Framework for conducting Life Cycle Analysis (LCA) of Datacenters

Prepared by Christophe GARNIER christophe.garnier@schneider-electric.com November 2012

Content

- Objective of the study
- Environment vs sustainability
- LCA principles
 - System Boundaries
 - Functional unit
 - Life cycle perspective
 - Comprehensiveness
- LCA limitations and trends
- Lessons
- What's next?

Objectives of the TGG study

- Give framework and rules for conducting studies on environmental aspects of datacenters.
- Not calculate numbers
- Not a list of best practices
- Make proposals for next studies, anticipate future developments in this area

The 3 pillars of sustainability

Sustainability = meet the needs of the present without compromising the ability of the future generations to meet (Brundtland Report, 1987)

International standardization bodies

Existing studies: Various scopes, goals, organizations,...

• Environmental impacts

- Single impact: GHG Protocol Data Centre Chapter
- Multi impacts: ISO 14040 Life Cycle Analysis

• Product phase

- Most of the time, only "Use phase"
- 2 phases embedded/use, several
- Product scope
 - All products in scope: ISO 14040
 - Data Center only: GHG Protocol

• Geographical scope

- WW: ISO, IEC, ITU
- Europe: EU methodology,
- Singapore: SS564
- No visible activity in US and Asia for the moment
- Product, organization, or service?
 - A data center can be considered as a product, an organization, or a service

• Focused on reduction

Calculate progress, and not current number

• Standards or consortia

- IEC, ISO, ITU,...
- GHG Protocol, TGG, ...

Life cycle assessment principles

• Complete life cycle + all environmental impacts

Life cycle assessment principles

 Avoid pollution shift: do not transfer burden from one environmental impact category to another

LCA Principles

- System boundaries: what is in/out the study
- Functional unit: Unit of reference
- Life cycle perspective: Consider Complete life cycle
- **Comprehensiveness**: all aspects of natural environment, human health and resources

System boundaries

 Set of criteria specifying which unit processes are part of a product system (ISO 14040)

- Description of what is IN and OUT of the DC
- There no unique definition of a DC. Each study can have its own boundaries but clearly defined
- Required to compare, measure evolution, or aggregate data
- Use ratio when Datacenter is part of a building with other functions

System boundaries

Is this Equipment part of the Data Center?

Lightning

Roads, parking

Submarine cables

Fire system

Satellites

Photovoltaic panels

Lifts

Schneid Employee offices chneider-electric.com – October 2012

Functional unit

- Quantified description of performance of a product system for use as a reference unit (ISO 14040)
- Defines what is being studied. All subsequent analyses are then relative to that functional unit

• What is measured in the DC?

- Per compute basis = very complex
 - •Calculation capacity, Storage capacity, Transactions per second,
 - ...+ System availability, geographical area,...
- Per-kW of computing per-year basis

Functional unit

- Year 1: datacenter A, Year 2: same datacenter A with 50% less activity. PUE is better. Datacenter is more efficient?
- Datacenter A is Tier 1, datacenter B is Tier 4 with same activity. A is more efficiency than B?
- Assessment of impact for 1 year usage. Divide "life time impact" by "expected life time" of equipment

Life cycle

- Consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources to final disposal (ISO 14040)
- Life Cycle Phases for a datacenter:

Comprehensiveness

 LCA considers all aspects of natural environment, human health and resources. By considering all aspects, potential *trade-offs* can be identified and assessed (ISO 14040)

• Environmental impacts

- Energy consumption
- Water usage / pollution
- Air pollution
- Carbon footprint
- Hazardous substances
- Waste
- Noise
- Biodiversity
- ...

Impact shifting

Through such a systematic overview and perspective, the **shifting** of a potential environmental burden between life cycle stages can be identified and possibly avoided

- Refresh equipment every year with top of the class
 More efficient A Recycling and Packaging waste
- Move to a carbon neutral building
 - New carbon neutral building $\Delta \Delta$ dismantling existing building
- Using water from river
 - Save drinkable water 44 warm the river
- Electronic documentation
 - Save paper
 - use IT
- Photovoltaic panels
 - Save energy

raw material, hazardous/rare substance

Rebound effect

- Smaller/cheaper -> shorter life time
- More devices -> same function in several devices
- More powerful -> more use (video,...)
- More flexible -> more upgrade

Limits of LCA

- Expertised people is required
- Resources: time and money
- Data collection
 - no data, no result
 - Uncertainty

- Primary data: measure or collected data
- •Secondary data:Data derived from other sources such as literature or database
- Impact categories:
 - Carbon is the most recognized and documented
 - And also water, air, ozone, biodiversity, ...

LCA Trend: what to measure?

• From single criteria to global assessment

Carbon footprint

TODAY

TOMORROW

End of lif

LCA Trend: how to measure?

• Many methodologies under development

• ITU/ETSI, IEC, GHG Protocol, EU JRC

• Compatible, similar results...

- Good for identification of main impacts
- But too much uncertainty
 - GW from 20 to 50 substances
 - CO2 conversion not always the same

• At the end

- Comparison is not possible
- Regulation cannot be implemented
- Standardization of KPIs
 - ISO/IEC JTC1 SC39

