Colloquium EJC - ICT 2012

November 19-20, 2012 - Lyon (CNRS Theater, Villeurbanne)

NSTI Mines-Télécom

TELECOM

MINES

Ecodesign issues and challenges in the

ICT sector: A patent-based perspective

Nicoletta CORROCHER[#] Grazia CECERE* Müge ÖZMAN* Cédric GOSSART*

[#] KITeS, Bocconi University, Milan * Télécom Ecole de Management, Institut Mines-Télécom, Paris

MANAGING THROUGH TECHNOLOGY

- 1. Introduction
- 2. Literature
- 3. Methodology & Data
- 4. Results
- 5. Implications for future research

Introduction

- Period of crises: not only economic...
- Way out: eco-innovations?
- Ecoinnovations: within ICTs?
- ICTs: significant ecological impacts.
- ICTs: decoupling potential (green ICTs) + job creation.
- **<u>Research challenge</u>**: integration of ecological issues into

innovation studies.

http://ecoinfo.cnrs.fr

1. Introduction

Comment nos résultats vont-ils sauver la planète ?

... mais sans être trop loin du centre au risque d'être inaudible !

La théorie de l'innovation

• Joseph Alois SCHUMPETER (1883-1950): Innovation = source déterminante de compétitivité, de développement économique, et de transformation de la societé.

• Nelson & Winter (économie évolutionniste) : Principales forces de la croissance = innovation & sélection.

Theories of and Prospectus' Nelson, R.R., and Winter, S.G. (1974) vs Evolutionary Critique **Economic Growth:** Neoclassical

Eco-innovation : quel rôle dans la transition écologique ?

1. Introduction

Systemic changes towards absolute decoupling

Cleaner Production 15(1): 94-103

of

4(0) ways to change the world." Journal

Human societies are embedded in natural ecosystems

Decoupling: Role of (green) Information & Communication Technologies?

1. Introduction

1. Introduction

Innovation. New York: Oxford University Press, p. 19.

Reduce negative ecological impacts + create jobs:

- **1. Direct impacts**: ICTs reduce their own ecological impacts.
- 2. Enabling impacts: ICTs are used by other sectors to reduce ecological impacts.
- **3. Systemic impacts**: The diffusion of ICTs enable structural changes towards sustainable development (absolute decoupling).

<u>Source</u>: Hilty, L. (2008), Information Technology and Sustainability: Essays on the Relationships between Information Technology and Sustainable Development, Norderstedt: Books on Demand.

1. Introduction

ICTs & the environment

Source: Hilty (2008: 147)

1. Introduction

Long term impacts of green ICTs: Absolute decoupling

time

- 1. Increasing number of studies using patents to analyse ecoinnovation (cf. lit. rev. in our paper: <u>http://ssrn.com/abstract=2117831</u>).
- 2. The propensity to patent varies across sectors including for ecotechnologies (=> which ones are the most dynamic?).
- 3. Ecoinnovation studies cover different technological domains, e.g. automobile, waste, water, air cleaning (not ICTs).

Objective & Questions

Objective: Examine the emergence and dynamics of green ICT technological domains.

Question: What are the patterns of innovative activity in green ICT technological domains, notably in terms of:

- Growth of patents
- Concentration of innovative activities by organizations and countries
- **Entry of firms**
- Technological pervasiveness
- Sources of knowledge

Construction of our green ICT technological domain:

- WIPO Green Inventory includes all IPC classes associated with environmentally friendly technologies in different fields (6 technological fields: alternative energy production, transportation, energy conservation, waste management, agriculture/forestry, administrative/regulatory as well as design aspects, and nuclear power generation).
- OECD classification of ICTs includes IPC classes referring to telecoms, consumer electronics, computer and office machinery, other ICTs.

International Patent Classification (IPC) codes:

3. Methodology & Data

3 sets of IPC classes to construct our sample

Methodology (3 steps)

- Select EPO patents that have at least 1 green and 1 ICT technological class (at 7 digit level) granted between 1986 and 2006 (=> 4157 classes: 1151 Green ICT, 3442 ICT, 436 Pure Green ICT; 16601 patents).
- Select couples of IPC classes that have at least 55 patents (top 1% couples in order to consider the most relevant fields) => 13210 patents.
- 3. Analyse Green ICT technological domains & components (network analysis on the classes + explore what are the sources of knowledge used in Green ICTs).

Results: Network analysis

65 green ICT technological fields (1 node = 1 pair of classes; 1 line = 1 patent)

The components of green ICT technological fields

4. Results

Patents & IPC classes in green ICT fields

Technological component	Number of Patents	Number of IPC classes	ICT classes	Green classes	Pure Green ICT	Other classes
Semiconductors	2058	1248	33%	2.4%	4.7%	59.9 %
Arrangements for testing electric properties and locating electric faults	2849	1085	34.8%	2.3%	4.7%	58.2%
Secure electronic commerce	669	406	48.1%	1.7%	0.2%	50%
Arrangements or instruments for measuring magnetic variables	705	370	7.3%	2.4%	4.6%	85.7%
Nuclear magnetic resonance technologies	658	160	12.5%	2.5%	10%	75%
Solid state devices using organic materials	470	489	9.6%	1%	0	89.3%
Traffic control systems	899	335	38.8%	1.2%	2.4%	57.6%
Hall effect devices	284	126	55.5%	0.8%	5.5%	38.2%
Liquid crystal displays	209	643	1.7%	0.2%	0	98.1%
Technologies for total factory control	75	77	23.4%	3.9%	0	72.7%
Excitation or detection systems	360	68	20.6%	0	13.2%	66.2%

Annual growth rate of patents in Green ICTs (1987-2006)

4. Results

Firms with the highest number of Green ICT patents

Firm	Number of patents
SIEMENS BUILDING TECHNOLOGY AS	857
IBM	694
HEARTSTREAM	341
HEWLETT-PACKARD	339
BUDERUS HEIZTECHNIK	323
KONINKLIJKE PHILIPS ELECTRONICS	272
ADVANCED CERAMICS	271
CANDESCENT TECHNOLOGIES	250
NIPPON TELEGRAPH AND TELEPHONE	237
FUJIKIN	211
FUJI ELECTRIC	208
TEKTRONIX	191
AT & T	190
MATSUSHITA ELECTRIC INDUSTRIAL	189
FUJITSU	188
CENTRAL JAPAN RAILWAY	169
AGILENT TECHNOLOGIES	163
ADVANCED MICRO DEVICES	143
ERICSSON	139
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS	123

Top 3 organisations by Green ICT technological component

Technological component	Total n° of organisations	Top 3 organisations	Number of patents	
		CANDESCENT TECHNOLOGIES	120	
Semiconductors	537	NIPPON TELEGRAPH AND TELEPHONE (NTT)	112	
		IBM	105	
Arrangements for testing		IBM	122	
electric properties and	785	SIEMENS BUILDING TECHNOLOGY AS	160	
locating electric faults		HEWLETT-PACKARD	128	
		IBM	36	
Secure electronic commerce	315	FUJITSU	28	
		FRANCE TELECOM	22	
Arrangements or instruments		ADVANCED CERAMICS	103	
for measuring magnetic	191	HEARTSTREAM	38	
variables		SIEMENS BUILDING TECHNOLOGY AS	36	
		ADVANCED CERAMICS	68	
Nuclear magnetic resonance	166	HEARTSTREAM	64	
technologies		KONINKLIJKE PHILIPS ELECTRONICS	42	
		EASTMAN KODAK	52	
Solid state devices using	141	CAMBRIDGE DISPLAY TECHNOLOGY	35	
organic materials		3M INNOVATIVE PROPERTIES	33	
		BUDERUS HEIZTECHNIK	109	
Traffic Control Systems	253	SIEMENS BUILDING TECHNOLOGY AS	71	
		AISIN AW	51	
		IBM	14	1
Hall effect devices	101	BUDERUS HEIZTECHNIK	14	
~~~~		CNRS	12	
		CELANESE	63	1
Liquid crystal displays	39	CHISSO	36	
		F. HOFFMANN-LA ROCHE	14	

#### 4. Results

#### Top 3 innovative countries in Green ICT technological domains

Technological domain	Number of patents	Country		
	716	US		
Semiconductors	704	JAPAN		
	177	GERMANY		
Arrangements for testing	1151	US		
electric properties and	472	JAPAN		
locating electric faults	320	GERMANY		
	329	US		
Secure electronic commerce	220	JAPAN		
	130	FRANCE		
Arrangements or	345	US		
instruments for measuring	89	UNITED KINGDOM		
magnetic variables	66	JAPAN		
Nuclear magnetic recommence	329	US		
Nuclear magnetic resonance	81	UNITED KINGDOM		
technologies	62	SWITZERLAND		
Solid state devices with	170	US		
Solia state aevices using	109	JAPAN		
organic materials	74	GERMANY		

#### Top 3 innovative countries in Green ICT technological domains (cont.)

Technological domain	Number of patents	Country	
	295	JAPAN	
Traffic control systems	252	GERMANY	
	115	US	
	92	US	
Hall effect devices	50	JAPAN	
	44	GERMANY	
	89	GERMANY	EU
Liquid crystal displays	36	HUNGARY	
	24	UNITED KINGDOM	
	25	JAPAN	
Technologies for total factory control	17	GERMANY	
	13	US	
Excitation or detection	173	US	]
systems, e.g. using	53	UNITED KINGDOM	
radiofrequency signals	48	SWITZERLAND	

#### **Patterns of innovative activity in Green ICTs**

#### **Growth of patents over time**

### Different types of indices:

- □ Country concentration (HHI index)*
- □ Organization concentration (HHI index)*
- □ Entry of new patenting firms
- Technological pervasiveness: the extent to which domains spread across different IPC classes (Jaffe et al., 1993)*
- Knowledge source across technological classes-variety of knowledge (Trajetenberg et al., 2002)*
- □ Internal knowledge sources
- □ Academic sources of knowledge

* Using the method suggested by Hall (2002).

#### **Descriptive statistics** (1987-2006)

Variables	Obs.	Mean	Std. Dev.	Min.	Max.
Number of patents	65	252.2	435.0559	6	2849
Number of technological classes	65	818.4	1850.121	110	11687
Share of ICT classes	65	.5082421	.0411233	.4182306	.7400442
Share of green classes	65	.4917579	.0411233	.2599558	.5817695
GROWTHi	65	.3475701	.1669447	.0971514	.8044047
ENTRYi	65	.0350057	.0378638	.0099174	.2595041
H _{ORGi}	65	.0281049	.0299088	.0055423	.2123942
H _{COUNTRYi}	65	.2016453	.0537544	.1264003	.4248914
Pervaniseness_techi	65	.0192141	.0151048	.0041719	.0966121
Self_citation _i i	65	.0720965	.0339153	.0216138	.1959799
ACADEMIC_KNOW _i	65	.0038859	.0095034	0	.0527638
Variety_CITTECH	65	.0396431	.0277021	.0014406	.1556497

# **Cluster analysis:** 3 different clusters of technological domains

Variables			CLUSTER 1 (25 domains) GREEN		CLUSTER 2 (11 domains) EMERGING		CLUSTER 3 (29 domains) ESTABLISHED		)
Average nb of patents Average nb of tech. classes Share of ICT classes		25	172.32 236.60 .503		128.09 207 .522 478	Exar		368.14 731.04 <u>oles</u> : Semicondu	uctors/
GROWTHi* ENTRYi*	<u>Examples</u> : Electricity	<u>s</u> : Traffic control sy y storage & measu .030		ns/ ent Ex	.649		.212 nic / Tech044		
H _{ORGi} * H _{COUNTRYi} *			.022 .190	fc	Little innov fas	C	ontinue the e	ous opportu ntry of new a	nities for actors
Pervaniseness SELF_CITATIO	5_techi DNi <b>i*</b>		.040 .062	] [	=> New kno → High	owl 1 le	edge a	cquired outs opportunity	ide?
ACADEMIC_K Variery_ _{CITTEC}	KNOWi*	Lo	w degree o cumulat	f kn iven	nowledge ness			.004 .024	
1	. 11		=> Radical	cha	inges?				

*Indicates statistically significant differences across clusters.

- 1. Green ICTs cover 65 technological domains (different combinations of green & ICT classes).
- 2. Fastest growing domain = SSD using organic materials (Germany strongest EU country).
- 3. France: strong in Secure electronic commerce & Hall effect devices (thanks to CNRS).
- 4. LEDs = promising Green ICT: potential for job creation in Europe? (cf. FP7 cycLED project: <u>http://www.cyc-led.eu</u>).
- 5. Current set of technological classes in Green Inventory neglects important green ICT domains that stem from the combination of existing green and ICT classes.
- 6. 3 main clusters of green ICT domains (Green, Emerging, Established) that differ substantially in the structure of their innovative activity.

### Thank you for your attention.



MANAGING THROUGH TECHNOLOGY

Nicoletta CORROCHER[#] Grazia CECERE^{*} Müge ÖZMAN^{*} Cédric GOSSART^{*}

# KITeS, Bocconi University, Milan* Télécom Ecole de Management, Institut Mines-Télécom, Paris



#### **ECOPATENTS** project

http://ecopatents.wp.mines-telecom.fr/

