

Enabling the Computer for the 21st Century to Cope with Real World Conditions

Towards Fault-Tolerant Ubiquitous Computing

ICPS 2006, Lyon – June, 26th

karin.hummel@univie.ac.at

University of Vienna Institute of Distributed and Multimedia Systems

The Computer for the 21st Century

1991: Mark Weiser^[1]

"The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it."

The vision

- Calm technology, calm computing
 - Never surprising
 - · Act without increasing information overload
 - Moves from periphery to center of awareness and back

Miniaturization of chips: towards nanotechnology

Source: IBM http://www.ibm.com (March, 24, 2006) Carbon nano tube ring oscillator circuit compared to a human hair

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

"Resistance is Futile?"

... a possible application area for nanotechnology?

Source: http://www.startrek.com Seven of Nine (Startrek Voyager series) ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Enabling Technologies 2/2

Wireless networks and mobile / wearable devices

Mobility management, ad-hoc communication

Open / standardized service access

- Semantic Web, ontology frameworks
- Grid infrastructures, service discovery frameworks

Sensing infrastructures

- D-GPS, ГЛОНАСС, (Galileo), RFID, video cameras
- Sensor manufacturers: environmental conditions, bio-signals

Artificial Intelligence (AI)

• Planning and learning, bio-inspired - smart behavior

Application Prototypes

Follow-me data objects

Smart museum artifacts

Artist information Painting details Historical details Personal notes etc. Gu

Gustav Klimt. The Kiss

Pervasive e-teaching

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Selection of "New Computers and Services"

Every day objects^[1]

- Media Cup
- Smart door plate
- Coffee pump
- Hot clock

Hello.Wall^[2]

- Visual patterns
- Symbols for distributed collaborations

 [1] M. Beigl et al. MediaCups: Experience with Design and Use of Computer-Augmented Everyday Objects. International Journal on Computer Networks and Communication, 2001
[2] N. Streitz et al. Designing Smart Artifacts for Smart Environments. IEEE Computer, 2005 ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

So - Why Reasoning About Faults in UbiComp?

Recall Mark Weiser's vision of calm computing

- People are always surrounded by technology
- People are (nearly) not aware of pervasive technologies

People will depend on these technologies

- Assure, that they are dependable
- In addition, people should "never be surprised"

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Wien

Dependability

Dependability of a computing system is the ability to deliver services that can justifiably be trusted.^[1]

Threats

• Faults, Errors, Failures

Attributes

 Availability, Reliability, Safety, Confidentiality, Integrity, Maintainability

Means

• Fault prevention, removal, forecasting, tolerance

UbiComp From a System's Perspective

- Embedded system
- Interactive system

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Wiensität

The Distributed System's Perspective

General issue: scale

Network and mobile devices

- Wireless networks
- Ad-hoc, mesh nets e.g. MANETs and VANETs
- Threats to dependability
 - Connectivity failures
 - Unreliable wireless medium

Service interaction

- Asynchronous (and synchronous) operations
- Decentralized (and centralized) operations
- Threats to dependability
 - Protocol and service failures (timeouts)
 - Consensus-based coordination

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

The Embedded System's Perspective

Context-awareness

- Sensor integration sensor networks
- Sensor fusion, interpretation, prediction
- Threats to dependability
 - Sensor malfunctioning in value or time domain
 - Disconnection of nodes in sensor networks
 - Interpretation not sufficient, prediction limited

Controlling and activating

- Controlling actuators mechanical parts
 - · e.g. controlling car windows, dimming the light
- Real-time requirements
- Threats to dependability
 - · Timing requirements are not met
 - · Result is not "as expected" (e.g. half open)

Wien

Environmental Sensors

Sensor types

- · Acceleration
- Temperature
- Humidity
- · Luminance
- · Sound
- Pressure
- etc.

GPS trainer. Source: http://www.garmin.de

Rain sensor. Source: http://www.trw.com

GPS CF Card + PDA

Dedicated object augmentation

- · Location of objects
- · Identification of objects

RFID inlays and keyring. Source: http://www.tiris.com/rfid ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Bio-signal Sensors and Systems

Sensor types

- · Breath
- · Galvanic skin response
- Heart rate (ECG)
- Brain activity (EEG)
- Eye, muscle activity (EOG, EMG)
- etc.

Brain Computer Interface (BCI)

- Electrical brain signal patterns
- Used to control simple functions
 - e.g.: using a virtual keyboard
- But: intrusive technologies outperform non-intrusive technologies!

EEG Electrode Cap. Source: http://www.gtec.at

Input and interaction

- Natural interfaces (e.g. gestures)
- Principle of delegation
- Activity recognition
- Threats to dependability
 - · Recognition (e.g. unknown persons)
 - Indirection causes uncertainties

Everywhere displays

- Using non-traditional displays
 - Walls, cups, tables
- Threats to dependability
 - Display selection
 - · Privacy

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Fault tolerance (FT) – basic mechanisms

- Redundancy
 - Additional resources, error correcting codes
- Recovery and restart
 - · Stateless vs. stateful components

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Selected Research Issues

... for fault tolerance in ubiquitous computing

Distributed computing

- Reacting to dynamic changes in time
- Disconnecting components, varying link quality
- Redundant components cause additional costs

Context awareness (and environmental control)

- Various sensors with different accuracy
- Redundant similar sensors might be rare
- Timing "guarantees" conflict dynamicity

HCI

- Traditional error notification is not desired
- Uncertainty is a serious cause for misinterpretation
- Integration of human feedback?

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Promising Direction: Autonomic Computing

Analogy to the human autonomic nervous system

IBM initiative from 2001^[1]

Self-x properties – for fault tolerance mechanisms

- Self-configuring
- Self-protecting
- Self-healing, self-testing (e.g. fault-injection)
- Self-optimizing, self-evaluation
- etc.

Including AI research

- Autonomous software agents, robots
- Planning, reasoning, and learning

Wien

Ex.: Smart Home Environment Projects

Aware Home Initiative^[1] projects

- Monitoring elderly relatives, 2001
- Activity recognition

House_n PlaceLab^[2]

- Research facility, 2003/04
- Sensors: CO₂, barometric pressure, microphones, door switches, etc.

[1] http://www.awarehome.gatech.edu[2] http://architecture.mit.edu/house_n/placelab.html

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Ex.: Fault Tolerance in Smart Home Environments

Follow me music

- Fault: speakers are malfunctioning
- Error detection
 - Self-detection, micro and volume analyzer
 - Human gestures (additional video camera)
- Fault tolerance mechanisms
 - Turn off speakers in that room and use speakers in neighboring room (graceful degradation)

Movement tracking of elderly persons

- Fault: pressure sensor is malfunctioning
- Error detection
 - · No values, sporadic values, inconsistent values
- Fault tolerance mechanisms
 - Use "regular pathway" history information to mask the missing sensor information

Usage: environmental monitoring, military

Large scale WSNs

- Usually single event to detect
- Multi-hop ad-hoc communication ٠
- Usually cheap sensors
- Group n in event range

Small scale WSNs

- Sensor boards with various sensors
- Different and sophisticated applications •
- Continuous value range

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Ex.: Fault Tolerance in WSNs

Distributed fault-tolerant binary event detection^[1]

- Fault: sensor node failure (due to manufacturing, etc.)
- Error: no messages received, wrong values received
 - · event / non-event
- Fault tolerance mechanism: k out of n "voting"

Simple weather sensor application: "sunny" / "overcast"

- WSN consisting of luminance (and temperature) sensors
- sensor interpretation: luminance \rightarrow "sunny", "overcast"
- Fault: sensor failure of luminance sensor (fail silent)
- Error: missing sensor value for luminance
- Fault tolerance mechanism: sensor interpretation uses temperature instead and degraded confidence in result

Fault-Tolerant Pervasive Computing Infrastructure

... focusing on distributed computing aspects

Main threats

- Disconnection
- Weak connection

Fault-tolerant middleware approaches

- Asynchronous communication Tuple Space^[1] approaches
- Surrogate node for task execution e.g. Gaia^[2]
- Recovery / restart
- Degraded service provisioning (self-adaptation)
 - Working on copies / consistent reintegration

Important Cause for Faults: Movement

Due to

- Widespread use of mobile devices
- Wearable computers
- Body-area networks connecting to infrastructure

Movement or motion

- Velocity, retention
- Direction
- Time series: <location, point in time>
- "location-awareness" turns into "mobility-awareness"

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Wien

Mobility-Aware Pervasive Services

Office

- Information just in time
- Copy of shared data (system)

Street

Cafe

- **Accidents**
- Underground tickets _

Reservation

By train, by car

Traffic jams

Route planner

News selection

Hospital, Conference venue

- Path finder
- Parking reservation

ICPS 2006, Lyon, June, , 26th

Introducing Mobility Predictors

- Notion for location and retention
- Assumption: regularities exist in pathways
 - Temporal and spatial
 - Mobility predictor examples: LeZi Update, k-order Markov, Random Waypoint, etc.

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Example k-order Markov Mobility Predictors

Principle

- Prediction depends on the last k history states
- Transition probabilities determine movement estimation

Example: 1-order Markov predictor for 3 locations

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Wien

Using Mobility Prediction for Fault Tolerance

Introducing a new Mobility-Aware Coordination Layer to space-based middleware

Tolerating weak links, disconnection by "working on copies"

- Mobility prediction: next link state, next retention period
- Current link state, current remaining retention period

Pro-active (and reactive) activation of

Copy, release locked data, synchronize

One promising result

• Asynchronous coordination throughput can be increased

Ongoing Prototypes: Austrian Grid Project^[1]

Mobile GridMiner

- Extension for ubiquitous data mining grid access
- Fault-tolerant job status notification service
 - PDA GUI, email, SMS, sound

Environmental monitoring

- Location-aware
- GPS accuracy not sufficient
- Movement-history based corrections

ICPS 2006, Lyon, June, 26th karin.hummel@univie.ac.at

Sustainability of FT in Pervasive Computing

... will fault tolerance be important?

Beyond-the-horizon TG1: Pervasive Computing and Communications – one of three research lines^[1]

• Evolve-able systems ... "enabling autonomic adaptation to unforeseen situations, interpreting context ... "

Thus:

- Autonomous and bio-inspired, emerging fault tolerance
- Acting in-time

Embedded and ubiquitous computing

• Emerging workshops including fault tolerance issues

Middleware conferences and workshops

wiensität