
Copyright © 2005, UCD Dublin

UCD School of Computer Science
and Informatics

Simon Dobson and Paddy Nixon

Systems Research Group, School of
Computer Science and Informatics,
UCD Dublin, Dublin IE

http://www.ucd.ie/csi

simon.dobson@ucd.ie
paddy.nixon@ucd.ie

Adaptive middleware

Adaptive middleware 2

Why are we here?

The software environment is changing
• Component-based systems without centralised authorship
• Dynamic discovery and composition of components
• Mobility, ubiquity, autonomicity, self-* properties

The traditional approaches that served us well in the
past need to evolve to meet these new challenges

• Middleware abstracts much of the complexity of interconnection
• …but traditional middleware doesn’t handle highly dynamic

environments as well as we need it to

Our purpose in this tutorial
• To survey the current and emerging systems from the perspective

of their support for developing adaptive systems
• To try to pick out some emerging trends

Adaptive middleware 3

An executive summary

No current mainstream middleware provides good
support for adaptive systems development

There are techniques that can be taken from a variety
of systems and combined to construct adaptive
applications

• Often mix paradigms

The research landscape is changing, and looks
promising

• Several new systems that address some (but not all) issues

Adaptive middleware 4

Who are these guys?

Academics in the Systems Research Group of UCD
Dublin, Ireland

• Group focuses on pervasive and autonomic systems, system
visualisation, semantics and software technology

Around 30 years’ experience in designing and building
large-scale distributed systems

• CORBA, event systems, programming languages, …
• Ran a start-up company providing context-adaptive services to the

travel industry – no, it’s not still running… :-)
• Consulting for the likes of IBM, IONA, Siemens, …

Adaptive middleware 5

Structure

Adaptive 101
Middleware 101 (the 10 minute introduction)
A closer look at some systems

 Object-broker style systems
 Message- and event-oriented systems
 Tuple-space systems
 Peer-to-peer systems
 Knowledge-driven systems

What are the issues in supporting adaptive systems?
Some tentative conclusions

All references on website

Adaptive middleware 6

Adaptive systems?

Aren’t all systems adaptive to their inputs?
Well, maybe – but for the purposes of this tutorial

• A system whose detailed responses and behaviour change to
deliver a service in the face of changing context and constraints

The system changes (at a system, configuration or
communication level) in order to stay the same (at the
application or user level)

• Somewhat paradoxically, an adaptive system aims to look less
variable to its users than an “normal” system

Goals include predictability, reduced management
complexity, better robustness, better tolerance of
dynamic configuration

Adaptive middleware 7

Places we encounter adaptation

Classic case is a location-based service
• Exactly what is server varies according to users’ locations
• …and possibly to the device they’re using

Also appear in any sensorised environment, which
these days includes networks and vehicles

• Adapt an entertainment system
to the available content

• Adapt a network to the
traffic load and the isochrony
requirements of user tasks

• Adapt a business system to
a changing population of
end-point devices or
applications

Adaptive middleware 8

Different kinds of adaptation

Closed-adaptive systems
• Decide on the possible adaptations and how they will be selected
• Can be analysed to reduce impact on the user/programmer
• Typically will not be visible at all, e.g. TCP/IP congestion control

Open-adaptive systems
• Provide a framework for adaptivity
• Allow designers to download strategies as required
• Fewer guarantees possible, but probably better response to specific

conditions
• Typically will result in at least some changes visible to users or

programmers

Due to Rick Taylor and his colleagues

Adaptive middleware 9

Starting points

The problems of complexity in
current communication systems,
even on the small scale, are
identified by Bolosky:

“Users are subjected to random
performance and service
disruptions. Replacing or upgrading
a personal computer, workstation,
or server is very difficult. Even a
moderate size computer network
requires significant expertise to
configure and maintain.”

“However, over the
next 15 years, we
predict not just a
quantitative expansion
of computing, but
qualitative change” –
Crowcroft, et al.

Adaptive systems compound these
problems. They increase the level of
dynamism, variability in infrastructure,
and need for personalisation.

Adaptive middleware 10

Eight fallacies of distributed computing

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous Originally six, due to L. Peter

Deutsch, updated with two
additional ones (4 and 7) by
James Gosling

Adaptive middleware 11

The modern reality

1. Dynamism leads to network partitions and service
loss

2. Communications time is unbounded
3. Bandwidth is generally small
4. Applications must deal with unknown parties
5. Topology and membership are unpredictable and

variable
6. There is no (human) administrator
7. Wireless transport has a high power cost
8. Large degree of device heterogeneity

Adaptive middleware 12

Our view of adaptation – 1

Two core features of the adaptive systems
• Physical integration – artefacts increasingly include information and

communication
• Spontaneous interoperation – “encounter” services through mobility

From a systems perspective we would augment these
two core observations with:

• Need to place local interactions in global setting
• Mobility of any part of the system is feasible (implied)
• Share data, services, …, anything

Adaptive middleware 13

Our view of adaptation – 2

We cannot assume everything we need
is available
Nor can we assume that anything that is
available remains so
We cannot assume everything that is
available can be delivered when needed
We cannot know what is in the mind of
the user
We can extract clues from the
environment about needs of the user
We must use available resources to
provide best services

We may use adaptation to
change the costs of access of
the availability or
performance of resources

Many adaptations are
provisional and error-prone,
dependent on inference or
invalidation over time

Our approach to, and
resourcing of, service
provision will change over
time

Adaptive middleware 14

Our view of adaptation – 3

To deal with adaptation these architectures and
systems infrastructure must be able to

• Embrace contextual change
• Collect whatever meta-data is available
 Encourage ad hoc composition
 Facilitate sharing
 Support both local and the global computation
 Have multiple use view-points

(interactions designer/user/architect/programmer/system)
 Abstract away from the features that may adapt
 Allow well-founded adaptation to be specified

Adaptive middleware 15

What we won’t cover

Traditional middleware (other than in passing)
• A vague term that, when used in the context of Internet

applications, means "software sold to people who don't know how to
program by people who know how to program." [Philip Greenspun]

Shan’t cover (but might touch on)
• Policy, security (in the broadest sense), quality of service,

consistency, fault tolerance, low level detail (data formats etc.)

Will try to highlight – but avoid – the key overlaps with
context awareness infrastructures
Will focus on interoperability, core principles, key
paradigms, key challenges, what remains to be done

Adaptive middleware 16

So what is middleware?

We used Google (like anybody else…) and:
• Middleware is commonly known as the plumbing of an information

system as it routes data and information transparently between
different back-end data sources and end-user applications.

• The network-aware system software, layered between an
application, the operating system, and the network transport layers,
whose purpose is to facilitate some aspect of cooperative
processing.

• Software that mediates between an application program and a
network. It manages the interaction between disparate applications
across the heterogeneous computing platforms.

Adaptive middleware 17

Or the favourite…

We like this one:
• “Software that mediates between different types of hardware and

software on a network, so that they can function together. “

It places no constraints on what functioning together
means
It captures (critically) heterogeneity of the software
and hardware platforms
It highlights the importance of communication
It says nothing about transparency

Adaptive middleware 18

Distributed systems 101

Skeleton Stub

Middleware

Middleware hides
locations, as far
as possible

The goal of location transparency has been
assiduously pursued

• The web, CORBA, e-mail, …
• Remove significance of – and usually any knowledge of – the

(absolute or relative) locations of agents in a system
• Allow arbitrary interactions

Adaptive middleware 19

Traditional middleware picture

Adaptive middleware 20

In summary

Middleware provides support for
• Naming, Location, Service discovery, Replication
• Protocol handling, Communication faults, QoS
• Synchronisation, Concurrency, Transactions, Storage
• Access control, Authentication

Middleware dimensions
• Request/Reply vs. Asynchronous Messaging
• Language-specific vs. Language-independent
• Small-scale vs. Large-scale
• Tightly-coupled vs. Loosely-coupled components

Adaptive middleware 21

Traditional middleware picture

Distributed Technology Bus

ServerClient

Proxy/Stub
Layer

Proxy/Stub
Layer

Libraries Libraries

Adaptive middleware 22

Traditional middleware picture

Distributed Technology Bus

Server

1. Register

Client

2. Bind to
 the Server
 Object

3. Object
Invocation

Adaptive middleware 23

Basic synchronous invocation

Adaptive middleware 24

Under the hood

Adaptive middleware 25

CORBA

Common Object Request Broker Architecture
• Specification of a distributed middleware
• Specs drawn up by Object Management Group (OMG)
• http://www.omg.org

Goal: Interoperability with distributed applications on
various platforms

Adaptive middleware 26

CORBA overview

Object request broker (ORB)
• Core of the middleware platform
• Handles communication between objects and clients
• Handles distribution and heterogeneity issues
• May be implemented as libraries

Facilities: composition of CORBA services

Adaptive middleware 27

Object model

Objects & services specified using an Interface Definition language (IDL)
• Used to specify interface of objects and/or services

ORB: run-time system that handles object-client communication
Dynamic invocation interface: allows object invocation at run-time

• Generic invoke operation: takes object reference as input
• Interface repository stores all interface definitions

Adaptive middleware 28

CORBA services

Provides the current time within specified error marginsTime

Mechanisms for secure channels, authorization, and auditingSecurity

Facilities for expressing relationships between objectsRelationship

Facilities for persistently storing objectsPersistence

Facilities to publish and find the services on object has to offerTrading

Facilities for associating (attribute, value) pairs with objectsProperty

Facilities for systemwide name of objectsNaming

Facilities for attaching a license to an objectLicensing

Facilities for creation, deletion, copying, and moving of objectsLife cycle

Facilities for marshaling and unmarshaling of objectsExternalization

Advanced facilities for event-based asynchronous communicationNotification

Facilities for asynchronous communication through eventsEvent

Flat and nested transactions on method calls over multiple objectsTransaction

Facilities to allow concurrent access to shared objectsConcurrency

Facilities for querying collections of objects in a declarative mannerQuery

Facilities for grouping objects into lists, queue, sets, etc.Collection

DescriptionService

Adaptive middleware 29

Object invocation models

Invocation models supported in CORBA.
• Original model was RMI/RPC-like
• Current CORBA versions support additional semantics

Caller continues immediately and can
later block until response is delivered

At-most-onceDeferred
synchronous

Caller continues immediately without
waiting for any response from the
server

Best effort deliveryOne-way

Caller blocks until a response is
returned or an exception is raised

At-most-onceSynchronous

DescriptionFailure semanticsRequest type

Adaptive middleware 30

Adapting object systems

To interact with an object you need to know its
identifier (IOR)

• By magic – hard-coded into the application
• Through some service(s)

Well-architected CORBA
systems allow administrators
to reconfigure applications
via services
Still very much a manual task

• System can be adapted
• No infrastructure for it to adapt itself
• Deals well with slowly-changing systems with clear change

boundaries

Naming service

Find naming
service by magic

All other objects are
located via services

Adaptive middleware 31

Event-based distributed programming

Event typically caused by state change in system
• Event changes state of object
• Multiple objects at different locations are informed of the occurrence

of an event at a particular object, for example:
- in a spontaneous computing environment, that a person’s PDA has entered a hotel room
- a client has entered participation in a collaborative work environment
- an electronic document has been modified

Adaptive middleware 32

Publish-and-subscribe events

Publish-and-subscribe (pub-sub) paradigm
• Object generating events publishes (producer) list of events for

which other objects can receive notifications
• Object requiring notifications

subscribes (consumer) to the
notification service at an
object offering notification
for this particular event
through its publication list

• Control how information
propagates by controlling
who registers for each service

• Typically have several different models
for propagating events, with different
performance characteristics

Adaptive middleware 33

Notification – 1

Architecture
• Event service

- maintains list of published events and registered subscriptions
- event service is notified of events at objects of interest
- subscribers subscribe for notifications at event service
- after occurrence of event, notification is sent to all subscribers

• Delivery semantics are implementation dependent
- e.g., notifications by IP multicast do not guarantee that any notification will ever get delivered to

subscriber

subscriberobserverobject of interest

Event service
object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

© Addison-Wesley Publishers 2000

Adaptive middleware 34

Notification – 2

Architecture
• Observer objects

- decoupling of an object of interest from subscriber
– responsible for all subscribers to events in some object
– subscribers and the types of events they are interested in may be rather heterogeneous -

hence, better to have observer deal with this (separation of concerns)

• Three cases
- in case 3, the object of interest is outside event service, hence, the observer needs to poll the

object of interest for event occurrences

subscriberobserverobject of interest

Event service
object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

© Addison-Wesley Publishers 2000

Adaptive middleware 35

Message-oriented middleware

Communication using messages
Messages stored in message queues
Optional message server decouples client and server
Various assumptions about message content

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Server

Adaptive middleware 36

Properties of MOM

Asynchronous interaction
• Client and server are only loosely coupled
• Messages are queued
• Good for application integration

Support for reliable delivery service
• Keep queues in persistent storage

Processing of messages by intermediate message
server

• Filtering, transforming, logging, …
• Networks of message servers
• Typically manipulate messages on the fly before forwarding

Natural for database integration

IBM’s MQ-Series products are
the canonical example of OM

Adaptive middleware 37

Disadvantages of MOM

Poor programming abstraction
• Rather low-level (cf. packets)
• Results in multi-threaded code
• Request/reply more difficult to achieve

Message formats unknown to middleware
• No type checking

Queue abstraction only gives one-to-one
communication

• Limits scalability

Adaptive middleware 38

Adaptive messages/events

Most modern infrastructures do a good job of scaling
services over the internet

• Intermediate relay servers
• Control information propagation – although this typically has to be

done by hand

Most systems leave the location and configuration of
the queues/servers to the designer

• Easy to get fossilised into a particular configuration
• No good ways of adapting autmatically – services are typically too

big and heavyweight
• Will provide good performance as long as the performance need is

correctly anticipated

Adaptive middleware 39

A hybrid: Akamai

The classic need to adaptation is content location in
the web

• One place – get “Slashdotted” if you become popular
• Replicate – people may not find the replicas, there may not be one

near many of the users

Akamai is an example of an adaptive web server
• Place content on a network of servers, managed as a whole
• Server network re-distributes cache of content depending on the

observed patterns of requests
• Web sites point to “gateway” server which redirects to the best

replica

Messages (HTTP requests) handed-off within the
server network

Adaptive middleware 40

Tuple-space systems

“Distributed workspace” research by David Gelernter
and colleagues at Yale
Combines message passing and shared memory
paradigms

• Nodes write arbitrary tuples (heterogeneous-type vectors) to
shared memory

• Nodes read matching tuples from shared memory

Exact matching is required for extraction
Lookup calls always block until matching tuple exists

• Yuck!…

No guarantees about ordering, delay

Adaptive middleware 41

Linda

Core API:
• out():

- Writes tuples to shared space
- Example: out("abc", 1.5, 12)
- Result: Insert (“abc”, 1.5, 12) into space

• read():
- Retrieves tuple copy matching arg list (blocking)
- Example: read(“abc”, ? A, ? B)
- Result: Finds (“abc”, 1.5, 12) and sets local variables A = 1.5, B = 12
- Tuple (“abc”, 1.5, 12) is still in the space.

• in():
- Retrieves and deletes matching tuple from space (blocking)
- Example: Same as above except (“abc”, 1.5, 12) is deleted

• Eval()
- Evaluates a tuple on the server

Adaptive middleware 42

JavaSpaces – visual overview

Adaptive middleware 43

JavaSpaces overview

JavaSpace properties
• Store Java objects instead of tuples
• Spaces handle all details of sharing
• Objects are persistent (serializable) until removed or

leases expire
• Object lookups are associative
• Transactionally secure (atomic)
• Objects may have executable content (e.g. methods)
• Security via identity servers

Adaptive middleware 44

Overview of Jini

Adaptive middleware 45

Architecture

Adaptive middleware 46

Communication events

Adaptive middleware 47

Processes – replicated JavaSpace

A JavaSpace can be replicated on all machines
Tuples are broadcast on WRITE
READs are local, but the removing of an instance when calling TAKE must be
broadcast

Adaptive middleware 48

Processes – unreplicated JavaSpace

A WRITE is done locally.
A READ or TAKE requires the template tuple to be broadcast in order to find a
tuple instance

Adaptive middleware 49

The Jini lookup service

A set of tuples describing the service.AttributeSets

A (possibly remote) reference to the object implementing the service.Service

The identifier of the service associated with this item.ServiceID

DescriptionField

Adaptive middleware 50

The Jini lookup service

Street, organization, organizational unit, locality, state or province, postal
code, countryAddress

Floor, room, buildingLocation

Name, manufacturer, vendor, version, model, serial numberServiceInfo

AttributesTuple Type

Adaptive middleware 51

Jini/CORBA don’t hack it…

For adaptive and/or pervasive computing CORBA/Jini
make bad assumptions

• Largely static and pre-configures services (naming, trading, etc..)
• A well-behaved computing environment
• Transparent and synchronous invocations
• No isolation between objects
• No independence between devices
• Distributed garbage collection

However, they provide a decent programming
infrastructure in systems with limited dynamism,
where services can be used to manage adaptation

Adaptive middleware 52

iQueue

More of a framework than
middleware
Aimed at providing data
composition
input of each data composer
is defined by an abstract data
specification
The data resolver will receive
periodic advertisement from
available data sources.
Tries to bind source to data
through a matching process.
Manages arrival and
disappearance of data
sources dynamically

Adaptive middleware 53

Intentional Naming System

Premise: mobile environments too dynamic for traditional naming
approaches
INS supports the specification (intent not location), dynamic
discovery, and binding of particular kinds of resources in a network
Follows late-binding model
Ensures continued communication even if the name-to-location
mapping changes mid session

Adaptive middleware 54

iROS

iROS is a middleware platform for a specific class of
ubiquitous computing environment: interactive
workspaces

• Tuple space co-ordination
• DataHeap provides type-

and location-independent
storage

• iCrafter service framework
for user control of
resources

Adaptive middleware 55

EQUIP

Another tuple based system
Unique features is its integration of
general event systems and tuple
(shared data service)

• Support replication of tuple spaces
• Another unique element is support

patterns

Events

API

Pattern(s)

Pseudo
Events

Callbacks
(Events)

Data Items

Item
Events

Other
Events

Simple
Queries

Adaptive middleware 56

GAIA – 1

GAIA – A middleware for active spaces
This system deserves a closer look as it represents the closest
thing to an exemplar middleware infrastructure for adaptive
and pervasive computing

Adaptive middleware 57

GAIA – 2

Space repository
• An evolved Trader mechanism.
• Allows applications to query space for resources by function/attribute

Event Manager
• Adopts principle that ubiquitous systems are loosely coupled and events are

the appropriate model for communication.
• Events are managed via channels which are many-to-many mappings of

sinks to sources.
• Channels are generated by factories based on templates/properties.

Context Service
• Provide a way for applications to query for or register interest in certain

contextual elements (sensors for instance).
• Context modelled as 4-tuple and mapped to event channel.
• In some sense a distributed and evolved version of Context Toolkit.

Adaptive middleware 58

GAIA – 3

Presence Service
• Maintains information about digital and physical entities currently

available in a given space.
• Uses heart beat beaconing to maintain current view
• After each heartbeat it informs appropriate services/applications of

changes

Context File Service
• Stores files tagged with context as detected by space
• For example, to determine which files have the context of

location == RM2401 && situation == meeting
• associated with them, one may enter the directory.

/location:/RM2401/situation:/meeting

Adaptive middleware 59

GAIA – 4

Application Framework
• Active spaces entail a user-centric, resource-aware, multi-device,

context-sensitive, mobile application model.
• Extends Model–View–Controller [25] and introduces new

functionality to export and manipulate the bindings of the application
components;

• Policies customize several
aspects of applications
including instantiation,
mobility, reliability, and
number and
composition of
components
and their bindings)

Adaptive middleware 60

Peer-to-peer

In a really dynamic environment you may not have
any infrastructure

• Must provide all services using the nodes themselves
• Potentially extremely adaptive, but fewer guarantees on service

Peer-to-peer (P2P) systems
• All nodes are equal, providing (at least) routing and (possibly) other

services

Two approaches
• Provide P2P “native” in the MAC layer
• Provide a P2P overlay on top of a standard transport

Allows more scope for
optimisation and
features specific to P2P

The more popular approach at the
moment, piggy-backing onto TCP/IP
over WiFi or wired networks

Adaptive middleware 61

General requirements

Node discovery and management
• Locate a new node and integrate it into the network
• Manage a node leaving the network, possibly without notice
• Discover the services available within the network

Security and trust
• How can you trust a node you only just met?
• Need trust along the entire path, not just the end-points
• Only limited scope for encryption

Routing
• Need to compute routes between nodes that we may not know

about, in the presence of frequent failure as the topology changes

Adaptive middleware 62

Pastry – 1

Developed by Microsoft, Pastry provides a routing and
service discovery model overlayed onto TCP/IP

• Each node has a 128-bit id
• Nodes form a ring
• Each node retains a leaf set

consisting of n nodes along
the ring from itself

Node ids are assigned
by a trusted source, with
certificates

• Node needs a node id, certificate
and the address of another node,
and can then join the ring

Node space logically forms a
ring, regardless of the
physical location of the
nodes

This can lead to both
increased robustness and
longer-than-expected routes

Node id
space is
“sparse”

Adaptive middleware 63

Pastry – 2

To route a message a node does one of the following
• Forward message to a node whose id shares a longer prefix than

the current node
• If no such node known, forward to a node with a prefix at least as

long as the current node but numerically closer

Messages store the node ids and IP addresses of the
nodes they have visited

• Intermediate nodes can update their routing tables, discovering any
nodes that are “nearby” in node id space

Sun’s JXTA product takes
a similar approach

Adaptive middleware 64

Content in P2P networks

P2P networks are often used for content storage and
retrieval

• Each node stores some fraction of the content files but can access
the entire network’s content

For example, Pastry provides a file store based on the
hashes of files

• A distributed hash table – convert a file’s hash to its node id, and
then route a request to it

• Inserting content routes to the node id closest to the “ideal”, and
then replicates the file over nearby nodes

• Can be more or less aggressive about
caching and re-distribution

If the closest node disappears,
requests will route to a nearby node
and so still find the content unless
all the nearby nodes have left

…and there are plenty of legal uses for this technology, so P2P
content networks are not all used for copyright theft…

Adaptive middleware 65

Construct

Construct is UCD’s contextual systems infrastructure
• Provide simple, open, scalable, robust, knowledge-based

management of information in a dynamic network
• Being used for pervasive systems, smart spaces, autonomic

management of network traffic, …

Leverage semantic web technology
• All information represented using RDF, easily queried and shared
• Ontologies provide structure
• Component-based, standard underlying protocols

A peer-to-peer knowledge-sharing system

Adaptive middleware 66

Construct architecture

Information from
physical- and
information-level
sensors in a single
RDF-format
knowledge base

Nodes in a range gossip to
maintain a common view

Summarising allows nodes to
control what information is
placed into which range,
controlling information flow

All queries answered
from local data

Node migration or failure doesn’t cause loss of information
if the node has gossiped prior to failure; gossiping prevents
hot-spots to nodes with “popular” information

Adaptive middleware 67

Gossiping – 1

Most systems store information either according to its
production or according to its consumption

• Production: sensor/server stores information, anyone who wants it
asks for it (typical in object systems)

• Consumption: store information where it’s likely to be used or will be
easy to locate

A third approach is to gossip
• Each node periodically chooses another node in the network at

random and synchronises with it
• Information propagates through the network as if over a random

graph – an overlay on an overlay…
• Effective way of trading space for speed and robustness

Adaptive middleware 68

Gossiping – 2

Characteristics
• No communication or storage hot-

spots – overlay behaves like a
random network

• Nodes need lots of storage, as
they’re caching a complete system
summary (although perhaps not all
the details)

• Increased robustness – a node that
leaves doesn’t take its information
with it

• Local queries only – any
information is available locally

• Information aging is a critical issue,
may need to use older information
than is strictly available in the
network

1. Node chooses
target node and
dumps its local
state to it

2. Target node integrates
source’s information with
its own local state

3. Target node
returns unified
state to source
node

4. Source node
replaces its local
state with the
unified state

Adaptive middleware 69

Web services

No tutorial would be complete without them…
Depending on your point of view, they either

• Re-package existing technologies in a sexy new XML wrapping
• Provide a completely different way of dealing with information

The reality is probably half-way between
• Typically used as an object system, so have the usual

disadvantages in terms of location of services
• Typically architected using messages, allowing requests to be re-

directed and processed on the way from client to server, as well as
increasing asynchrony (at the expense of programmer headaches)

• Change the viewpoint from which we develop services: focus on
exposing business tasks

Adaptive middleware 70

Do web services affect adaptation?

At present web services are typically almost
indisinguishable (from a systems perspective) to
CORBA systems

In the future we may see more innovative uses
• Message re-direction, on-the-fly processing, …
• Collection of meta-data on requests to

inform changes

Main impact seems to be in ease of integration
• Still need to decide how to adapt, but the actual process may well

be simpler, especially across enterprise boundaries

These things are possible
in CORBA if you’re a
serious wizard, but don’t
appear very often in
mainstream applications

No real excuse for not exposing any
distributed system as a web service

Adaptive middleware 71

Issues for middleware systems

Description
• It should be possible to describe components and their interactions

in a way that explicitly prescribes their abstract roles in a system

A core challenge relates to how we build, share and
use understandable descriptions
We need to describe not only the information but also
the system and its configuration.
We need to be able to reason about the semantics of
these descriptions (cf. semantic web technologies)

Adaptive middleware 72

Issues for middleware systems

Composition
 It should be possible to describe a system as a composition of

independent components and connections

Current work on composition talks of composition
rules, policies, aspects, etc. With a focus on
composition from known sets.

• Adaptive systems will additionally have a variety of composition
rules (for the user, applications developer, system, hardware)

There should be some structure for relating between
the levels.
What are the semantics of these rules – how do we
describe a closure so that we can reuse/decompose
the composition?

Adaptive middleware 73

Issues for middleware systems

Dynamic composition
• It should be possible to reuse components, connectors, and

architectural patterns even if they’ve been developed for another
purpose!

We need to be able to describe families of systems,
their semantics and constraints from open sets

• Open-adative versus closed-adaptive

Typically, existing composition approaches use closed
or parameterised sets.
How do we support dynamic composition and still
maintain a robust, predictable system?

Adaptive middleware 74

Issues for middleware systems

Trade-offs
• We must be willing to sacrifice the notion of optimising everything,

making everything efficient
• Know what we need to optimise against, and trade-off everything

else

Dynamic node populations imply either accepting
information loss or taking the cost of replication
Using overlays can gain robustness from random
distribution but lose performance with longer routes
At the current state of the art we can probably only
handle adapting against one or two criteria

Adaptive middleware 75

Issues for middleware systems

Interference
 We should be able to deal with changing and conflicting resource

requirements in the environment

JINI, and others, adopt a notion of leasing resources.
However, they give no solutions to the free market
economy of the adaptive systems world

• Some resources must be held for a complete transaction
• May not be replacements

Even the simple case pretty much is intractable

Adaptive middleware 76

Issues for middleware systems

Global versus local
• We should be able to utilise the appropriate set of local and global

resources to achieve the task

Adaptive systems are not just
local interactions.
Ability to move between local
environments and retain
context
So, where is the information
and computation placed?

Adaptive middleware 77

Issues for middleware systems

Control
• We should be able to describe a how the system is controlled with

respect to a variety of changing parameters and from a variety of
view-points

Locating services and resources
Manage resources from the perspective of the
group/region/domain/…
Coordinate the progress from a certain viewpoint
Be able to express partial requirements
Detect and recover from failure

Adaptive middleware 78

Issues for middleware systems

Viewpoint
• We should be able characterise the usual interactions styles

Optimise for the usual interactions
However, this typically inhibits the ability of the system
to adapt to the unusual.
Equally, the vocabulary for describing adaptive
systems varies between domain

• Is it possible to have a common framework within which the
semantics can be debated?

Adaptive middleware 79

Issues for middleware systems

Context
• We should be able to contexualise interactions in order to adapt the

infrastructure, information, or its delivery, to the semantics of use

Relates very much to viewpoint. How do we codify the
behavioural characteristics of the user
What is the peripheral variable set for this user, doing
this task, in this situation?

• What do we adapt to?

A core challenge in relating hardware sensed context
with their semantics of use at that time

• Hard to adapt to something that hasn’t happened – but when it does
happen we may lose service, at least temporarily

Adaptive middleware 80

Fundamental problems

Semantic multiplicity
• Lots of events are “the same” in the higher-level view. How do you find the

exact service you want dynamically?

Security and privacy
• Adaptation must not reveal information that needs to be concealed

Sensorisation and sensor fidelity
• There’s a temptation to collect too little information about on-going behaviour
• Anything dealing with physical phenomena is noisy, so (for example) people

are identified incorrectly, or not observed

Latency
• By the time you work something out it may be too late to do anything about it

Placement of information and computation
• Where does the system do the computation, how does it get the correct

information, and how does it achieve this?

Adaptive middleware 81

What are the trends? – 1

Increasing use of peer-to-peer
• Infrastructural solutions are often too inflexible, non-scalable and

expensive to deploy – how can you dimension them accurately?
• Shift the costs onto the users

Increasing need for end-to-end properties – especially
confidentiality and information flow restriction

• Adaptation is information, like anything else…

Events scale well for systems, but not for
programmers

• Hard to build well-integrated systems from raw events
• Middleware may use them internally, but needs another abstraction

above

Adaptive middleware 82

What are the trends? – 2

Focus on system properties not technology
• Take ideas from wherever they appear – you can do peer-to-peer in

CORBA, with sufficient creativity
• Don’t expect a packaged “adaptivity solution” that’s suitable for your

needs any time soon

Open-adaptivity is the only game in town
• Except for really closed systems – and there are increasingly few…

Conflicts are inevitable
• Adaptations will disagree
• How do we do decision-making in open environments?

Adaptive middleware 83

What are the trends? – 3

Keep all expressions at the highest possible level
• Code should be the last level of expression
• Logic and rules can be analysed and evolved in a well-founded way

Robustness is not just a non-functional requirement
• Services need to remain available
• Peer-to-peer and gossiping build robustness into the core of the

system

Collect context
• Almost any piece of (meta-)data can be used to inform a decision

on adaptivity
• Instrument to make this possible going forward – the costs will

massively outweigh the disadvantages

Adaptive middleware 84

Concluding remarks

For us, adaptive systems represent the most
significant challenge for middleware and systems
research of recent years

• Unquestionably it requires a diversity of fundamental science and
engineering research to realise.

Our hot topics:
• Light weight, real-time and adaptive (reflective) middleware
• Semantics and design
• New models of failure and recovery (Recovery Oriented Computing?)
• Update and versioning
• Quality – rephrased maybe to be quality of context and service
• Explicit management of uncertainty
• Trust –monitoring, security, privacy …
• Sensor middleware

Adaptive middleware 85

Thank you!

http://www.simondobson.org/teaching/content/courses/adaptive-middleware.shtml

More information on this tutorial can be found
on the web by navigating from this course’s
home page:

More on our research activities
can be found on the SRG home
page:

http://srg.cs.ucd.ie/

