers following a givendis-
tribution lw. The distribution laws available depends on the implementation of
the random module in Python. The only exception is the Pareto distribution which
doesn’t use theparetovariate function as it doesn’t allow to choose the mean value.

A fixed set of numbers can also be provided in the configuration file so as to
reproduce a test-case that had been previously executed in another environment.

Every time a random number is generated in an NXERandom Object, the value
is stored in a table. It can be accessed at any stage of the execution for generating
statistics or saving these values for a later use.

6 NXEStats

This module contains a loose set of functions that are related to the computation
of statistical metrics. There are mainly classical functions (e.g. mean, standard
deviation) that were written to take a set of values as an argument.

7 NXEChart

This module is responsible for the generation of the figures using gnuplot and the
Python Gnuplot interface. It takes the output of the statistical part of the NXE
software and produces a figure.

Currently, only one type of figure is available: the normalized histogram that
provides an easy-to-read figure for users.

This script can also be used as a stand-alone to (re)generate figures from values
read from a file.

8 NXEThread

This module is used to handle the different types of threads that are used toexecute
simultaneous tasks in the NXE software.

8.1 NXEThreadCommand

This class corresponding to a simple thread is used to issue simple commands on
distant nodes. It uses the Python paramiko SSH module to run a remote command
provided a string. Both stdout and stderr are monitored but currently we are only
looking for a “KO!” or “OK!” string on the first line of the stdout output.

5



Name Description
NXE

Table 2: Description of the classes of the NXE software

It means that the output from the commands (e.g. bash scripts) should be rela-
tively quiet. We need that because there is no other simple way to wait for the end
of the execution of the remote command. Failure to comply to with this will lead
to premature termination of the thread. In this case, it will be impossible to ensure
that all the commands performed on the remote hosts will be performed in the right
order.

8.2 NXEThreadTimer

This class reproduces a Timer class. It is using the dates provided in an exec-
StepList to start the execution of a command at the required time and wait for the
date corresponding to the next event to occur in the list.

The granularity of this mechanism is the second. But as Python timers are
precise up to the millisecond, it could be possible to extent this class to be more
precise.

The rest of the thread code is very similar with the one used in the NXEThread-
Command class except that a part of the command string used is generated there
instead of being just a parameter. It breaks a little bit the isolation between the
different layers of the application but we are forced to do so as some of the script
parameters depends on the current execution step we are in.

6


