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What is this all about?

• We are seeing a headlong rush towards a world 
stuffed full of smart devices, ambient intelligence and 
pervasive computing.

• In this world, coping with physical constraints is less 
of a challenge than making sense of the total mess 
that is the “network economy”.

• The business community is aware of this: it has a 
compelling vision of what can be achieved, but it is 
very confused when it comes to realise that vision.
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Take-away message

• The vision is: all of that "smart stuff" should be able to 
help us provide useful services that meet end users' 
demands, in real time, when and where they arise.

• The truth is: almost everybody accepts that, but very 
few people have actually started thinking about how
to make it happen!

• The solution is to embed enough autonomy (self-*) 
into the "smart stuff" that it can organise itself into an 
"Adaptive Service Ecosystem" - that adjusts 
automatically and invisibly to changes in demand and 
policy.
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Expected benefits

• More agile computing assets, capable of responding 
adaptively to unique, changing and unpredictable 
user demands.

• More robust software, capable of self-diagnostic and 
of actively and autonomously seeking to avoid 
“unsafe” configurations.

• Reduced cost of ownership (i.e. a direct and highly 
desirable consequence of increased robustness).

• Reduced “downtime” (ibid).
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Practical applications

• Service deployment: module-based applications could greatly 
benefit from “on-the-fly” adjustment to unpredictable usage 
patterns (i.e. “who needs what service, where and when?”).

• Resources accounting and allocation: “on-demand” utility 
computing (i.e. seamless Grid) requires real-time balancing of 
the offer and demand, which could be achieved via 
unsupervised negotiation between potential collaborators.

• Self-organising ad-hoc networks: social differentiation 
(specialisation) and/or decentralised radio spectrum 
management (e.g. via cross-inhibition) can enhance usability 
and/or longevity.
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Autonomic principles

• The trend towards self-configuration, self-protection etc. 
championed by IBM is widely referred to as “autonomic 
computing”.

• Though finding its origin in “pure” research (biologically inspired 
systems), it has gained so much momentum and widespread 
endorsement that many implementations now exist.

• However, they are mostly “node-centric” (as opposed to 
“network-centric”), which means that they do not explicitly take 
into account group dynamics.

• This is potentially a serious flaw, as applying autonomic 
principles creates the perfect conditions for complex system 
behaviour (many interacting units making autonomous/selfish 
decisions on the basis of locally available information).
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Self-organisation

• By definition, a system composed of units making autonomous 
decisions based on locally available information can only be 
“driven” to a desirable state via self-organisation.

• This requires engineering the reasoning and decision-making 
engine running on individual units so as to promote the 
emergence of the “right” collective behaviour.

• In turn, this means adapting the predictive techniques of natural
complexity science (both analytical and numerical) to meet the 
needs of artificial complex systems designers.

• It seems relatively trivial in principle, but experimental validation 
requires prototype implementation, which is a serious issue.
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Key tasks/milestones

• Identify relevant and specific causes of complex 
behaviour in artificial systems (e.g. in dynamic 
networks, especially overlays).

• Gain a thorough (i.e. not “anecdotic”) understanding 
of how they combine to affect global response.

• Learn how to use this improved knowledge to make 
probabilistic predictions about the evolution of 
complex artificial systems.

• “Reverse-engineer” the process leading to desirable 
system state(s) to “discover” the right local rules.
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Why we (the Telcos) care about AC

• It’s an opportunity: autonomic computing has the 
potential to revolutionise services via self-
organisation of software components.

• It’s a threat: we want to mitigate the risk that network 
operators are left with bandwidth as their single 
asset/product.

• Bottomline: we are very keen to contribute our 
expertise to the development of autonomic ICT 
solutions, be recognised as key players in the field 
and, ultimately, have a share of the corresponding 
market!



Complex(?) networks
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Are today’s networks complex?

• Only some of them!

• Complex doesn’t just mean large and complicated, it 
means exhibiting non-trivial global behaviour as a 
result of unsupervised local interactions between 
system constituents.

• In many ways, engineers are trained to “fight”
complexity, i.e. to constrain system behaviour and 
find ways of enforcing central control.

• And there is also some measure of confusion in so-
called “complex networks” science.
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http://www.nd.edu/~networks
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Allow me to explain…

• A lot of so-called “complex” networks are only marginally so!

• Admittedly, it is possible to promote (and maintain) some global
topological properties through local decision-making, which 
amounts to a form of emergence.

• However, many models make a lot of (hidden) assumptions! 

• For example, the famous “preferential attachment rule” only 
generates scale-free topology if growth is sequential and 
newcomers have complete information on network state.
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But more importantly…

• There’s nothing “magical” or even “surprising” in the 
way these degree distributions emerge.

• Generally speaking, once local rules are known and 
interactions understood, complex systems are 
eminently predictable (from a probabilistic point of 
view).

• As far as complex networks are concerned, global 
properties can be thoroughly explained by applying 
good old combinatorics, as they merely reflect the 
probability distribution of having a given degree.
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Example: random sequential
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Example: preferential sequential
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Result:

“Fat tail” starts 
here…
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Will tomorrow’s networks be complex?

• Very likely!

• Networks are becoming so dynamic and complicated 
that the only viable management option is to make
them complex…

• Because we have no choice but to gradually switch 
from centralised to decentralised control, we are 
effectively sowing the seeds of complexity.

• We must learn to live with and take advantage of the 
emergent properties arising from the interaction of 
many system constituents, not try to counter them.



Swarm-based IDS
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Intrusion Detection and Response

• Key topic in network security!
– How do you know that you’re being attacked?
– How do you identify opening breaches?
– When intrusion is in progress, how do you contain the threat?
– Can you devise a system-wide collective response that will outrun 

the attacker? 

• HIDS (Host-based Intrusion Detection System)
– Scalable, but tends to miss macroscopic attack patterns.

• NIDS (Network-based Intrusion Detection System)
– Detects macroscopic attack patterns…
– But typically not in real time (~ “forensic” tool)!
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One solution could be (loosely) based 
on mimicking nest defence

• Contemporary networks are 
like a termite mound…

• Pretty hard to break into by 
probing at random…

• But permanently under repair 
and/or undergoing 
transformations.

• In short: there’s always a 
weak spot!



Saffre & Halloy, 2005

“My LAN is my castle…”

• The problem with dynamic architectures is that they 
can’t be efficiently protected by static fortifications.

• The rapid take-up of “plug-and-play” and wireless 
access points has created a volatile situation, 
sometimes referred to as “the disappearing 
perimeter”.
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The disappearing perimeter
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“Once more, onto the breach…”

• How do termites react to a similar situation?
– Soldiers run to fill the gap.

– Workers seal the compromised area, protecting the deeper 
chambers.

• This requires a way of (collectively):
– Detecting a breach in the outer wall.

– Building a new defensive layer to protect the “inner sanctum”.
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In network security terms, that means:

• Detect abnormal activity
– Port-scanning

– Repeated (failed) log-in attempts

– Illegitimate requests from authenticated users/hosts

• Take actions to circumvent the intruder
– Update security stance of personal firewalls on exposed hosts

– Revoke legitimate privileges from misbehaving users

– …
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Drawing inspiration isn’t copying

• Mobile agents (i.e. the most obvious analogy) aren’t a 
suitable way of enforcing security in contemporary 
networks.
– They are just too “heavy” and too slow…

• In clear:
– A “wall” = a host on the highest (“paranoid”) security stance.

– A “breach” = any unknown user/host, unusual traffic, forbidden 
process…

– “Workers”, “soldiers” =  non-existent!
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ADDICT
Adaptive Defence for Dynamic ICT

• The best (only?) way to conduct in-depth intrusion detection and 
response in a dynamic context is to consolidate host-based 
monitoring data across the network.
– Combines the advantages of HIDS & NIDS (scalability + ”bird’s eye” view).

– Individual hosts share “pre-digested” information locally.

• Inhibitory signalling
– If you’re only interacting with identifiable, well-behaved and “happy” devices, 

relax. 

– If (some of) your neighbours are identifiable, well-behaved, but “worried”, be 
suspicious…

– If (some of) the devices that you’re interacting with are unidentified and/or 
misbehaving, be worried!
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Definitions and model

• “Identified”: probably means that a “colony tag” (i.e. 
collective, encrypted signature?) is needed.

• “Well-behaved”: 
– runs (nothing but) authorised applications and up-to-date security 

software…

– only makes requests that are appropriate for this “colony member”.

• “Beacon”: encapsulated identity/behaviour data + 
alert status (sent periodically).
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Definitions and model (2)
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Analytical solution - example 1 
“all friends” scenario

α  = 0.3, β  = 0.05
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Analytical solution - example 2 
“one friend, one foe” scenario

• Already slightly more 
difficult...

• Solution obeys:
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Application scenario: Wireless LAN
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AP3

Firewall

Internet S0

S1

S2

S?

S3S3*

Protected
resources



Saffre & Halloy, 2005

Without ADDICT

• When unknown station S? attempts to connect to 
access point AP2:
– It either succeeds (open system, null authentication) or fails 

(shared key).

– In the first case, S? can at the very least free-ride on the 
Internet.

– In neither case is S1’s behaviour modified by S?’s presence.

• When authenticated station S3 starts to 
“misbehave” (→S3*):
– Nothing happens!
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With ADDICT

• In essence, more room for flexibility…
– Even if S? is denied access to the WLAN, the attempt will 

trigger an alert signal on AP2 and the warning will be passed 
to S1.

– If S? is voluntarily granted access (e.g. AP2 is in an area 
where legitimate visitors are common), you may still want to 
temporarily build up the security settings on S1.

– In either case, the actions taken could prevent (in)voluntary
damage caused by the intrusion (eavesdropping, virus 
infection, sniffing…)
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With ADDICT (2)

• Dealing with S3→S3*
– Could be (e.g.) because S3, after successful authentication, 

turns on a forbidden application.

– Shows up in the beacon signal.

– Even if S3* is impersonating S3 (stolen authorised ID), this 
could expose the forgery.

– Again, it triggers an alert signal on AP3, which can propagate 
through S0.

– Actions could involve (e.g.) neighbouring APs starting to use 
stronger encryption/authentication.
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The ADDICTed office

Infected node

Public area

Private area (red)

Private area (green & blue)

Intruder (red in blue)

High alert 
(bright halo)

Low alert 
(faint halo)



Self-Organised Service 
Orchestration
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“Alone in the world”

z

y

x
A

z x

y

Need for 
service x

x

z

y

x

B

z
x

y

Installed 
module xx

z

y

x

C

z

x

y



Saffre & Halloy, 2005

Ups and downs

• Highly robust to node or network failure.
• End user has total control.
• Need a lot of onboard power (good for hardware 

manufacturers!).
• Need many copies of every application (good for 

software manufacturers!).
• Need virtually no ICT infrastructure (not good for 

service providers!).
• Amazing waste of resources (“99% idle time”

syndrome).
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“Thin client”
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Ups and downs

• Extremely brittle (single point of failure!)

• Administrator has total control.

• Mixed picture for the hardware industry (need 
powerful servers, but only low-end PC’s)

• Mixed picture for the software industry (depends on 
license management).

• Mixed picture for ICT providers (network services are 
paramount, but risk of bottlenecks and QoS
degradation).
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“SelfService”
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Ups and downs

• Intermediate robustness (no single point of failure, 
but problems will tend to be “non-local”).

• End user is back in charge (decides what to install).

• Advantages to the hardware/software industry?

• Interesting model for sharing resources (i.e. P2P 
utility computing).

• A clear step towards pervasive ICT and a great 
opportunity for service providers, if we can deliver!



Saffre & Halloy, 2005

Why is that a challenge?

• The difficulty is of course to ensure adequate service 
coverage, in terms of accessibility, reliability, latency 
etc.

• This has to be achieved without central control or 
planning, otherwise:
– It won’t scale.

– We’ll lose many of the benefits (in terms of agility and adaptability).

• In the IT community, there is a chronic lack of interest 
for preliminary studies on system properties!
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“SelfService”

• Objectives:
– To support reliable, fault-tolerant access to a sub-set of services, 

handpicked by users on an individual basis.

– To reduce the need for installation/running of the corresponding
software modules on local devices used as access points.

– Without having to rely on dedicated servers.

• Underlying hypothesis:
There are unpredictable but consistent patterns of activity, which can 
be used to select stable partnerships (e.g. “device X, hosting service 
S1, is able to provide it to device Y for 80% of business hours”).
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Locally maintained information
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“Alone in the world” (benchmark)
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Load balancing
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Broadcasts & downloads (~bandwidth)
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Queue build-up
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Sanity check

• These were all Monte Carlo simulation results.

• But there are also mathematical tools to help us 
understand and predict:
– How such a system will evolve

– Whether it will reach steady-state

– How much time will be spent (statistically) in every possible 
configuration

• Many of these tools tend to quickly become 
intractable when complexity increases, but they can 
still play a vital part in validating simulation.
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Simplest case: 2 devices, 2 modules

• Rules:
– If device di has module j installed, then it will accept a request for 

service sj with probability

Pij = 1/σi

where σi is the number of modules installed on device di.
– If di does not have module j installed, it will accept a request for 

service sj with an arbitrarily fixed probability

Pij = q = 0.1
In this case di will have to change its configuration in order to provide 
the service.

– Every time that a device doesn’t accept a request, it makes an 
attempt at delegating it to the other.
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Simplest case: 2 devices, 2 modules

• Rules (cont’d):
– If the request is accepted by the other device, then if the originator 

has module j installed, it can choose to uninstall it and will do so with 
probability

Rij = σi/m
where m is the number of participating devices (here m = 2).

• Finally, we make two assumptions:
– a request bounces back and forth until it is eventually accepted

– each device receives a similar number of request for each of the n = 
2 services.
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System states

• When m = n = 2, although there are 2mn = 16 possible 
configurations, when taking symmetry into account, 
one is left with only seven meaningful states:
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• Given the local decision rules, it is possible to fully 
predict the rate of transition between them.
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Markov chain
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Markov chain

• Finding the invariant distribution, one can predict that 
the system should be in
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• By repeating the same procedure for other parameter 
values (local rules) we can use the analytical solution 
to verify that simulation results contain no artefact. 
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Back to Monte Carlo

• Validating numerical tools using analytical projections is 
essential, as it is very easy to produce stable yet erroneous (or 
biased) simulation code!

• Only when the correctness of the simulation engine is beyond 
reasonable doubt can it be confidently used to produce results 
independently from the mathematical framework…

• Which (unfortunately?) is made necessary by the fact that the 
analytical approach doesn’t scale.

• For example, if for m = n = 3, there are still “only” 36 meaningful 
states, for m = n = 4, there are already 317, and even identifying 
them among the 2mn = 65536 possible configurations becomes 
far from trivial!
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Pervasive “SelfService”

• Mobile nodes (pda’s?).

• Regular, but 
unpredictable, daily 
activity cycles.

• Colour code = QoS.

• Size = number of modules 
installed.

• Grey links = in range.

• White links = identified 
opportunities for co-
operation.
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It’s not all about software modules

• There is also the opportunity to fine-tune individual 
machines’ “internal state” (i.e. differential allocation of 
resources like storage, processing power etc.)

• Internal state can affect task-specific performance 
(with a possibility of conflicts when the same machine 
is expected to perform a variety of tasks).

• The same principles of self-organised differentiation 
can be applied to maximise the collective efficiency of 
a community of devices.
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Collective differentiation
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“SelfService”: an artificial ecosystem(?)

• Efficiency proportional to 
level of specialisation.

• Job acceptance prob. 
proportional to efficiency.

• Co-operation limited to 
first neighbours.

• Colour code:
– QoS (nodes)

– Delegation success (links)

• Brightness:
– Frequency of delegation
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Embryo

• Let us go back to the future and the full-blown “Adaptive Service 
Ecosystem”, where network topology and service characteristics 
are dynamic.

• Key features/properties:
– All components have some “intelligent” autonomic capabilities
– The relationships between them (esp. who is connected to whom in the 

overlay) are in permanent turmoil
– Multiple (hopefully modular!) applications coexist within the same service 

ecosystem
– Which modules make up which application is constantly revised: new 

applications appear, others die out, new (old) modules are added to 
(removed from) existing applications

– Demand is highly variable and requires “on-the-fly” reallocation of resources 
– There is no common information repository and no control centre can cope 

with the rate of change in the system

• Can we make it work and how?
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Embryo’s ancestor: T-Man

• Gossip-based, self-organizing P2P network protocol developed 
by Jelasity and Babaoglu.

• Nodes “find” and “migrate” to their target location in the system 
by gradually refining their global knowledge through local 
messaging, and by rewiring accordingly. 

http://www.cs.unibo.it/pub/TR/UBLCS/2004/2004-07.pdf
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So what else do we need?

• Basically, in T-Man, the target location of a node is defined by 
some internal property (which could be a constant or a variable)
that doesn’t change as a function of the node’s neighbourhood.

• But what if a node’s objective transcends its internal state, and it 
can adjust its own characteristics in its (selfish) pursuit of that 
objective, so as to complement what its neighbours have to 
offer?

• Then a node’s target location (equivalent to its objective) varies 
over time, and since it’s a function of its neighbours’ and its own 
internal properties, it can potentially be reached by rewiring, by 
changing state or by a combination of both.

• This is the complex situation that Embryo is trying to deal with…
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Why “Embryo”?

• Because it’s not unlike what’s happening during the 
morphogenesis of multicellular organisms.

• It all starts with a handful of identical stem cells, which 
progressively multiply, specialise and “migrate” (i.e. change 
relative positions during development).

• Eventually, the process gives rise to a living being, whose 
existence depends on highly specialised and interdependent 
organs, each made of many cells belonging to various 
differentiated types.

• And of course this extraordinarily complex orchestration all 
happens in the absence of any conductor, through a 
combination of local mechanisms ranging from cell adhesion to 
cross-stimulation/inhibition.
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What does it mean (in ICT terms)?

• An organism =  a “service ecosystem”

• An organ =  an application (involves multiple services)

• A cell type = a service (corresponds to a software module)

• A cell = a node (can be a physical device or a virtual entity) 
providing a point of access to an application

• A group of neighbouring cells = an overlay network connecting 
service instances

• Cell differentiation = instantiation of a particular service

• Cell migration = rewiring within the overlay

• Cell signalling = gossiping between neighbouring nodes
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Embryo: some simulation results

Time until stable (N = 9)
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Embryo: some simulation results (2)

Time until stable (N = 17)
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Embryo demo
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Conclusions

• The borders between:
– Autonomic computing/communication

– Networking and services

– Pervasive computing

– Resource sharing

– Software design and engineering

are fading rapidly…

• Because they all share the same problem: less 
control, increased complexity, poor understanding of 
artificial systems emergent properties.



Saffre & Halloy, 2005

Conclusions (2)

• The corresponding industries have increasingly 
overlapping markets with, e.g., Telcos and IT 
companies now competing to provide ICT services.

• The race is on, and whoever can demonstrate that 
they’ve “cracked the complexity nut” in practice will 
have a decisive advantage.

• Because they will be able to offer new ICT solutions 
that are predictably and reliably efficient in the 
unpredictable and unreliable world of the “network 
economy”.
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Publicity time…

• 1st International Conference on Autonomic Computing (ICAC): 
New York, USA - May 2004

• 2nd ICAC: Seattle, USA - June 2005
• 3rd ICAC: Dublin, EU - June 2006… be there!

www.autonomic-conference.org
• Autonomic Communication Forum (ACF)
• Federates the majority of European academics and industrialists 

active in the field of autonomic ICT
www.autonomic-communication.org

• Should you wish to keep track of our work over the next 3 years,
the CASCADAS project website is a good place to start

http://netmob.unitn.it/cascadas/

http://www.autonomic-conference.org/
http://www.autonomic-communication.org/
http://netmob.unitn.it/cascadas/
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