
Part 2: nature-inspired design
for artificial systems

Saffre & Halloy, 2005

Plan of the presentation

• Introduction
• Complex(?) networks
• Swarm-based IDS

– Context and basic concepts
– ADDICT (demo)

• Self-organised Service Orchestration
– SelfService

• Concepts and tools
• Pervasive SelfService (demo)
• Extended SelfService (demo)

– Embryo
• Background
• Latest news (demo)

• Conclusions

Introduction

Saffre & Halloy, 2005

What is this all about?

• We are seeing a headlong rush towards a world
stuffed full of smart devices, ambient intelligence and
pervasive computing.

• In this world, coping with physical constraints is less
of a challenge than making sense of the total mess
that is the “network economy”.

• The business community is aware of this: it has a
compelling vision of what can be achieved, but it is
very confused when it comes to realise that vision.

Saffre & Halloy, 2005

Take-away message

• The vision is: all of that "smart stuff" should be able to
help us provide useful services that meet end users'
demands, in real time, when and where they arise.

• The truth is: almost everybody accepts that, but very
few people have actually started thinking about how
to make it happen!

• The solution is to embed enough autonomy (self-*)
into the "smart stuff" that it can organise itself into an
"Adaptive Service Ecosystem" - that adjusts
automatically and invisibly to changes in demand and
policy.

Saffre & Halloy, 2005

Expected benefits

• More agile computing assets, capable of responding
adaptively to unique, changing and unpredictable
user demands.

• More robust software, capable of self-diagnostic and
of actively and autonomously seeking to avoid
“unsafe” configurations.

• Reduced cost of ownership (i.e. a direct and highly
desirable consequence of increased robustness).

• Reduced “downtime” (ibid).

Saffre & Halloy, 2005

Practical applications

• Service deployment: module-based applications could greatly
benefit from “on-the-fly” adjustment to unpredictable usage
patterns (i.e. “who needs what service, where and when?”).

• Resources accounting and allocation: “on-demand” utility
computing (i.e. seamless Grid) requires real-time balancing of
the offer and demand, which could be achieved via
unsupervised negotiation between potential collaborators.

• Self-organising ad-hoc networks: social differentiation
(specialisation) and/or decentralised radio spectrum
management (e.g. via cross-inhibition) can enhance usability
and/or longevity.

Saffre & Halloy, 2005

Autonomic principles

• The trend towards self-configuration, self-protection etc.
championed by IBM is widely referred to as “autonomic
computing”.

• Though finding its origin in “pure” research (biologically inspired
systems), it has gained so much momentum and widespread
endorsement that many implementations now exist.

• However, they are mostly “node-centric” (as opposed to
“network-centric”), which means that they do not explicitly take
into account group dynamics.

• This is potentially a serious flaw, as applying autonomic
principles creates the perfect conditions for complex system
behaviour (many interacting units making autonomous/selfish
decisions on the basis of locally available information).

Saffre & Halloy, 2005

Self-organisation

• By definition, a system composed of units making autonomous
decisions based on locally available information can only be
“driven” to a desirable state via self-organisation.

• This requires engineering the reasoning and decision-making
engine running on individual units so as to promote the
emergence of the “right” collective behaviour.

• In turn, this means adapting the predictive techniques of natural
complexity science (both analytical and numerical) to meet the
needs of artificial complex systems designers.

• It seems relatively trivial in principle, but experimental validation
requires prototype implementation, which is a serious issue.

Saffre & Halloy, 2005

Key tasks/milestones

• Identify relevant and specific causes of complex
behaviour in artificial systems (e.g. in dynamic
networks, especially overlays).

• Gain a thorough (i.e. not “anecdotic”) understanding
of how they combine to affect global response.

• Learn how to use this improved knowledge to make
probabilistic predictions about the evolution of
complex artificial systems.

• “Reverse-engineer” the process leading to desirable
system state(s) to “discover” the right local rules.

Saffre & Halloy, 2005

Why we (the Telcos) care about AC

• It’s an opportunity: autonomic computing has the
potential to revolutionise services via self-
organisation of software components.

• It’s a threat: we want to mitigate the risk that network
operators are left with bandwidth as their single
asset/product.

• Bottomline: we are very keen to contribute our
expertise to the development of autonomic ICT
solutions, be recognised as key players in the field
and, ultimately, have a share of the corresponding
market!

Complex(?) networks

Saffre & Halloy, 2005

Are today’s networks complex?

• Only some of them!

• Complex doesn’t just mean large and complicated, it
means exhibiting non-trivial global behaviour as a
result of unsupervised local interactions between
system constituents.

• In many ways, engineers are trained to “fight”
complexity, i.e. to constrain system behaviour and
find ways of enforcing central control.

• And there is also some measure of confusion in so-
called “complex networks” science.

Saffre & Halloy, 2005

http://www.nd.edu/~networks

Saffre & Halloy, 2005

Allow me to explain…

• A lot of so-called “complex” networks are only marginally so!

• Admittedly, it is possible to promote (and maintain) some global
topological properties through local decision-making, which
amounts to a form of emergence.

• However, many models make a lot of (hidden) assumptions!

• For example, the famous “preferential attachment rule” only
generates scale-free topology if growth is sequential and
newcomers have complete information on network state.

∑∑
==

+ ≠= N

j
j

i
n

j
j

i
ni

k

k

k

kP

11

1,

Saffre & Halloy, 2005

8000 vertices, ~16000 edges

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

Degree (k)

Fr
ac

tio
n

Preferential
Random sequential
Truly random

Saffre & Halloy, 2005

But more importantly…

• There’s nothing “magical” or even “surprising” in the
way these degree distributions emerge.

• Generally speaking, once local rules are known and
interactions understood, complex systems are
eminently predictable (from a probabilistic point of
view).

• As far as complex networks are concerned, global
properties can be thoroughly explained by applying
good old combinatorics, as they merely reflect the
probability distribution of having a given degree.

Saffre & Halloy, 2005

Example: random sequential

A B

A B C C A B

0.5 0.5

A B C

D

A B C

D

A B C

D

C A B

D

C A B

D

C A B

D

0.33

0.33

0.33 0.33

0.33

0.33

Saffre & Halloy, 2005

Example: preferential sequential

A B

A B C C A B

0.5 0.5

A B C

D

A B C

D

A B C

D

C A B

D

C A B

D

C A B

D

0.25

0.5

0.25 0.25

0.5

0.25

Saffre & Halloy, 2005

Result:

“Fat tail” starts
here…

Saffre & Halloy, 2005

14 hosts, 13 links

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

Node degree

Fr
ac

tio
n

random sequential
simulation
preferential simulation

exact numerical solution
(probability distribution)

Saffre & Halloy, 2005

Will tomorrow’s networks be complex?

• Very likely!

• Networks are becoming so dynamic and complicated
that the only viable management option is to make
them complex…

• Because we have no choice but to gradually switch
from centralised to decentralised control, we are
effectively sowing the seeds of complexity.

• We must learn to live with and take advantage of the
emergent properties arising from the interaction of
many system constituents, not try to counter them.

Swarm-based IDS

Saffre & Halloy, 2005

Intrusion Detection and Response

• Key topic in network security!
– How do you know that you’re being attacked?
– How do you identify opening breaches?
– When intrusion is in progress, how do you contain the threat?
– Can you devise a system-wide collective response that will outrun

the attacker?

• HIDS (Host-based Intrusion Detection System)
– Scalable, but tends to miss macroscopic attack patterns.

• NIDS (Network-based Intrusion Detection System)
– Detects macroscopic attack patterns…
– But typically not in real time (~ “forensic” tool)!

Saffre & Halloy, 2005

One solution could be (loosely) based
on mimicking nest defence

• Contemporary networks are
like a termite mound…

• Pretty hard to break into by
probing at random…

• But permanently under repair
and/or undergoing
transformations.

• In short: there’s always a
weak spot!

Saffre & Halloy, 2005

“My LAN is my castle…”

• The problem with dynamic architectures is that they
can’t be efficiently protected by static fortifications.

• The rapid take-up of “plug-and-play” and wireless
access points has created a volatile situation,
sometimes referred to as “the disappearing
perimeter”.

Saffre & Halloy, 2005

The disappearing perimeter

Saffre & Halloy, 2005

“Once more, onto the breach…”

• How do termites react to a similar situation?
– Soldiers run to fill the gap.

– Workers seal the compromised area, protecting the deeper
chambers.

• This requires a way of (collectively):
– Detecting a breach in the outer wall.

– Building a new defensive layer to protect the “inner sanctum”.

Saffre & Halloy, 2005

In network security terms, that means:

• Detect abnormal activity
– Port-scanning

– Repeated (failed) log-in attempts

– Illegitimate requests from authenticated users/hosts

• Take actions to circumvent the intruder
– Update security stance of personal firewalls on exposed hosts

– Revoke legitimate privileges from misbehaving users

– …

Saffre & Halloy, 2005

Drawing inspiration isn’t copying

• Mobile agents (i.e. the most obvious analogy) aren’t a
suitable way of enforcing security in contemporary
networks.
– They are just too “heavy” and too slow…

• In clear:
– A “wall” = a host on the highest (“paranoid”) security stance.

– A “breach” = any unknown user/host, unusual traffic, forbidden
process…

– “Workers”, “soldiers” = non-existent!

Saffre & Halloy, 2005

ADDICT
Adaptive Defence for Dynamic ICT

• The best (only?) way to conduct in-depth intrusion detection and
response in a dynamic context is to consolidate host-based
monitoring data across the network.
– Combines the advantages of HIDS & NIDS (scalability + ”bird’s eye” view).

– Individual hosts share “pre-digested” information locally.

• Inhibitory signalling
– If you’re only interacting with identifiable, well-behaved and “happy” devices,

relax.

– If (some of) your neighbours are identifiable, well-behaved, but “worried”, be
suspicious…

– If (some of) the devices that you’re interacting with are unidentified and/or
misbehaving, be worried!

Saffre & Halloy, 2005

Definitions and model

• “Identified”: probably means that a “colony tag” (i.e.
collective, encrypted signature?) is needed.

• “Well-behaved”:
– runs (nothing but) authorised applications and up-to-date security

software…

– only makes requests that are appropriate for this “colony member”.

• “Beacon”: encapsulated identity/behaviour data +
alert status (sent periodically).

Saffre & Halloy, 2005

Definitions and model (2)

Misbehaving

Unidentified

Identified

Well-behaved

& "Worried" & "Happy"

() xxnN
N
xx

dt
dx n

i
i βα −







+−

−
= ∑

=1

1

Saffre & Halloy, 2005

Analytical solution - example 1
“all friends” scenario

α = 0.3, β = 0.05

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1

x

dx

Eqn. [3a]
Eqn. [3b]

Saffre & Halloy, 2005

Analytical solution - example 2
“one friend, one foe” scenario

• Already slightly more
difficult...

• Solution obeys:

()

() () 01
2

1

01

=−+
−

=

=−−=

yxyy
dt
dy

xyxx
dt
dx

βα

βα

()
() ()

α
αββαβα

α
β

2
1411

1
2 +−+−±−+

=

−
=

x

x
y

That is:

Saffre & Halloy, 2005

Application scenario: Wireless LAN

AP1 AP2
AP3

Firewall

Internet S0

S1

S2

S?

S3S3*

Protected
resources

Saffre & Halloy, 2005

Without ADDICT

• When unknown station S? attempts to connect to
access point AP2:
– It either succeeds (open system, null authentication) or fails

(shared key).

– In the first case, S? can at the very least free-ride on the
Internet.

– In neither case is S1’s behaviour modified by S?’s presence.

• When authenticated station S3 starts to
“misbehave” (→S3*):
– Nothing happens!

Saffre & Halloy, 2005

With ADDICT

• In essence, more room for flexibility…
– Even if S? is denied access to the WLAN, the attempt will

trigger an alert signal on AP2 and the warning will be passed
to S1.

– If S? is voluntarily granted access (e.g. AP2 is in an area
where legitimate visitors are common), you may still want to
temporarily build up the security settings on S1.

– In either case, the actions taken could prevent (in)voluntary
damage caused by the intrusion (eavesdropping, virus
infection, sniffing…)

Saffre & Halloy, 2005

With ADDICT (2)

• Dealing with S3→S3*
– Could be (e.g.) because S3, after successful authentication,

turns on a forbidden application.

– Shows up in the beacon signal.

– Even if S3* is impersonating S3 (stolen authorised ID), this
could expose the forgery.

– Again, it triggers an alert signal on AP3, which can propagate
through S0.

– Actions could involve (e.g.) neighbouring APs starting to use
stronger encryption/authentication.

Saffre & Halloy, 2005

The ADDICTed office

Infected node

Public area

Private area (red)

Private area (green & blue)

Intruder (red in blue)

High alert
(bright halo)

Low alert
(faint halo)

Self-Organised Service
Orchestration

Saffre & Halloy, 2005

“Alone in the world”

z

y

x
A

z x

y

Need for
service x

x

z

y

x

B

z
x

y

Installed
module xx

z

y

x

C

z

x

y

Saffre & Halloy, 2005

Ups and downs

• Highly robust to node or network failure.
• End user has total control.
• Need a lot of onboard power (good for hardware

manufacturers!).
• Need many copies of every application (good for

software manufacturers!).
• Need virtually no ICT infrastructure (not good for

service providers!).
• Amazing waste of resources (“99% idle time”

syndrome).

Saffre & Halloy, 2005

“Thin client”

A B

C
x

x

y

y
z z

y

x

D

z

x y

z

Need for
service x

x

Installed
module xx

Client-server
relationship

Saffre & Halloy, 2005

Ups and downs

• Extremely brittle (single point of failure!)

• Administrator has total control.

• Mixed picture for the hardware industry (need
powerful servers, but only low-end PC’s)

• Mixed picture for the software industry (depends on
license management).

• Mixed picture for ICT providers (network services are
paramount, but risk of bottlenecks and QoS
degradation).

Saffre & Halloy, 2005

“SelfService”

A B

C
x

x
x
y

y

y
z z

z

x y

z

Need for
service x

x

Installed
module x x

Service-specific
client-server
relationshipx

Saffre & Halloy, 2005

Ups and downs

• Intermediate robustness (no single point of failure,
but problems will tend to be “non-local”).

• End user is back in charge (decides what to install).

• Advantages to the hardware/software industry?

• Interesting model for sharing resources (i.e. P2P
utility computing).

• A clear step towards pervasive ICT and a great
opportunity for service providers, if we can deliver!

Saffre & Halloy, 2005

Why is that a challenge?

• The difficulty is of course to ensure adequate service
coverage, in terms of accessibility, reliability, latency
etc.

• This has to be achieved without central control or
planning, otherwise:
– It won’t scale.

– We’ll lose many of the benefits (in terms of agility and adaptability).

• In the IT community, there is a chronic lack of interest
for preliminary studies on system properties!

Saffre & Halloy, 2005

“SelfService”

• Objectives:
– To support reliable, fault-tolerant access to a sub-set of services,

handpicked by users on an individual basis.

– To reduce the need for installation/running of the corresponding
software modules on local devices used as access points.

– Without having to rely on dedicated servers.

• Underlying hypothesis:
There are unpredictable but consistent patterns of activity, which can
be used to select stable partnerships (e.g. “device X, hosting service
S1, is able to provide it to device Y for 80% of business hours”).

Saffre & Halloy, 2005

Experimental algorithm
START

(generate request)

Already
know

provider

Broadcast
request

Reply
received

Store
provider’s

address

Download
componentTargeted

request

Reply
received

Increment
delay

Delay
reached unacceptable

limit

“Forget”
provider EXIT

(Re-)examine
request

yes

yes Process or
send job

yes

yes

Saffre & Halloy, 2005

Locally maintained information

KnownProvider

ID score

KnownProvider

ID score

KnownProvider

ID score

Subsciption

Service

ID

QoS

value

requests

success

KnownProvider

ID score

KnownProvider

ID score

KnownProvider

ID score

Subsciption

Service

ID

QoS

value

requests

success

ServiceKnownProvider

ID score

KnownProvider

ID score

KnownProvider

ID score

Subsciption

ID

QoS

value

requests

success

Decision rules

Service

KnownProvider

ID score

KnownProvider

ID score

KnownProvider

ID score

Subsciption

ID

QoS

value

requests

success

Service

Saffre & Halloy, 2005

“Alone in the world” (benchmark)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000
Time-step

Fr
ac

tio
n

of
 r

eq
ui

re
d

m
od

ul
es

 in
st

al
le

d
lo

ca
lly

(a

ve
ra

ge
)

P = 0.1
P = 0.05
P = 0.2

Saffre & Halloy, 2005

Load balancing

1

10

100

1000

0 - 1 1 - 10 10 - 100 100 - 1000

Average delay

N
um

be
r o

f p
ee

rs
 (l

og
ar

ith
m

ic
 s

ca
le

)

1

10

100

1000

0 - 1 1 - 10 10 - 100 100 - 1000

Average delay

Nu
m

be
r o

f p
ee

rs
 (l

og
ar

ith
m

ic
 s

ca
le

)

Saffre & Halloy, 2005

Broadcasts & downloads (~bandwidth)

0%

25%

50%

75%

100%

0 200 400 600 800 1000

Time-step

Fr
ac

tio
n

(p
er

ce
nt

ag
e)

Broadcast requests

Locally installed components

Saffre & Halloy, 2005

Queue build-up

0

500

1000

1500

2000

S = 0 S = 0.5 S = 1

To
ta

l n
um

be
r o

f q
ue

ui
ng

 jo
bs

P = 0.2
P = 0.1

Saffre & Halloy, 2005

Sanity check

• These were all Monte Carlo simulation results.

• But there are also mathematical tools to help us
understand and predict:
– How such a system will evolve

– Whether it will reach steady-state

– How much time will be spent (statistically) in every possible
configuration

• Many of these tools tend to quickly become
intractable when complexity increases, but they can
still play a vital part in validating simulation.

Saffre & Halloy, 2005

Simplest case: 2 devices, 2 modules

• Rules:
– If device di has module j installed, then it will accept a request for

service sj with probability

Pij = 1/σi

where σi is the number of modules installed on device di.
– If di does not have module j installed, it will accept a request for

service sj with an arbitrarily fixed probability

Pij = q = 0.1
In this case di will have to change its configuration in order to provide
the service.

– Every time that a device doesn’t accept a request, it makes an
attempt at delegating it to the other.

Saffre & Halloy, 2005

Simplest case: 2 devices, 2 modules

• Rules (cont’d):
– If the request is accepted by the other device, then if the originator

has module j installed, it can choose to uninstall it and will do so with
probability

Rij = σi/m
where m is the number of participating devices (here m = 2).

• Finally, we make two assumptions:
– a request bounces back and forth until it is eventually accepted

– each device receives a similar number of request for each of the n =
2 services.

Saffre & Halloy, 2005

System states

• When m = n = 2, although there are 2mn = 16 possible
configurations, when taking symmetry into account,
one is left with only seven meaningful states:









00
00









00
01









00
11









01
01









10
01









01
11









11
11

• Given the local decision rules, it is possible to fully
predict the rate of transition between them.

Saffre & Halloy, 2005

Markov chain









00
11











0 0

0 0
 → 

1









00

01
→ 4/1









10
01

  ←
  →

8 /1

20 /1









10
11

←
→

3/1

22/1









11
11









01
01

 1/4

1/40

1/11

1/2

1/22

Saffre & Halloy, 2005

Markov chain

• Finding the invariant distribution, one can predict that
the system should be in









10
01 0.6875 of the time

0.275 of the time

0.0375 of the time









11
01









11
11

• By repeating the same procedure for other parameter
values (local rules) we can use the analytical solution
to verify that simulation results contain no artefact.

Saffre & Halloy, 2005

Back to Monte Carlo

• Validating numerical tools using analytical projections is
essential, as it is very easy to produce stable yet erroneous (or
biased) simulation code!

• Only when the correctness of the simulation engine is beyond
reasonable doubt can it be confidently used to produce results
independently from the mathematical framework…

• Which (unfortunately?) is made necessary by the fact that the
analytical approach doesn’t scale.

• For example, if for m = n = 3, there are still “only” 36 meaningful
states, for m = n = 4, there are already 317, and even identifying
them among the 2mn = 65536 possible configurations becomes
far from trivial!

Saffre & Halloy, 2005

Pervasive “SelfService”

• Mobile nodes (pda’s?).

• Regular, but
unpredictable, daily
activity cycles.

• Colour code = QoS.

• Size = number of modules
installed.

• Grey links = in range.

• White links = identified
opportunities for co-
operation.

Saffre & Halloy, 2005

It’s not all about software modules

• There is also the opportunity to fine-tune individual
machines’ “internal state” (i.e. differential allocation of
resources like storage, processing power etc.)

• Internal state can affect task-specific performance
(with a possibility of conflicts when the same machine
is expected to perform a variety of tasks).

• The same principles of self-organised differentiation
can be applied to maximise the collective efficiency of
a community of devices.

Saffre & Halloy, 2005

Collective differentiation

Saffre & Halloy, 2005

“SelfService”: an artificial ecosystem(?)

• Efficiency proportional to
level of specialisation.

• Job acceptance prob.
proportional to efficiency.

• Co-operation limited to
first neighbours.

• Colour code:
– QoS (nodes)

– Delegation success (links)

• Brightness:
– Frequency of delegation

Saffre & Halloy, 2005

Embryo

• Let us go back to the future and the full-blown “Adaptive Service
Ecosystem”, where network topology and service characteristics
are dynamic.

• Key features/properties:
– All components have some “intelligent” autonomic capabilities
– The relationships between them (esp. who is connected to whom in the

overlay) are in permanent turmoil
– Multiple (hopefully modular!) applications coexist within the same service

ecosystem
– Which modules make up which application is constantly revised: new

applications appear, others die out, new (old) modules are added to
(removed from) existing applications

– Demand is highly variable and requires “on-the-fly” reallocation of resources
– There is no common information repository and no control centre can cope

with the rate of change in the system

• Can we make it work and how?

Saffre & Halloy, 2005

Embryo’s ancestor: T-Man

• Gossip-based, self-organizing P2P network protocol developed
by Jelasity and Babaoglu.

• Nodes “find” and “migrate” to their target location in the system
by gradually refining their global knowledge through local
messaging, and by rewiring accordingly.

http://www.cs.unibo.it/pub/TR/UBLCS/2004/2004-07.pdf

Saffre & Halloy, 2005

So what else do we need?

• Basically, in T-Man, the target location of a node is defined by
some internal property (which could be a constant or a variable)
that doesn’t change as a function of the node’s neighbourhood.

• But what if a node’s objective transcends its internal state, and it
can adjust its own characteristics in its (selfish) pursuit of that
objective, so as to complement what its neighbours have to
offer?

• Then a node’s target location (equivalent to its objective) varies
over time, and since it’s a function of its neighbours’ and its own
internal properties, it can potentially be reached by rewiring, by
changing state or by a combination of both.

• This is the complex situation that Embryo is trying to deal with…

Saffre & Halloy, 2005

Why “Embryo”?

• Because it’s not unlike what’s happening during the
morphogenesis of multicellular organisms.

• It all starts with a handful of identical stem cells, which
progressively multiply, specialise and “migrate” (i.e. change
relative positions during development).

• Eventually, the process gives rise to a living being, whose
existence depends on highly specialised and interdependent
organs, each made of many cells belonging to various
differentiated types.

• And of course this extraordinarily complex orchestration all
happens in the absence of any conductor, through a
combination of local mechanisms ranging from cell adhesion to
cross-stimulation/inhibition.

Saffre & Halloy, 2005

What does it mean (in ICT terms)?

• An organism = a “service ecosystem”

• An organ = an application (involves multiple services)

• A cell type = a service (corresponds to a software module)

• A cell = a node (can be a physical device or a virtual entity)
providing a point of access to an application

• A group of neighbouring cells = an overlay network connecting
service instances

• Cell differentiation = instantiation of a particular service

• Cell migration = rewiring within the overlay

• Cell signalling = gossiping between neighbouring nodes

Saffre & Halloy, 2005

Embryo: some simulation results

Time until stable (N = 9)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 32 64 96 128 160 192 224 256 288 320 352 384 416

Population size

Ti
m

e
un

til
 s

ta
bl

e

Peak traffic (N = 9)

0

1000

2000

3000

4000

5000

6000

7000

0 32 64 96 128 160 192 224 256 288

Population size

P
ea

k
tr

af
fic

Successful handshakes (average per node, N = 9)

0

2

4

6

8

10

12

14

16

18

0 32 64 96 128 160 192 224 256 288

Population size

Ha
nd

sh
ak

es

Metamorphoses (average per node, N = 9)

0

1

2

3

4

5

6

0 32 64 96 128 160 192 224 256 288 320 352 384 416

Population size

M
et

am
or

ph
os

es

Saffre & Halloy, 2005

Embryo: some simulation results (2)

Time until stable (N = 17)

0

5000

10000

15000

20000

25000

0 32 64 96 128 160 192 224 256 288

Population size

Ti
m

e
un

til
 s

ta
bl

e

Peak traffic (N = 17)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 32 64 96 128 160 192 224 256 288

Population size

P
ea

k
tr

af
fic

Successful handshakes (average per node, N = 17)

0

10

20

30

40

50

60

0 32 64 96 128 160 192 224 256 288

Population size

Ha
nd

sh
ak

es

Metamorphoses (average per node, N = 17)

0

2

4

6

8

10

12

14

0 32 64 96 128 160 192 224 256 288

Population size

M
et

am
or

ph
os

es

Saffre & Halloy, 2005

Embryo demo

Saffre & Halloy, 2005

Conclusions

• The borders between:
– Autonomic computing/communication

– Networking and services

– Pervasive computing

– Resource sharing

– Software design and engineering

are fading rapidly…

• Because they all share the same problem: less
control, increased complexity, poor understanding of
artificial systems emergent properties.

Saffre & Halloy, 2005

Conclusions (2)

• The corresponding industries have increasingly
overlapping markets with, e.g., Telcos and IT
companies now competing to provide ICT services.

• The race is on, and whoever can demonstrate that
they’ve “cracked the complexity nut” in practice will
have a decisive advantage.

• Because they will be able to offer new ICT solutions
that are predictably and reliably efficient in the
unpredictable and unreliable world of the “network
economy”.

Saffre & Halloy, 2005

Publicity time…

• 1st International Conference on Autonomic Computing (ICAC):
New York, USA - May 2004

• 2nd ICAC: Seattle, USA - June 2005
• 3rd ICAC: Dublin, EU - June 2006… be there!

www.autonomic-conference.org
• Autonomic Communication Forum (ACF)
• Federates the majority of European academics and industrialists

active in the field of autonomic ICT
www.autonomic-communication.org

• Should you wish to keep track of our work over the next 3 years,
the CASCADAS project website is a good place to start

http://netmob.unitn.it/cascadas/

http://www.autonomic-conference.org/
http://www.autonomic-communication.org/
http://netmob.unitn.it/cascadas/

	Part 2: nature-inspired design for artificial systems
	Plan of the presentation
	Introduction
	What is this all about?
	Take-away message
	Expected benefits
	Practical applications
	Autonomic principles
	Self-organisation
	Key tasks/milestones
	Why we (the Telcos) care about AC
	Complex(?) networks
	Are today’s networks complex?
	Allow me to explain…
	But more importantly…
	Example: random sequential
	Example: preferential sequential
	Result:
	Will tomorrow’s networks be complex?
	Swarm-based IDS
	Intrusion Detection and Response
	One solution could be (loosely) based on mimicking nest defence
	“My LAN is my castle…”
	The disappearing perimeter
	“Once more, onto the breach…”
	In network security terms, that means:
	Drawing inspiration isn’t copying
	ADDICT Adaptive Defence for Dynamic ICT
	Definitions and model
	Definitions and model (2)
	Analytical solution - example 1 “all friends” scenario
	Analytical solution - example 2 “one friend, one foe” scenario
	Application scenario: Wireless LAN
	Without ADDICT
	With ADDICT
	With ADDICT (2)
	The ADDICTed office
	Self-Organised Service Orchestration
	“Alone in the world”
	Ups and downs
	“Thin client”
	Ups and downs
	“SelfService”
	Ups and downs
	Why is that a challenge?
	“SelfService”
	Experimental algorithm
	Locally maintained information
	“Alone in the world” (benchmark)
	Load balancing
	Broadcasts & downloads (~bandwidth)
	Queue build-up
	Sanity check
	Simplest case: 2 devices, 2 modules
	Simplest case: 2 devices, 2 modules
	System states
	Markov chain
	Markov chain
	Back to Monte Carlo
	Pervasive “SelfService”
	It’s not all about software modules
	Collective differentiation
	“SelfService”: an artificial ecosystem(?)
	Embryo
	Embryo’s ancestor: T-Man
	So what else do we need?
	Why “Embryo”?
	What does it mean (in ICT terms)?
	Embryo: some simulation results
	Embryo: some simulation results (2)
	Embryo demo
	Conclusions
	Conclusions (2)
	Publicity time…

