Energy savings for servers parks

Damien Borgetto

Jean-Marc Pierson
Georges Da Costa
Amal Sayah

IRIT - équipe ASTRE
Université Paul Sabatier

E2GC2
Octobre 2009
Large scale systems

- Provide computing resources to large scale groups of users or services
- Geographically distributed
- Hardware either heterogeneous or homogeneous
- Heterogeneous usage
Large scale systems

Energy point of view

- Electricity cost of a cluster for 1 year is the same scale as its price
- Electricity consumption impact on environment is important
- Possible to reduce this energy consumption at several levels
 - Infrastructure around the hardware
 - Hardware
 - Software (compilation, algorithmic)
 - Middleware
Introduction of a new metric: yield

\[Y_{ij} = \sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i} \right) \]

H: number of hosts
\(\alpha_i \): fraction of the CPU the job \(i \) requested
\(\alpha_{ij} \): fraction of the CPU of the host \(j \) actually allocated to job \(i \)
Model the job yield, its satisfaction rate.

Example

Let’s take 2 hosts and 4 jobs requesting each 60% of CPU resources ($\alpha_i = 0.6$).

\[
Y_{ij} = \frac{0.25}{0.6} \approx 0.42
\]

\[
Y_{ij} = \frac{0.5}{0.6} \approx 0.83
\]
Objectif : maximize the minimum \textit{yield}

1. Apply an algorithm that takes a yield as an objective and computes a placement.
2. Iterate this algorithm to find the optimal yield.
Placement limits

- This approach allows to switch off hosts as a collateral effect.
- Does not take into account hosts heterogeneity.
- Does not take into account the energy required to compute the placement.

⇒ Energy has to be taken into account globally.
(H1) Hosts are heterogeneous energy wise, but provide the same computing resources.

(H2) An host consumes C^{min} watts when idle and C^{max} when fully loaded.

(H3) $\delta C_{ij} = \alpha_{ij} \times f(j)$ linear, $f(j) = (C^{max} - C^{min})$.

(H4) Infinite jobs.

(H5) No migration.
Metric redefinition to take into account energy consideration.

\[YE_{ij} = \frac{(Y_{ij})^{1-k}}{(E_{ij})^k} \]

\[= \frac{\left[\sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i} \right) \right]^{1-k}}{\left[\lambda(C_j^{\text{max}} - C_j^{\text{min}}) \times \alpha_{ij} + (1 - \lambda) \left[A_j(1 - \sum_{i'=1,i'\neq i}^{J}(\alpha_{i'j})) \right] \right]^k} \]

With \(0 \leq \lambda \leq 1 \) and \(0 \leq k \leq 1 \).
(P1) Favors an energy efficient host.

\[
\frac{\left[\sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i} \right) \right]^{1-k}}{\left[\lambda(C_j^{\text{max}} - C_j^{\text{min}}) \times \alpha_{ij} + (1 - \lambda) \left[A_j(1 - \sum_{i' = 1, i' \neq i}^{J} \alpha_{i'j}) \right] \right]^k}
\]

With \(0 \leq \lambda \leq 1\) and \(0 \leq k \leq 1\).
\begin{equation}
(P2) \text{ Favors an already loaded host.}
\end{equation}

\[
\left[\sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i}\right)\right]^{1-k}
\left[\lambda(C_j^{\text{max}} - C_j^{\text{min}}) \times \alpha_{ij} + (1 - \lambda) \left[A_j(1 - \sum_{i'=1, i' \neq i}^{J} \alpha_{i'j})\right]\right]^k
\]

With $0 \leq \lambda \leq 1$ and $0 \leq k \leq 1$
and $A_j = C^{\text{min}}$
(P3) Tradeoff between energy savings and performance (k)

(P4) Tradeoff between Placement and consolidation (λ)

\[
\left[\sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i} \right) \right]^{1-k} \left[\lambda(C_j^{\text{max}} - C_j^{\text{min}}) \times \alpha_{ij} + (1 - \lambda)(A_j(1 - \sum_{i'=1, i' \neq i}^{J} \alpha_{i'j})) \right]^k
\]

With $0 \leq \lambda \leq 1$ and $0 \leq k \leq 1$.

\[
\sum_{j=1}^{H} \left(\frac{\alpha_{ij}}{\alpha_i} \right)
\]
2 other differences with the base algorithm:

- New dichotomy bounds:

 \[YE_{sup} = \frac{\left[\min\left\{ \sum_{i=1}^{H} (\alpha_i) , 1 \right\} \right]^{1-k} }{\min_j \{ (1-\lambda) \times A_i + \lambda \times \min\{1, \sum_{i=1}^{J} (\alpha_i) \} \times (C_j^{max} - C_j^{min}) \}^k} \]

- Sort of the hosts at the algorithm beginning to place on the best hosts firsts:
 - TH1 : \(C^{min} \), increasing;
 - TH2 : \(C^{max} \), increasing;
 - TH3 : \(C^{min} + C^{max} \), increasing;
 - TH4 : \(C^{max} - C^{min} \), increasing;
• Same methodology as defined in Stillwell and al (to allow comparison).
• Small problem instances: 4 hosts, 1440 simulations.
• Campaign of more than a million simulations.
• Experimentation done on the french Grid’5000 platform.
Influence of the hosts sorts on the energy consumption

Influence of the hosts sorts on the energy consumption

System Energy (Watts)

Increasing order

Parameters variation

- TH1: C^{min}
- TH2: C^{max}
- TH3: $C^{min} + C^{max}$
- TH4: $C^{max} - C^{min}$
Improvement of the energy consumption and reduction of the yield
Energy consumption in function of λ and k
Yield in function of λ and k
Current state:

- Definition of a placement metric *energy-aware*
- Metric validation using simulation
Perspectives

Short-term:
- Job sorts *energy-aware*
- Model of the optimal placement with energy/performance constraint

Mean-term:
- Remove some hypotheses: performance homogeneity and infinite jobs
- Job migration
- Overhead estimation
- Heuristic comparison

Long-term:
- Autonomous system of energy management
Questions?

Questions
Task placement

Initial algorithm

Objective: maximize the minimum *yield*

1. Fix a value Y of the aimed *yield*;
2. For each jobs, deduce from Y new CPU requirements to guaranty jobs attain this objective;
3. Sort jobs into two lists;
4. Place jobs using *multi capacity bin-packing*;
5. Restart 1, 2, 3 and 4 by doing a dichotomy on Y to find the optimal Y.

Several jobs sorts:
- MCB4: $\text{max(\text{mémoire},CPU)}$, increasing;
- MCB8: $\text{max(\text{mémoire},CPU)}$, decreasing.