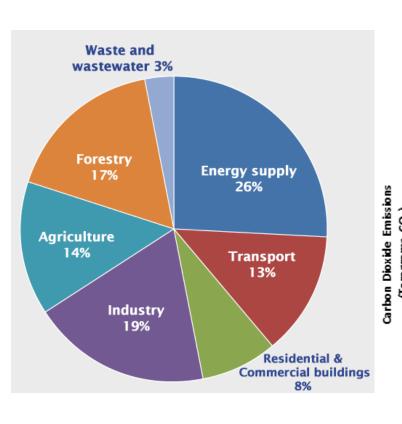


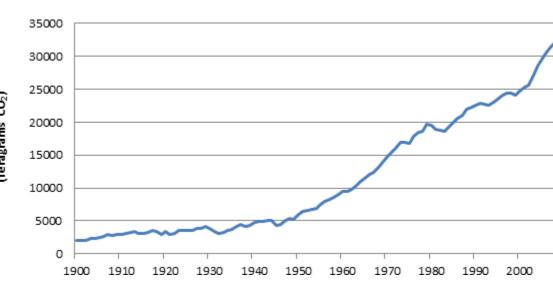
Reducing GHGs with ICTs

Entretien Jacques Cartier

November 20th 2012 Myriam Blais, MFE

Outlook

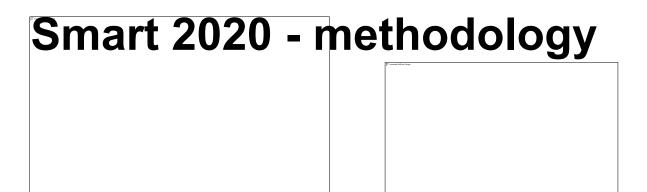

- Green ICTs
 - ICT's carbon footprint and ways to reduce it (actions in Smart 2020 report and actions in Quebec)
- Greening with ITCs
 - It's role in GHGs reductions
 - Examples of ICTs uses in different sectors
- Quebec's climate change policies
- Conclusion


Green ICTs

Global GHG emissions

Fossil-Fuel emissions

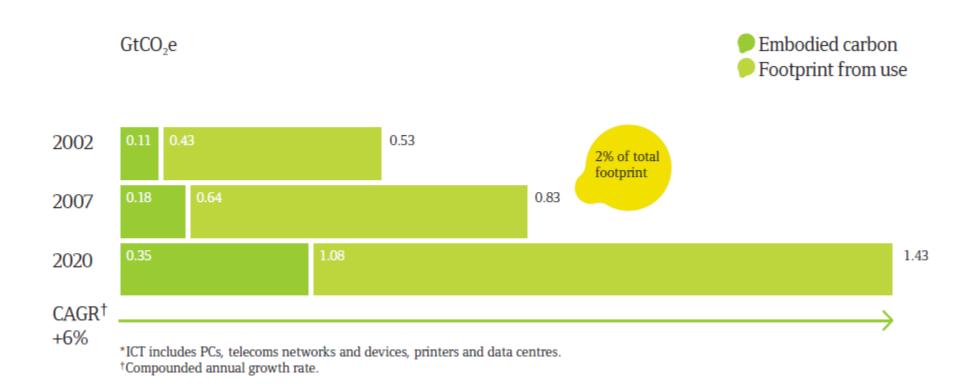
Source: Boden, T.A., G. Marland, and R.J. Andres (2010). Global, Regional, and National Fossil-fuel CO2 emissions


Source: IPCC 2007

Trends in ICTs

- Increasing migration of social and economic activities on line: Facebook, E-Bay, etc.
- Strong decline in the cost of data collection, storage, transportation, and processing
- Increasing deployment of "smart" ICT applications such as smart grids and smart transportations based on machine-to-machine (M2M) communication
- Expansion of mobile communication

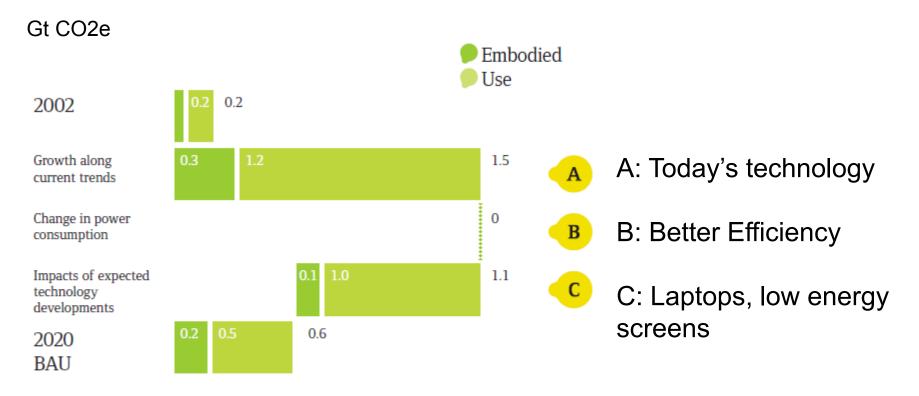
Higher Demand


- The ICT sector covers:
 - PCs and peripherals
 - IT services
 - Telecom networks and devices
- Quantify the direct and indirect global impact of ICT on GHG emissions until 2020
 - Direct: Based on public and company based datas
 - Model used drew on McKinsey's previous work with Vattenfall on GHG reduction cost curve

Compared studies

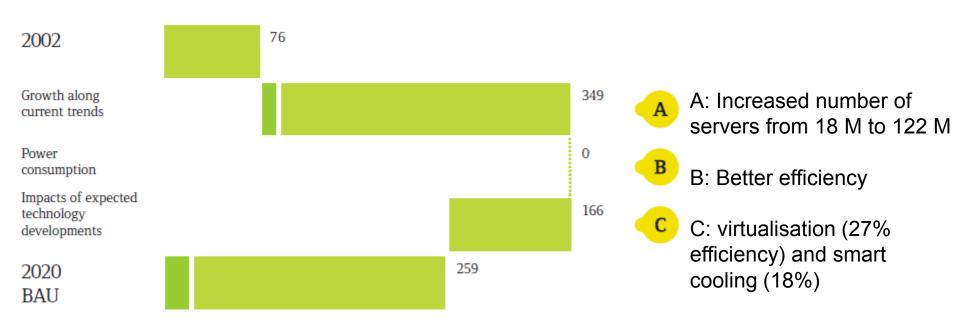

Year	ICT emissions Mt		ICT share of overall emissions		Source
	CO2	CO2e	CO2	CO2e	
2002		530		1.1%	GeSI/The Climate Group 2008
2007	661		2.3%		Gartner 2007
2007		830		1.8%	GeSI/The Climate Group 2008
2007		1160		2.5%	Malmodin et al.

Source: Compiled by OECD


ICTs carbon footprint

Footprint by subsector

PCs and peripherals



^{*} Based on Gartner estimates until 2011 and trend extrapolation to 2020.

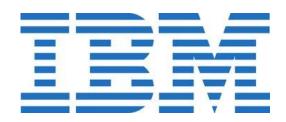
[†] Based on McManus, T. (2002), Moore's Law and PC Power, presentation to Tulane Engineering Forum.

Data centers

^{*}Based on IDC estimates until 2011 and trend extrapolation to 2020, excluding virtualisation. †Power consumption per server kept constant over time.

Ex.: Readily available cloud-based email, customer relationship management and groupware applications offer a carbon abatement potential within China of 1.9 Mt CO2e annually

Source: The enabling technologies of a low carbon economy, a focus on cloud computing, GeSI

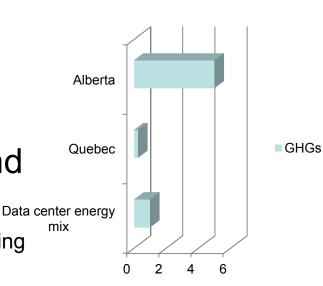

Quebec's project on Green ICT – Equation (Prompt)

- Part of an Innovation Strategy (Stratégie québécoise sur la recherche et l'innovation)
- Objective of the partnership: develop and demonstrate new technologies (ICT) that help reduce GHGs
- 70 M \$: 30 M\$ from the government and 40 M\$ from industry
 - Where 5% must go to Research centers and 5% to SMEs
- Six companies:
 - CGI, Ericsson, Fujitsu, IBM, Miranda, Teledyne Dalsa
- Key areas:
 - Cloud computing
 - Smart grid

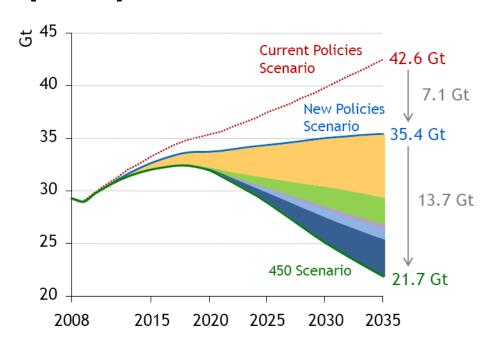
Project:

- Develop cloud network infrastructure node prototypes that will handle increased traffic and addresses without significantly increasing energy usage
- Develop software cloud network management tool prototypes that will enable the measurement of energy usage by slices and virtualized portions of the network
- Next phase:
 - Green Star Network

- IBM Bromont, specialized in advanced flip chip assembly
- Design and development of forward looking manufacturing process allowing for significant reduction in power and water consumption


- Company specialized in MOEMS (Micro-Opto-Electro-Mechanical Systems), miniaturized mechanical and electro-mechanical elements that are made using the techniques of microfabrication
- Project: Develop a customized integrated optoelectronic switch, with low power consumption, for digital opticalfiber communication networks

- Cloud computing service where 16 000 active mail boxes will be offered in a virtual environment
- LCA: Material acquisition & manufacturing, Operation and use, end of life
 - GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance



Greening with ICTs

Energy Efficiency for a low C future (IEA)

Share of cumulative abatement between 2010-2035					
Efficiency	50%				
Renewables	18%				
Biofuels	4%				
Nuclear	9 %				
■ CCS	20%				

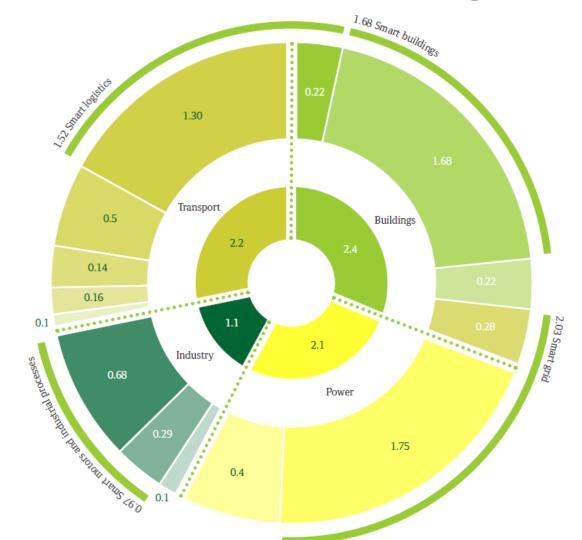
In moving from the New Policies Scenario to the 450 Scenario, more expensive abatement options such as CCS play a growing role

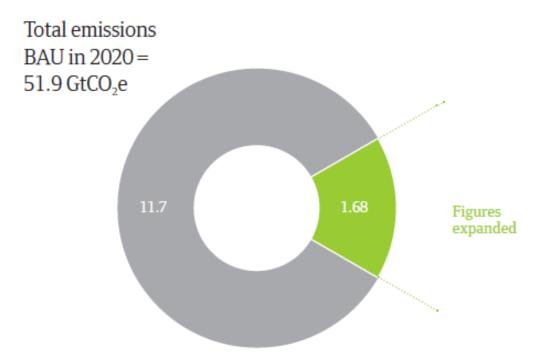
© OECD/IEA 2010

ICTs enhance efficiency & facilitate conservation

- Process efficiency
 - Doing things fast
 - Use less energy → emit less Carbon
- Controlling everything
 - Smart controls
 - Connect & control all motors & energy consumption

12% energy efficiency gain by letting consumers send in their utility meter readings by SMS / Smart Phone


Listening to music today consumes half the CO2 to play that a decade a go using CDs (Stanford University)


Accenture Study: Cloud solutions can reduce energy use and carbon emissions by +30% Vs. on-premise.

GHGs reductions – greening with ICTs

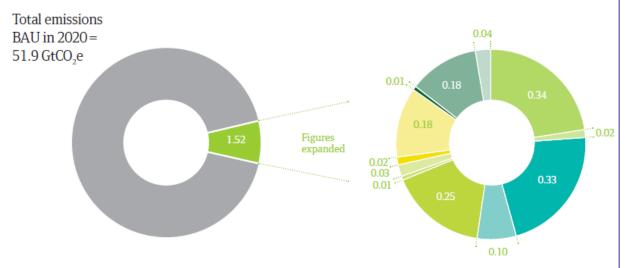
7.8 Gt CO2e **ICT-enabled** abatements

Smart buildings

- Total emissions from buildings (including power) total emissions from power used by industrial systems
- Total ICT-enabled smart buildings abatement

- Intelligent commissioning
- Improved building design for energy efficiency
- BMS
- Voltage optimisation
- Benchmarking and building recommissioning

- Heating, ventilation and air conditioning (HVAC)
- Lighting automation
- Ventilation on demand
- Reduced building space through design


Scope of energy efficiency: examples

Technical Measures

- Lighting retrofit T8, T5, Electronic Ballasts, LED technology
- Lighting Controls Timers and occupancy controls
- Day Lighting
- Lighting Reconfiguration
- Convert CAV Air Handling System to VAV
- Occupancy Sensor Control of HVAC
- Replacement with High Efficiency Units
- Variable Flow Pumping

- Reduce Run Time of Major HVAC equipment
- Demand Controlled Ventilation
- Enthalpy Economizer
- Chilled / Condenser Water Reset
- Energy-Efficient Motors
- Motor Variable Speed Drives
- Equipment Sequencing
- Proper sizing
- Cogeneration

Smart logistic

- Total emissions from buildings (storage) and transport (includes 11.7 from buildings, 7.6 from transport)
- ICT-enabled transport and storage abatements (includes 1.29 transport and 0.22 storage)
- Optimisation of logistics network
- Intermodal shift (commercial)
 Optimisation of collection/delivery itinerary planning
- Optimisation of route planning –
 e.g. avoidance of congestion (commercial)
- Eco-driving (commercial)
- Reduction in unnecessary flight time (commercial)

- In-flight fuel efficiency
- Reduction in ground fuel consumption
 Reduction in unnecessary flight time
- Maximisation of ship load factor (commercial)
- Optimisation of ship operations (commercial)
- Minimisation of packaging

- Onboard driver information and data logging
- Real time fleet tracking
- Global Positioning Systems (GPS)Telematics
- Supply chain design and modelling software
- Real time route optimisation (RTRO) software
- •Electronic freight exchanges (EFX) to allow for the "auction" of spare space on vehicles

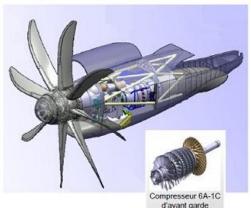
Example IBM – Stockholm Congestion Charging System

- The congestion charge is a national tax levied on most vehicles entering and exiting central Stockholm (\$84 million)
- Amount of tax payable depends on what time of the day
- Technologies: automatic plate recognition with cameras, laser detectors, antennas
- Effects: reduced traffic by 20%, GHGs by 12%

Greener Aircraft

- Name of the project: SA²GE (Smart Affordable Green Efficient)
- Name of the organization: Coalition for Greener Aircraft
- Term: 4-years
- Budget: \$150 millions (\$70 millions comes from the provincial government and \$80 millions from the industry)

Greener Aircraft

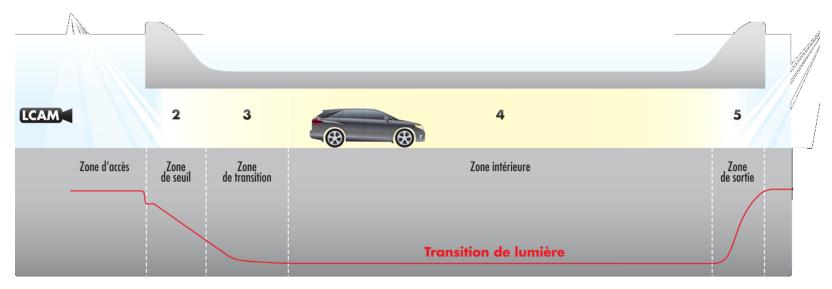


New technologies on 5 critical components

- Composites fuselage
 - Bombardier inc.
 - Bell Helicopter Textron Canada Ltée
- Green compressor
 - Pratt & Whitney Canada Corp.
- Cockpit applications
 - CMC Électronique (filiale Esterline Corp.)
- Integrated modulor avionics for critical systems
 - Thales Canada inc.
- Landing gear of the future
 - Héroux Devtek inc.

BOMBARDIER

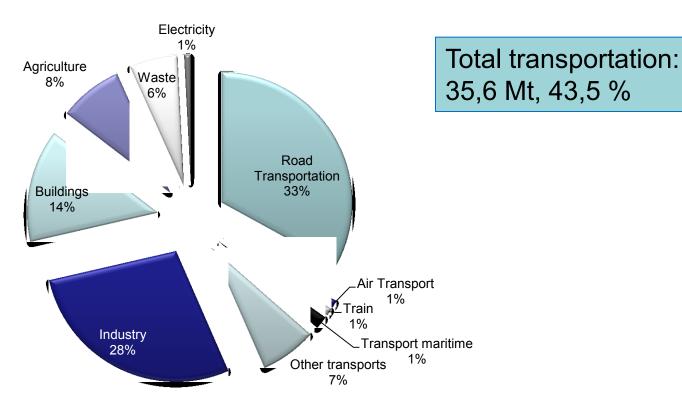
Données exclusives à P&WC


Propriété d'Esterline CMC Électronique

Lufa Farms

- Hydroponic greenhouse rooftop farm
- Food box to a subscriber base of about 1,000 people
- Has recently secured \$4 million in equity investments led by a venture capital fund
- Energy optimization: rideaux thermiques, climatisation avoided for the building under the greenhouse
- Less Water: rain utilization, water recirculation

NYX Hemera Technologies


- Control system for tunnel lights
- Automatically adapts the brightness at a tunnel's entrance, according exterior luminance
- Monitors lights use-life
- Control of each light individually
- Leads to efficiency gains

Quebec's climate change policies

Quebec's 2009 GHGs

Total: 81,79 Mt CO2e

Source: GHG inventory 2011, MDDEP

Western Climate Initiative (WCI) **Partners with** regulations Californie Québec СВ MB **Partners** QC Colombie-Britannique ON Manitoba Ontario CA **Canadian partners** 79 % of the population (2011) 000 76 % of GDP (2011)

32

ICT's role

- Cap & Trade
 - Companies directly regulated and all fuel consumers will need new ways of reducing their energy consumption and CO2 emissions
 - The rate of return on investment will change with the carbon cost
- Climate Change Action Plan
 - Use of best practices in logistics for less energyconsuming transportation

Conclusion

Conclusion

- ICTs are responsible for about 2% of GHGs they can help reduce them by 15%
- Greening the ICT but also integrating ICTs in transport, industry, energy sectors where major efficiency gain

Merci!

Myriam Blais Coordonnatrice

Direction des technologies vertes et des entreprises de service MFE

418 691-5698, poste 4062 myriam.blais@economie.gouv.qc.ca