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Plan of the presentation
• Complex systems in biology

– General concepts
– Examples in animal populations

• Natural vs. artificial complex systems
– Existence of generic rules for autonomous behaviour

• Methodology, framework & toolbox
– Deterministic and stochastic dynamical systems modelling
– Agent based computer simulation, experiments and prototyping
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Biological complex systems: a model for 
« autonomic computing »

• Classically, problem-solving is based on the "Knowledge" of  
central units which must make decisions after collecting all 
necessary information. 

• However an alternative method is extensively used in nature: 
collective behaviour. In systems consisting of a large number of
events, problems are collectively self-solved in real time through 
the simple behaviour of individual sub-units, which interact with 
each other and with the environment.

• Imperfect or incomplete information, randomness and amplifying 
communication play a key role in such systems.
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Biological complex systems: a model for 
« autonomic computing »

Societies are multi-agents systems that process information, solve problems, 
take decision, are factories and or fortresses

These systems in which the units are mixed with the environment exhibit 
organizational structures that are functional, robust, and adaptive.  

Well known experimental and theoretical examples are  found in animal 
societies which are in essence similar to artificial systems in IT!

Societies offer :

• a complete blend of individual capacities and 
collective levels of intelligence and complexity; 

• a wide spectrum of size, physical constraints, …;

• a wide spectrum of sharing of costs and benefits among members. 
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Biological systems are not fully self-organized !

• A limited number of organizations are at work in 
social systems:

• Template

• Leadership & Collection of specialists

• Sharing external signal

(Deneubourg & Goss, 1989; Deneubourg & Camazine, 1994; Camazine et al, 2001)
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Concepts
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Concepts
• Emergent behaviour and self-organization

By emergent behaviour we mean a collective behaviour that is not explicitly programmed in each individual but 
emerge at the level of the group from the numerous interactions between these individuals that only follow local 
rules (no global map, no global representation) based on incomplete information.

• Randomness
Individual actions include a level of intrinsic randomness. An action is never certain but has an intrinsic probability of 
occurring. The behaviour of each individual becomes then less predictable. The predictability of a system depends 
also on the level of description and the type of measures done. Randomness and fluctuations play an important role 
in allowing the system to find optimal solutions. In some cases, there is even an optimal level of noise that 
contributes to the discovery of optimal solutions. This noise is either at the level of the individuals or the 
interactions. It can be controlled in artificial systems and modulated in living systems.

• Predictability
The global outcome of population presenting emergent behaviour is certain in well characterized systems. For 
instance, the result of emergent collective foraging in ant colonies is certain and efficient. Ants do bring food home 
or they simply die! Because often the system present multiple possible states coexisting for the same conditions, 
the specific solutions that accomplish the global behaviour at the level of the group are statistically predictable. For 
instance the optimal solution to solve a problem is chosen in 85% of the cases while a less optimal solution is 
selected in 15% of the cases. Nevertheless, the problem is solved in 100% of the cases! The discussion is then 
shifted towards knowing if 15% of suboptimal behaviour is acceptable and not if the global outcome is predictable.

• Evolution and emergent behaviour
We think that emergent behaviour is not an equivalent of evolution or even a necessity for evolution to take place. 
Emergent behaviour does not produce, in itself, new and unexpected behaviour.



Saffre & Halloy, 2005

Self-organization and emergent behavior

• Identified in natural systems
• A limited number of so generic rules are at work in biological systems

(from the cellular level to animal societies, including plants) and produce 
optimal emergent collective patterns for resources and work allocation. 

• What are these generic rules and their building blocks?

• What are these patterns?

• Most of the works are focused on the “pattern” without discussing the 
functionality

• Functional self-organization (Aron, Deneubourg, Goss & Pasteels, 
1990)
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A taxonomy of organization?
Based on the  phylogenetic systematics

Based on the basic biological functions (reproduction, foraging,…)

Based on the network of interactions (diffusion, broadcasting, network)
and individual mobility

Based on the number of behavioral programs/number of specialists
involved in the tasks

Based on the dynamics or patterns involved
in the tasks

Based on the network of feed-backs involved in the tasks
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Demonstrated examples of the emergence of autonomous behavior 

• Sophisticated spatial pattern 
formation

- nest building

- trail network

- aggregation patterns

• Collective choice

- food source

- settlement place

- strategies selection

• Regulation of activity, task 
allocation

• Synchronization or de-
synchronization of activity 
without external pacemaker

• Social differentiation & 
division of labour
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Different dynamics /patterns

Aggregation et related patterns

Network

Synchronization

Regulation

Emergence of individual specialization

Identical or
different agents
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Biological complex systems

2-3 m
104 -106 individuals

10 individuals

Termites1mm

A ball of cells

102 -103 individuals
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Synchronization of specialized individuals

Colonial organisms: self-assembled structures

A collection of highly specialized agents.
Various units function in food gathering 
reproduction defence of the colony

Giant siphonophores (length 40 m)
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Circular pattern

Self-assembled structures

(Lioni & Deneubourg, 2004)
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Lattice Sorting

Modified from Lebohec et al
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Self-organized(?) collective sex

Mating chain : Aplysia dactylomela (Molluscs)
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Synergy between template 
& self-organization in termite nest Self-organized network made by ants (ULB)
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Ants: experimental demonstration
of SO

Self-organized networking by ants
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Experimental studies of trails and networks

Dorylus

(Deneubourg, Goss, Franks & Pasteels, 1989
Franks, Gomez, Goss & Deneubourg,1991)
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Path choices by ant colony

Shortest path selection
R. Beckers, J.L. Deneubourg, S. Goss (1992). Journal of 
Theoretical Biology , 159, 397-415. 

Traffic flow regulation
Dussutour A et al. Nature. 2004. 428(6978):70-3.



Saffre & Halloy, 2005

Collective choice 

All together now! (without leader)
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Identified in biological complex systems

A limited number of simple generic rules are at work in 
biological systems (from the cellular level to animal 
societies) and produce, autonomously, optimal emergent 
collective patterns for resources and task allocation, 
synchronisation or de-synchronisation without external 
pacemaker, clustering and sorting
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Main features
• Dynamical systems with a large number of events: it does not

necessarily mean a large number of agents

• The size of the population and the characteristics of 
communication play an important role (all to all, nearest 
neighbour, etc.) 

• Randomness is a benefic ingredient to find optimal solutions

• Biological systems are not fully self-organized complex systems, 
they present a mix between centralized and distributed 
“management”

• Well known experimental and theoretical examples are  found in 
animal societies which are in essence similar to artificial systems 
in IT
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Methodology, framework & toolbox

• Experiments at the laboratory (significant number of 
repetitions!)

• Models based on stochastic or deterministic 
equations (ODE, PDE, etc.)

• Stochastic computer simulation or “agents” based 
simulations

• Experimental & theoretical results -> validated 
models  -> predictions -> prototyping
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Natural vs. artificial complex systems
• It is not a question of biological relevance but of appropriate context of use.

• Emergent behavior is very useful when decisions have to be made while action 
is still taking place, i.e. when the problem cannot be specified and solved 
proactively (before the situation occurs).

• Only limited “cognitive” capabilities of agents are needed and/or available to 
collect and process information.

• In the natural world, emergent behavior appears most useful in persistent 
populations of individuals that have to cooperate autonomously over long 
periods of time.

• Some applications of the so called “ant algorithms” do not fall into this category. 
For example, in “ant colony optimization”, the problem is solved a priori, then the 
solution is implemented in a centralized manner. For that reason, and even 
though the approach has yielded useful results, we believe that it is not the best 
possible use-case for emergent behavior in artificial complex systems.
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Control of collective decision making in insect 
groups by artificial agents

• We address collective choice or aggregation based on inter-attraction
• We focus on the experimental case of shelter selection by cockroaches 

(Blatella germanica, Periplaneta americana, Rennes & ULB)
• We discuss choices among shelters of identical or different quality
• We present a mathematical model based on experimental data in the 

framework of dynamical system theory
• The choices are described as bifurcations leading to multi-stationary 

states
• The stationary states corresponds to the number of individuals under a 

shelter
• We show how it can be used to make prediction in mixed groups of

animals and machines

http://leurre.ulb.ac.be
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Behavioral studies: collective decision making in cockroach group
Experimental setup of shelter selection by cockroaches (Rennes & ULB)

ULB:  G. Sempo, S. Canonge, J-M Amé
S. Depickère, J. Halloy, J-L Deneubourg

Blatella germanica: 300 tests of 24H each (in parallel)
Periplaneta americana: 400 test of 3H each (4 in parallel)

Rennes: C. Rivault & J-M Amé
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Collective decision making in cockroach group: model based on 
inter-attraction taking into account crowding effect
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n     inter-attraction factor
p number of shelters present in the system
N total number of individuals
xi number of individuals in shelter i
xe number of individuals outside the shelters
Si carrying capacity of the shelters

This model is very well characterized experimentally on 2 species of 
cockroaches (Rennes & ULB, Halloy et al. PNAS, 2006)
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Model based on inter-attraction taking into account crowding effect

Main experimental fact: the inter-attraction between individuals decreases the 
probability to leave the shelter.

This fact is modeled by a threshold function (with n>1), leading to a 
saturation effect in the individual outflow from a shelter.
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Model based on inter-attraction taking into account crowding effect

Experimental measure of the probability of leaving the shelter 
as a function of the number of individuals (P. americana)
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The black magic ingredients of the model…

• Individuals explore the system and encounter randomly the shelters
• They are capable of detecting the shelters and estimate their quality
• They are capable of identifying their conspecifics and sense their number
• They are constrained by a crowding effect

• Experimental measures on cockroach case studies

• Probability to be inside or outside the shelters is calculated from the time 
distributions inside or outside the shelters

• Probability of leaving the shelter according to the number of individuals present 
is calculated from the time distribution inside a shelter as a function on the 
number of conspecific

• The number of individuals present in the shelters and outside 
• The other parameter value are drawn from curve fitting of the experimental data



Saffre & Halloy, 2005

Collective decision making in cockroach group described by 
bifurcations leading to multiple steady states
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Experimental results and theoretical predictions



Saffre & Halloy, 2005

Collective decision making: experimental bifurcation 
diagram
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Collective decision making : bifurcation cascade

Collective choice 
described by a 
structured cascade 
of bifurcations

Example: varying 
the number of 
shelters and their 
carrying capacity

p=2

p=3

p=4
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Dynamics of the choice
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Benefit analysis of the collective choice
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View of the benefit cascade as a function of the number 
of shelters and their carrying capacity 
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Self-organized collective decision making
• The mathematical model makes the link between the individual behavior and the collective 

dynamics leading to multiple patterns of aggregation produced by collective decisions.

• The model is characterized by 5 parameters that have been measured experimentally for 
cockroaches.

• This type of collective decision making can be viewed as democratic and without explicit 
voting by individuals that must change their « opinion » frequently.

• The choice results from the dynamics of the inter-individual interactions with all individuals 
having the same influence on each other and in absence of leadership or hierarchy.

• The system present an interesting elegant cascade of bifurcation leading to regions of 
coexisting stable solutions corresponding to remarkable fraction of repartition N/p, N/(p-i) for 
i=1,..,p-1

• These results point to the existence of a generic self-organized dynamics of pattern 
formation independently of the level of sociability and of the type of animal group.
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Self-organized collective decision making
• This is not the model…
• The model does not refer to any particular species.
• The model does not even refer specifically to biology.
• There is a model only when the hypothesis discussed 

above are respected!

• Thus, the model can describe artificial agent software or 
hardware.

• This abstract layer of modeling allows exploring the 
existence of generic features in the mechanism leading to 
collective choice by natural or artificial agents.

• The model gives a framework for the experiments with 
pure or mixed groups of natural and artificial agents.



Saffre & Halloy, 2005

Controlling emergent behavior in mixed group of 
natural and artificial agents

• Control 

(a) : to exercise restraining or directing influence over  
: REGULATE

(b): to have power over  : RULE 

• We use the meaning (a) of control
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Modeling the collective choice of mixed groups
Individuals end up in the shelters and none remain outside (approximation)

The carrying capacity of the shelters is large enough to avoid crowding effects
Two shelters are present in the set-up
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Array of possible interaction modulations
Parameter No interaction 

robot/robot and 
robot/animal

Animals influence 
robots

Robots influence 
animals

Robots influence 
robots

γ 0 >0 0 0

β 0 0 >0 0

δ 0 0 0 >0

Parameter Animals/robots 
influence 
robots/animals

Animals influence 
robots & robots 
influence robots

Robots influence 
animals and 
robots

All interactions

γ >0 >0 0 >0

β >0 0 >0 >0

δ 0 >0 >0 >0
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Mathematical modeling (ODE): example 1

γ = β = δ = 1

rrr θθθ == 12

θθθ == 12

The robots and the insects exert mutual influence
Presence of 2 identical shelters
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The collective choice is induced in the mixed group by a simple 
effect of individual number increase above bifurcation threshold

Control as a phase transition
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Mathematical modeling: example 2

γ=0  β>0 δ=0

2 identical shelters
Insects do not influence the robots, robots influence insects
Robots are not social, they are some kind of lonely “leader”
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Suppression of the collective choice by adding robots

Control as a phase transition
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Example 3

γ=0  β>0 δ=0

Shelters are identical for the insects but not for the robots
The robots influence the insects
The robots are not social
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Induced collective choice: the insects gather in the shelter preferred by the 
robots, although the 2 shelters appear identical from a cockroach point of 
view.

Threshold

DecreaseAt steady state
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Example 4: math, simulations and real life 
experiments

Two different shelters: the cockroaches prefer the dark one , the robots prefer 
light one 
The insects and the robots exert mutual influence
The robots are social among themselves
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Modeling the collective choice of mixed groups: stochastic computer 
simulations

Two different shelters: the cockroaches prefer the dark one, the robots prefer the light one 

The robots induce a change in the insect collective preference
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Modeling the collective choice of mixed groups: stochastic computer 
simulations

Two different shelters: the cockroaches prefer the dark one, the robots prefer the light one 

The robots induce a change in the insect preference

20 cockroaches
β=1

Effect of robot number
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Modeling the collective choice of mixed groups: optimality and 
scalability (computer simulations)

Even at the optimal R/N, there is an optimal 
cockroach population size that maximizes the 
fraction of the insect population that is controlled by 
the robot

Robot efficiency presents an optimum
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Modulation (control) of the collective decision making in the example of 
shelter selection by cockroaches and autonomous robots

• Modulation trough the number of artificial agents and their nature.
• Role of the number of robots in regulating the choice 

• Modulation through the behavioral rules and capacities of agents.
- social among themselves or not
- react to the insects or not
- have preferences or not (for a specific shelter)
- nature and intensity of the signals towards the insects (pheromone 
tagging, tactile interactions)

• Modulation of the environment
- not used until now
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Collective decision making in mixed groups of robots and 
cockroaches

?

?

+

Building interactions and communication:
Perception of individual presence 
Modulation of the behavior according to individual presence

+Design and 
implemented 
(EPFL)

Caprari G., Colot A., Siegwart R., Halloy J. and Deneubourg, J.-L..Animal
and Robot Mixed Societies- Building Cooperation Between Microrobots and 
Cockroaches.  IEEE Robotics & Automation Magazine. Vol.12, No 2, June, 
pp 58-65. 2005.

Proven 
experimentally and 
formally modeled
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Collective decision making in mixed groups of robots and 
cockroaches
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Collective decision making in mixed groups of robots and 
cockroaches

Interactions at the collective level: the machines are accepted

Probability to rest increases with the number 
of neighbors

Robots are found more often under the 
shelter containing most of the cockroaches

Robots spend more time under shelter when 
cockroaches are present than alone
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Collective decision making in mixed groups of robots and 
cockroaches: experimental demonstration

Shared collective decision between identical shelters
12 cockroaches & 4 robots; 30 tests (3H each)
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Collective decision making in mixed groups of robots and cockroaches
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Collective decision making in mixed groups of robots and cockroaches

Control of collective decision induced by the robots: experimental demonstration
12 cockroaches & 4 robots 30 tests
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Collective decision making in mixed groups of robots and cockroaches

• Cockroaches perform group choice that is a form of self-organized collective decision. It 
emerges form the local interactions between individuals.

• Both machines and insects are capable, independently of each other, to perform such 
collective decision.

• The robots are accepted by the cockroaches groups and actively take part in the collective 
choice.

• Most of the time, they gather with the cockroaches under the same shelter.

• When the robots are programmed to have an opposite preference compared to insects, they 
are able to induce a change in the global pattern by reversing the collective shelter 
preference.

• The mixed group of robots and insects gather in the less preferred shelter by the insects.

• These experimental results demonstrate the existence of shared and controlled collective 
choice between machines and animals.
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Conclusion 
Dynamical modeling, at the abstract level, gives a general framework to 
formalize collective decision making in mixed groups of animal and machines.

The abstraction from a particular example allows exploring the generic 
features that lead to collective choice. 

Care has to be taken in handling the high level hypothesis of the model.
When they are experimentally validated they gain the status of features or 
requirements for the artificial agent.
The design of the artificial agent has to lead to fulfill correctly these features.

The framework allows making global prediction in well defined system and 
gives guidelines for the experiments.

However, it does not give specific clues about a particular lower level 
implementation neither in biological nor in artificial systems.
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Path selection dynamics

Pasteels, 
Deneubourg & 
Goss
Experentia,1987
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From ants to Ant Colony Optimization

The trail laying mechanism allows ants to  
solve more elaborate path networks like 
minimal spanning tree or edge interruptions.

Spin off idea to transpose the model as a 
heuristic optimization algorithm named 
Ant Colony Optimization (see books by 
M. Dorigo) 

Experimental results for a triangular network
(3 nest super-colony) with
Linepithema humile (Argentine ants)
[Aron, Deneubourg, Goss, Pasteels, 1991]
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Model for trail recruitment
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Sorting and clustering by ants
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Detrain & L. Chrétien (1991). The dynamics of collective sorting 
robot-like ants and ant-like robots. In From Animals to Animats, Eds. 
J.-A. Meyer & S. Wilson. MIT Press, Cambridge (Mass.), 356-365. 
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Sorting  & clustering spin off in collective robotics
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From local actions to global tasks: stigmergy and 
collective robotics. In Proceedings of ALIFE IV, Eds
R.A. Brooks & P. Maes, MIT Press, Cambridge 
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Universal differentiation or task allocation 
regulatory modules I

Negative feedback

Positive feedback
Xi : state variable of agent i

I. Cross inhibitions

I.a I.b

X1 X2 X1 X2
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Universal differentiation or task allocation 
regulatory modules II

II. Resource competition

II.a II.b

R

R

X1 X2

R

X1 X2
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Example of task allocation based on mechanism II.a

Task 1
P1

Task 2
P2

Task k…

Pi demand probability of task i
Qi acceptance probability of task i

Q11

…
Q21 Qm1

Individual
Reinforcement of acceptance
if accepted by the agent
(positive feedback)
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Example of task allocation based on mechanism II.a

Task 1

Q11

Q21

P1

« No »

Q51
1/(m-1)

« No »

1/(m-1)

Reinforcement of acceptance
if accepted by the agent « yes »
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Probability to perform task j (individual i)        
l=2
j=10
m=individual numberQij =

Aij
l

Aij
l

i=1

m

∑

IF  individual i performs task j then  Aij increases   

Aij → Aij + F(Aij )
F(Aij ) = αAij

α=0.5
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Reference state without reinforcement l=0:
binomial distribution of tasks among individuals
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With reinforcement l=2:
Three clusters of specialized agents emerge
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Increasing the number of agent
Increases the number of low activity nodes
However, the remaining inactive individuals remain available in 
case of new tasks appearing
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Non specialized agents
With low activity

Low specialized agents
with low activity

Highly specialized agents
with high activity
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Results with such basic generic rules

• Two constraints at the individual level:

• Tasks are « consumed » hence not available

• The time spent to perform task is not spend to do other tasks

• Initial conditions

• The emergent state are independent of the initial conditions

• Size of specialist clusters remain constant.

• Even with some individuals predisposed for specific tasks
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Foraging & trail recruitment -> optimal randomness 

Nest

Sucrose
concentration

Trail laying intensity ≈ a (sucrose concentration)0.5

Noise of communication decreases with the trail laying intensity
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efficiency of the collective choice between multiple sources
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Take-away message 1
• The purpose of the individual behavioral pattern is not found at the individual but at the 

collective level. The mechanism is at the individual level taking into account the interactions; 
the purpose lies at the collective level.

• In order to produce collective intelligence the systems must present some nonlinear 
properties coupled with positive or negative feedback mechanisms. One of the main roles of 
a positive feedback is to amplify random fluctuations to obtain a fast, nonlinear response of 
the system. To put it simply, innovation or efficient solutions are discovered by random 
fluctuations and selected by non-linear positive feedbacks.

• Randomness is an essential counterintuitive ingredient because in a classical engineering 
approach it is considered as a nuisance. In the context of collective intelligence, individual 
actions include a level of intrinsic randomness. Like moving randomly or behaving in a 
probabilistic way. The behavior of each individual becomes then less predictable or even 
unpredictable. Nevertheless, collective intelligence can be predicted with accuracy or even 
produced systematically in artificial systems

• Distributing the team within the environment of the problem to be solved and introducing the 
positive feed-backs interactions between the units allows the amplification of localized 
information found by one or a few of the units. Thus, thanks to this type of coordination, the 
team reaction to these local signals is the solution to the problem. While no individual is 
“aware” of all the possible alternatives, and no individual possess an explicitly programmed 
solution, all together they reach an “unconscious” decision.
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Take-away message 2
• The modeling framework briefly presented here does not mean 

that the individuals are simple. This is a common 
misunderstanding of this modeling framework. Even insects are 
sophisticated animals that have capabilities way beyond any 
available technology. The emergence of such collective problem 
solving in animal population is also based on sophisticated 
individual capabilities.

• However, while reviewing the hypothesis underlying such 
models, we notice that none of them is specific to animal 
species or even biology. Any system, including artificial ones, 
that fulfills these hypotheses will produce such emergent 
cooperative behavior.
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Designing artificial complex systems
• We need to identify artificial systems (groups of machines and 

software) where the known regulatory modules can be applied to 
produce robust, optimal and autonomous behaviors

• We need to translate, mutatis mutandis, those rules into practical 
algorithms.

• It also corresponds to the transition from different level of description 
like for example, from physiology to behavior or from hardware to 
software.

• In natural systems, the balance between fully distributed and 
centralized control is usually determined by the task that the system is 
accomplishing as a whole and the capabilities of its constituents. 
Similarly, the purpose of an artificial system and the capabilities of 
individual units should preside to design choice.
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Research issues…many!
• In artificial system the question remains to identify and design the 

correct level of individual complexity and the relevant signal that 
coupled with the appropriate nonlinear inter-agents interactions will 
produce cooperation and solve a specific real case. This question is an 
open field of research and there is no systematic way to tackle it with 
our present knowledge. The specific task to be performed and its
complexity leads to a choice of appropriate individual and collective 
capabilities. An open question is to find a link between the task 
complexity and the complexity of individuals and communication 
systems needed to perform it.

• Another important issue arising in artificial systems is that they have to 
be designed from scratch including all level of description from low level 
hardware and software up to the high level feedback rules of 
interactions between agents. Again there is no systematic way to
achieve this. The question of navigating formally and systematically 
between such levels of description remains an important topic for 
research.
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Research issues…many!
• How to “travel” between the different level of descriptions: from the abstract layer 

to the actual implementation layers (opposite directions in natural vs. artificial 
systems) ?

• What happens when several self-organized behavioral modules are connected?

• How the cascades of complexity emerges?

• What kind of scalability corresponds to each building bloc?

• What is the link between population size and organizational structures?

• In IT autonomous “behaviors” are looked for. When do we start to test in real 
(simple) cases what we know about emergent behaviors in tested natural 
systems?
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