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ABSTRACT

We establish some new refutation completeness results for sets
of rewrite rules in conjunction with resclution and paramodulation.
All results of this paper deal with the case when none of the
equationg of an equality unsatisfiable set occur in pon-unit
clauses. When the set of reductions is complete we show that
blocked resclution and immediate narrowing are refutation complets.
We also show that special paramodulation, which is paramodulation
into positions which are not variables, and resolution are
refutation complete., Finally, we show that, in.the presence of a
suitzble complexity measure, derived reduction is refutation
complete, In addition, we draw a coﬂnection between complexity
measures and decision procedures for elementary algebra. We also
indicate applications of these theoretical results to human-

oriented systems of natural deduction.



1. INTRODUCTION

Our primary purpose in this paper is to combine certain
algorithms which often decide the word problem for arbitrary
abstract algebras with the rsfutation procedures resolution (14)
and paramodulation (13) in a refutationally complete mannsr. Our

point of departure is from s class of decision procedures called
complete sets of reductions which were discoversd by Knuth and
Bendix (10) and independently by Slagle (17) who calls them sets

of simplifiers. The central idea behind complete sets of reductions
ia that equations which axiomatize an algebra are often used in one

permanently fixed direction for simplification.

For example, the axioms of & semigroup with unit

(x*y3)e2z=x+(y*z)
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constitute a solution of the word problem for semigroups with no
generators and no relations as follows., If the axloms are used for
simplification from left to right,then t == u is a consequence .
of the axioms 1.1 -~ 1.3 iff t* and wu' are identical terms,
where t' and u' are the result of simplifying ¢t and u as
far 2s possible, e.g., (1 *x) * (y * 1) = (x * y) * 1 because

x +y and x + y are identical terms, while (x - y) » 2z ;E



(x + y) « (w=+1) because x * (y * z) and x ¢ (y « w} are not

identical terms.

For the heuristic of unidirectional substitution of equals to
be useful,there must be availeble some powerful and general methods
for detecting when an algsbraic theory can be realized by a
complete set of reductions. Knuth and Bemdix (10) provide such a
method which consists of two algorithms: a finite termination
property and a unique terminmation property. Their finite termination
property is a complexity measure on terms which often determines
when a set of unidirectional rewrite rules always leads to a finite
sequence of simplifications, while their unique termimation
property is & necessary and sufficient criterion based on
unification (i) for a set of rewrite rules which necessarily have
the finite termination property to have the Church-Rosser property,
consult Rosen (15). Their method has been enlarged through the
discovery of other complexity measures by Lankford (11). It is not
presently known if there is an algorithm which decldes unique
termination for sets of rewrite rulss which do not necessarily have
finite termination or if there is an algorithm which decides

finite termination.

The unique termination property was originally stated by Knuth
and Bendix (10) in terms of a concept they called superposition,

which we rephrase using the notion of most general unifiler below.



te¢ R = {L;, ~>R, ... , L, —>R_} De a finite set of
rewrite rules, whers L; and R1 are terms. A special equality
inference of R iz an equation % = u which is obtained from
two rewrites Ly —» Ri and Lj o Rj of 61 by replacing

one occurrence of Ly in the left side of Lje = st by RO
where € is the most general unifier of L; and a subterm of Ly

which is not 2 varisbls.

1.4 The Unigue Termination Alg@rithm If R is a set of rewrite

rules such that each sequence of simplifications by (R s finite,
then GQ has the unique termination property ifl each special
equality inference t = u of 6{ has the property that t and

u  simplify to identical terms.

For a proof of l.4 consult Knuth and Bendix (10). To illustrate
the unique termination algorithm, let us-establish the unique
termination of the semigroup axioms l.1l - 1l.3. For the moment let
‘us assume that the rewrite rules
(x+y) s z~>x-(y-2)

X e 1l —>»x, and
1 o X eweiie X

have the finite termination property. Some of the special equality
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inferences of 1.5 - 1.7 are (for brevity we do not show all)

8 (wel(xey))vz=(w+x)+(y+2z) bylsandl.5,
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X = x by l.6 and 1.6 (or 1.7 and 1.7},
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yez=1c¢{y*2) byl.7and 1.5,
x+2 =x¢(Le+z) by l.6and 1.5, and
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A2 X ey =x -+ (y + 1) by l.6 and 1.5.

——

0f course the actual forms of the special equality inferences

frob

depend upon the formal language used and upon the unification
algorithm, When each of the above is simplified as far as
possible by the rewrite rules 1.5 ~ 1.7 (applied in whatever order
one wishes) the corresponding sides of the equations become
identical, namely x *» (y » (2 - W))), ¥y * 2, x « 2, and x « ¥
(both sides of 1.9 are slready identical).

The simplicity of the sclution of the unique termination
problem which is evident from the preceding discussion stands in
sharp contrast to the present state of affairs for the finite
termination problem. The partial solutions which have been
arrived at by Knuth and Bendix (10) and Lankford (11) do not seem
to have been obtained through a deep understanding of the problem.
For example, the family of complexity measures of Knuth and Bendix (10)
is based primarily on the fact that if t 4is a term and n3(t) is
the number of occurrences of function symbols of degree 1 in ¢
then

1.13 ng(t) = 1 + np(t) + 2n5(t) + «os + (J - l)nJ(t) S

Desplte its obscure origin, their family of complexity measures
handles any associative axiom when expressed as f{f{x,y),z) —>

£(x,f(y,2)) , many axioms which decrease length, and certain



coamplexity measures of thelr family handle axioms which increase

length, such as (x -« y)'l — (y1) - (x“l) .

Briefly, their complexity measures are defined in the usual

manner, with a countable number of variable symbols vy, Vi, Vs see

and a finite number of function symbols fy, ... , f of degrees

dy, ees 4 dy. Constants are function symbols of degree O . Terms
are variables, constants, or {recursively) expressions fi(tl,...,tdi)
where ty, ... , and tdi are terms. Associated with each function
symbol f3 1is 2 non-negative integer w; called the weight of fy.
The weights of functions satisfy two additional properties:
1.14 (1) each constant has positive weight, and .

(2} each function symbol of degree ' 1 - has pesitive weight,

with the possible exception of the last function £, .

N
The weight of a term t is defined as

1.15 wit) = mzn(vj,t) + Z wea(fy,t)

where n(vj,t) is the number of occurrences of vy in t, n(fy,t)

is the numbser of occurrences of fk in t , and MIN is the minimmm

of the weights of the constants. An order relation > 1is defined

on terms by

1.16 t > u iff either (1) w(t) > w(u) and n(vy,t) = n(vy,u)
for all i, or (2} w(t) = w(u) and n(vy,t) =

3

n(vi,u) for all i, and either t = felee o (S(vg))ens)

u o= Vj where dN — l’ or t — fJ(tl’.."tdj)’



n = rk(ul,...,udk) and either (2a) 3} > k or
() j = k and Y= Uy 2ee s and bt > u,
for seme¢ n , 1< n§d3 .
By 1.13 and l.1l4 it follows that > 1is a well-ordering on terms
without variable symbols and it is also shown by Knuth and Bendix (10)
that if ¢ > u then t& > ué for any substitution & . It
follows at once that if 02 is a set of rewrite rules for which
each rewrite L ~—3 R satisfies L > R then (R has the finite
termination property. The finite termination of the axions of &
semigroup 1.5 - 1.7 is now easily settled by letting 1 and -

have weight 1 .

A striking feature of the approach of Knuth and Bendix (10)
is that if a set of rewrite rules does not have the unique termination
property then the uniqueness algorithm l.4 forms the basis of an
algorithm which often extends the incomplets set to a complete set.
In order to describe this extension algorithm, we first define a

simplification algorithm, denoted * , to be any algorithm which,

given a set of rewrite rules (R with the finite termination
property and an expression t , produces a corresponding expreasion
t* which cannot be further simplified by the rewrites of R . As
and example of a simplification algorithm, consider the set of
rewrite rules 6{ as an ordered set, that is a sequence, and
assume that the subexpressions of an expression t are ordered by

depth first, and when at the same depth by left-most position.



Given the ordering of {R and the ordering of subexpressions, let

% be the algorithm which simplifies an expression % by taking

the rules of (R in order and attempting to simplify the subexpressions
of t 1in order, beginning with the deepest subexpression. When a
simplification is msde, % recycles through @. » again beginning
with the deepest subexpression of the simplified expression. With

a given rewrite of R » ¥ must fail to simplify every subexpression
before going on to the next rewrite of . with one simplification
algorithm in mind it is clear that by changing the order of @ or

the ordering on subexpressions other simplification algorithms can

be defined.

1.17 The Knuth end Bendix Extension Algorithm Lst > bhe 2

complexit.yv measure defined by 1.16, let (R be a set of rewrite
rules such that each member L —>» R of R satisfies L > R 3
and let ¥ be any simplification algorithm.
(1) set i=0, R; =R .
(2) Let £ be the set of all special equality inferences
of Ri’
(3) Let E® be the equations of £ which have been
completely simplified by * using &i‘
(4) Let (5%)' ve £% minus all equations of the form t = t.
(5) If each equation t = u of (Ef)! does not satisfy one

of L >»u or u >t then terminate, otherwise let



(6)

(7)

(8)

(9)

(10)

(11)
(12)

(E€%)* be the set of rewrite rules obtained fram (&™)
using the complexity measure 2 . |
Set } = O, zfj s &iU @; where Jj is a
sequence of rewrites, k = the number of members of 4s
and a = l.

Select the first member L ~—> R of of | and form the
equation 1¥ = R¥ where * uses a& - {L ~—-—>R}
for simplification.

If both L and R were already completely simplified,
l.e., if L*= L and R* = R, then let JJ.HL ve
J modified with the first rewrite placed last, set
a= a+l, and set J = j +1 , otherwise go to (10).
If a > k , set (Rid'l: 3+l,set i=1i+1,
and go to {2), otherw se go to (7).

1z L¥ and R® are identical then set 3+ 1 =
Jj- {L——QR} s 88t § = 34+ 1, set k= k-1,
and go to (7). "

I L* ancd R* are » -incomparable then terminate.
Now L¥ and R® must be > -comparable, i.e., L > R*
or R > 1¥. Let t —> u be the rewrite that
results from the equation ¥ = r* s let Jj +1

(ejj -{L —-—-}R} y U {t-—-—-—?u} where t —>u is
the last rewrite in the ordered set JJ + 10 8et §=

J+1, set a =1, and go to (7).



One should notice that this algorithm terminates at G{T only
in case either GQT is a complete set of reductions, or one of the
gimplified .special equality inferences of GQT is »-incomparable,
or a » -incomparable equation is generated when eliminating
iredundancies® in 1.17 (7) - (12). The extension algorithm is
amply illustrated with examples by Knuth and Bendix (10), including
& derivation of a complete set of reductions for groups with no
generators and no relations. Beginning with a minimal axiom set for
groups,

1.18 x o 1 e x,

1.19 x » (x}) —> 1, and

1,20 (xoy) * z=>x+ (v + 2},

an implementation of their algorithm produced the following seven
edditional rewrite rules in 30 seconds:

1.2 1 ° x —> X,

.22 (1) *x —>1,

1.23 1t —3 1,

2 (x71)t -5 x,

25 (x - 3t —> (D) - (D),

1.26 x o ((x‘l) *y) —> y, and

| e

|

A

|

1,27 (x1) « (x+ y) —> y.

For the complexity measure 7» , + and ~1 were given weight O

and the constant 1 was given weight 1 .
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Because of this and their other examples,one is impressed with

the power and efficlency of their approach. For example, in the
above process of extending to a decision procedure for groups,their

program has established as a byproduct a number of theorems about
elementary group theory which in the past have been found difficult

for other theorem provers. The major difficulty with their

approach is that given an initial set of axioms,there is at
present no perscription for selecting a complexity measure which
will lead to a set with unigque termination. For example, in
retrospect it can be seen that a complexity measure which will
derive 1.18 - 1.27 must give the function -~1 weight O ; otherwise,
1.25 will fail to satisfy (x - y)"a';> (%) ¢« (x~1) . But the
selection of this weight is anything but obwvious from inspecticn
of the initial set 1,18 -~ 1,20, which any assignment of weights
will establish. The family of complexity measures of Lankford (11)
also suffers a similar defect. Thus an important question is:

does there exist an algorithm which, given an axiom set and a
family of complexity measures, determines whether or not one or
more of the family can establish uniqueness? Another disadvantage
~of the Knuth and Bendix family defined by 1.16 is that although
the distributive rewrite x « (y+ 2z) —> (x » y) + (x + z)

has finite termination, none of their family will detect this fact.

The family of complexity measures of Lankford (11} contains

members which insure the finite termination of these distributive
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rewrites. Let us briefly summarize his approach below. Recall the
term structure of the first order predicate calculus. For each
finction symbol fl’ sen fN let Fl‘ cow g FN be functions
from the positive integers to the positive integers such that
1.28 (1) the degree of each F;j is the same as the degree of the
corresponding fi N

{2) Fi(xl,...,xj,...,xdi) < Fi(xl,...,y,...,xdi) when %, < ¥,
and let |{+]| be the function defined on all terms by

(3) H vy ﬂ is some fixed positive integer for all 1 ,

(4) Hfl“ = F;, when f. is a constant, and

(5) ”fi(tl’“"tdi)“ = Fi( ut‘lu ooy “t’di” ) -
It has been shown by Lankford (11) that if { 4s a set of rewrite
rules and LB > |[R6I] for all substitutions & and all

I —3 R in R then (R has the finite termination property.

A complexity measure is determined by specifying Fl*"'#f}g
satisfying 1.28 (1) and (2}, selecting a positive integer for 1.28(3)
which determines |||l » and defining
1.29 ¢ > u iff fleefl > IIuQﬂ for all substitutions & ,
The primary defect with this approach is that the selection of the

Fs

and the fixed constant for 1.28 (3) must presently be made by
trial and error. To illustrate this approach, notice that F*(x,y) =
x(1+2y) , F_(x) = x2, Fy =2, and [[vifl = 2 detect the

finite termination of the ten group rewrites 1.18 - 1.27.
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Another difficulty is that we know of no algorithmic test for
the complexity measures defined by 1.29. However, when the Fy are
polynomials a weaker version of 1.29 can be rezlized by any decisien
procedure for elementary algebra, such as those of Tarski (18),

Seidenberg (16), Cohen (4), and Collins (5), as we show below. Let

5 be the sentence. -

1.30 Fr¥x ... Vxn(xl> r A A x> t—’$’”tu > “u})
‘where 727{ and Uuﬁ are obtained by replacing l(vilﬂ .
PR f{ 1n!‘ in  Jelf and Jull by X)p ene 5 Xp (the vij
are the variable symbols that occur in t and u ). For the
sentences S5 to faithfully capture 1.29, they mnst be considered

to be sentences interprsted over the integera.f Unfortunately, methods
used by Davis (6} to show the algorithmic unsolvability of Hilbert's
tenth problem can be used to show that there is no algorithm to
decide sentences of the form of 1.30.1 5tili, a

weaker realization of 1.29 can be obtained by considering S to be

a sentence of slementary algebra. In that case the complexity
measure defined by .

1.3 ¢t > u iff 8 1is trus, where § is defined by 1.30,

is realized by any decision method for elementary algebra. Collins (5)
has reported that an implementation of his decision method will soon
be available. We do not know of any implementations of the other
decision methods for elementary slgebra,

1. A proof of this fact was given by Martin Davis at the QOberwolfach

conference on automatic theorem proving on January 7, 1976, and
will be included in a revision of this paper.



As has been said, our primary concern in this paper is to
combine complete sets of reductions with the refutation procedures
resolution and paramodulation refutationally complete manner. Our
approach is straightforward and is based on the simple idea to
perform ordinary inferences followed by simplification of the
ordinary inferences ag far as possible, discarding the partially
simplified intermediate steps and saving only the final completely
. simplified expression. To illustrate this approach let us establish
a fragment of a proof of a theorem found in Herstein (7) that H

is a subgroup of G iff H is not empty and for each x and y
in H, x - {(y1) € H. Let us establish just one part of the
above by showing

1.32 ¢ € H, and

133 x € H Ay e H =>» x* (y1) e H

imply

1.3, 1 € H .

We assume the presence of the complete set of reductions for groups,
given earlier in 1.18 -~ 1.27. For this example modus ponens is
used to illustrate the natural appearance of canonlcal inference.

By modus ponens with 1.32 and 1,33 the ordinary inference

135 ¢ - (c'l) € H

is inferred. When 1.35 is simplified as far as possible, 1.3}

results. It is easy to see how the other parts would be established,



This paper also deals with sets of rewrite rules which do not
have the unique termination property. That such sets exist naturally
is a consequence of the unsolvability of word problems. Moreover,
there is no algorithm which will decide from the axdoms of an
algebra whether or not its word problem is seolvable, nor is there
a partial algorithm which solves the word problem Just for those
algebras with a solvable word problem, consult Jones (9). In view
of these negative results,it would seem that the best use of
rewrite rules is while searching for a refutation or preof to
simultaneously use the Knuth and Bendix extension algorithm to
attempt to find a complete set of reductions. The derived rsduction
algorithm below does just that. Essentially:we have tsken 1.17, -
and when it would normally terminate with a > -incomparable
equation or be unusable with an initial axiom which is »-incomparable,

we have continued to form inferences using special paramodulation,

which is defined to be ordinary paramodulation with the restriction
that substitution into variable positions is not permitted, and

special substitution of equals, which is defined to be paramodulation

between a rewrite rule and an equation where substitution into a
variable position is not sllowed, only left sides of rewrite rules
are substituted into by an equation, and only left sides of rewrite
rules are replaced by right sides when rewrite rules are paramodulated

into equations.
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1.36 The Derived Reduction Algorithm Let > be a complexity
measure defined by 1.16 or 1.29, and let of be a finite equality

unsatisfiable set of clauses which contains the trivial reflexive
axiom x == x and such that no equation occurs in a non-unit
clause.
(1) Set i = 0, let @'i be the egquations of cﬁg which
can be expressed as rewrites by the complexity mesasure > ,
let £ ; be the remainder of the equations, and let o 4
be the remainder of ef -
(2) By an obvious modification of 1.17 (7) -~ (12) we may
agssume &i and Ei to be such that equations of E‘i
cannot be further simplified by 6{ and that no rewrite

i
L ey R of Qi can be further simplified by

Ry - {r —>r} .
(3) Reset Ji to Ji* , where 3 uses 5?.3_ .
(4) Porm all the resolvents R , all the special equality
inferences I , all the special paramodulants P , and
all the gspecial substitution of equalz;x s , and from
™y Py s® put a1l the > -comparable equations as
rewrites into (R , and all the 7» -incomparable
equations into £ . Set &1_). 1= ﬁlu& s
E vl ™ aiUE , Ji+1=Jan"“ , i=di41,

and go to (2).



16

We will presently show that [J € GJL for some k . Refutation
completeness of 1.36 holds in two interesting degenerate cases:
(1) when 5{0 is a complete set of reductions and ELO is empty,
and (2) when there is no complexity measure 3> . A less general
form of the first degenerate case has been reported by Slagle (17)
where he assumss that the input set t& is fully narrowed. The
second degenerate case sheds some light on the functional reflexive
problem (13). In fact for the general case of 1.36,the functional
reflexive axioms are not needed. HRacently several ressarchers have
announced that special paramodulation is refutation complete
without the functional reflexive axioms. However, this writer has
been unable to extend the degenerate case above to the case when
equations occur in non-unit clauses, and he is presently unsure of
the status of the announced solutions.. Am algorithm similar .
to 1.36 has also been reported by Winker (19). An implementation
of special paramodulation has been used by Nevins (12) with some
impressive successes. A partial implementation of 1.36 by
Ballantyne and Lankford in LISP at The University of Texas at Austin
substantially improved an example of Nevins (12) that in a group
x> =1 implies h(h(x,y),y) = 1 where h(x,y) = xyx-ly-l.
Nevins'! program took 30 minutes and terminated with a
search space of 415 formulas, while Ballantyne and

Lankford's program took 30 seconds and terminated with a

search space of 11 formulas.

1. See Resolution and Equality in Theorem Proving, by D. Brand, Dept.
of Comp. Sci., Tech. Report # 58, Univ. of Toronto, Nov. 1973, and

A Note On The Functional Reflexive Problem, M. Richter, Insbesondere
Informatic, Technische Hochschule, Aachen, West Germany.
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' 2. _CANONICAL "INFERENCE

The terms of the first order logic are constructed in the usual manner

from variable, constant, and function symbols. A set of reduction relations

iz a finite set of oblects TL—>R whers [ and R are terms and each
variable symbol which occurs in H®H also occurs in L . Each set of reduction
relations 61 is associated with a corresponding set of equations E({]) by
identifying each reduction relation L—>R with the equation L =R . Tha

term u is an immediate reduction of the term % , denoted t—>u , in case

for some substitution © s U 1is the result of replacing one occurrence of

L& in t. by RE . A set of reduction relations has the finite termination

prorerty in case for any term t each sequence t —> tI—H—a-tz—-%> ese OFf
immediate reductions originating with t terminates after a finlte number of
steps; that is, some term %, of the saquence above has no immediate

reductions., A set of reductions is a set of reduction relations with the

finite termination property. A set of reduction relations has the unigue

termination property in case for each term t , any two terminating sequences

of lmmediate reductlonas originating with t terminate .with identical terms.
A set of reductions with the unique termination property is called a complste

set of reductions, which is somewhat more gensral than the complete set of

reductions discussed by Knuth and Bendix (10) and essentially the same as a
set of simplifiers described by Slagle (17). Let &l be a complete set of
reductions and let » be any algorithm which associates with each verm %

the corresponding term t* such that t% is the last term in a (necessarily
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terminating) sequence of immediate reductions originating with t . When t
has no immediate reductions, t* is t . Ve call such terms ' irreducible

with respect %o &i » and omit reference to Gi when ambiguwity is unlikely.

It may sometimes be convenient to use > to denote a finite (zero or mors)
sequence of immediate reductions. The operator # and the relation —>
are extended to predicates, literals, clauses, and sets of clauses in the

obvious manner.

while familiarity with the investigations of Knuth and Bendix (10},
Lankford (11), snd Slagle (17) would be helpful, we have attempted to
ineclude the pertinent background. We do assume a thorough knowledge of
the basic results about resclution and paramcodulation, and especially
the excess literal method of Anderson and Bledsoe (1). Our approach to
astab%ishing 1.36 is to establish the two degenerate cases first. We

begin with an extension of some results reported by Slagle (17).
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2.1. BLOCKED RESQLUTION

It might be hoped that complete sets of reductions could be combined
directly with resolution; that is, we might conjecture that if § 4is a set of
clauses that congains no equétions and S.L} E(®R) is equalitybunsétisfiable,then
st U {x= x}} is unsatisfiable. But let 0L be {f{g(x,y)}—-;-g(f(x),f(y)i}
and let S be {{P(f(x))},{1P(g(f(a),f(b))}} and notice that § is
irreducible and satisfiable in the presence of x = x , While the general
conjecture fails, we shall see in Theorem 1 that the corresponding ground
conjecture holds. Of course, the counter-example above shows that the ground
result cannot be 1lifted in the usual way. Indeed, examination of this lifting
failure will guide us to one solution for the general case. As a necessgary
preliminary, we first establish the following property of equality-unsatisfiable

sets of ground unit clauses,

lemma 1 If S is a set of ground unit clauses which is closed under
paramodulation, contains no complementary pairs, and contains no inequality

of the form t # t, then § has an equality model.

Proof let T be S together with all ground unit equations of the
form t =1t where + 1is any ground term over the Herbrand base of 5 .
Let P{T) be the closure of T under paramodulation. It is clear that P(T)
has no complementary pair or inegquality of the form ¢ #t. Let I be tne

partial interpretation which consists of the positive literals of P(T) ,
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and let M be the interpretation obtained by esdding to I every negative
ground literal over the Herbrand base of 3 which is not a complement of a
member of I . This "most negative interpretation device was a prominent
feature of the maximal model construction of Wos and Robinson (20) which
was used to establish the refutation completensss of paramodulation for
equality unsatisfiable sets which contain the functional reflexive axioms.

It now easily follows that M is an equality model of S .

Theorem 1 If ® is a complete set of reductions, S 1is a set of
ground clauses which contain no egquations, and § U s(Ry is eguality-
ungatisfiable then there 1s a deduction of [:] from S* L}'{{? = x}} using

rasolution.

Proof We induct on the excess literal parameter of § . Throughout, let

us depict that R is a resolvent of C and D by the diagram

\ /

and that P is a paramodulant of € by E , where E is the equation of

substitution, by the diagram

£ ==>

e 3

Y

Becavse of Lemma 1, there must be a complementary vair or an inequality of the
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form t # t wnich is derivable from S and a finite set of ground instances
ARy of E(R) , when S consists entirely of units. Thus, in the unit

case it can be seen that there exists a refutation of D which has one of

twe forms:

where € and D are members of 8 and the equations t’i = ug and vj = “j
are inferred from the ground instances EB(R)' , or
t, = Uy =V I w
Vl # Wl =
tn = uy, ::?*vn_1 LAY

where v # w is a member of S5 and the equations t©, = u, are inferred fronm
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the ground squations E(® )}' . Let us consider the second form first. It is
clear that v=1t and w=1t are consequences of E(®) , and since it has
been showm by Knuth and Bendix (LO) that the = \ algorithm is a canonical
simplification algorithm for B(é{), it follows that v* and t* are
identical and that w° and t° are identical; henca tnat v and #' are
identical. So in this case it follows that S° contains the inequality

v # v s and hence [:] ig derived by resolving with x= x , For the
sacond form we extend the approach used above in the first form. Hscall that
any literal has the form X(xl,...,xk} or '}X(xi,¢oo,Xk) whers X is a
predicate symbol and the x; , 1=1, ... , k, are termns, Consequently,ws
can represent C , D, P, , and Q, by jxc(cl,..,,ck} s jxn(dl,...,dk) »
foh(pl”"lpk) s and fXQm(ql"'*’qk) » It is clear that the equations

€y = P; s i=1, «¢s , k, and the equations 9; = di s i=1, 4.0 5 kg
are consequences of E(®) and that p; and 93 s 151, eny k , are
identieal. It follows that ;" and 4" ,i=1, ... , k , are identical.
In this case we see that C* and D* are complements. This completes tha
proof of the unit case. The induction step is routine, and so is not presentead

here. ~

Tha direet lifting of this result falls primarily because an instance of
an irreducible clause may fail to be irreducible. Therefore, in order for
the usual lifting lemra to apply, we must first develop a procedure which
given any clause C and any instance (' of C , transforms ¢ 1into a

clause D which has ©'* as an instance. This can be easily done by
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treating the reductions as equations and allowing paramsdulation onto subterms
which are not variables by the left sides of the reductions, followed by
raduction of the resulting paramodulant to irreducible form. This kind of

restricted paramodulation is called immediaste narrowing by Slagle (12).

Our discussion is more general here since he considers only sets of reductions
which produce only finite sequences of immediate narrowings originating from
any term t . For example, any complets set of reductions which contains an
associative reduction f(£{x,y),;2) —>£(x,f(y,2)) will produce the infinite
sequence of immediate narrowings f£(%4,%) , f(xl,f(xg,x3)) s ovs 3
f(xl,f(xe,...f(xn~l,xn)...)) s »e» s A narrowing is a finite sequence of
immediate narrowings. The following lemma was stated without proof by

Slagle (17).

Lemma 2 If 6{ is a complete sst of reductions, C 1s a clause, and
C* 1is an instance of C then there is a narrowing CN of G

which has (C')}* as an instance.

Proof Let & be the substitution which takes C. to C' , and let Ct!
be the substitution instance of C under &% s Whare 6% is the substitution
which results from © by applying # to each term of each substitution
component of © , It can be seen that C!'!' is also the result of applying
2 finite seguence of immediate reductions to €' , and as such can be thought
of as an intermediate step in the construction of (ct)y* . If Cr'v o ois

irreducible then we are dons, If OC'' is not irreducible then lei
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HE Cl be an immediate reduction of C!'* ., Since C'!' is an instance

of C under an irreducible substitution, the reduction which takes C'*' to
€y, must apply to a subterm of C'! which does not correspond to the position
of a variasble in ¢ . Thus thers is a paramodulant of € which has Cl as
an instance, which we denote by P . Let C,' be the partial reduction of

Cl which is obtained by the corresponding sequence of reductions which takes
P to P . It can be seen that the irnediate narrowing v of C has Cl‘
as an instance under an irreducible substitution. As this process is iterated,
we succesively produce ground clauses Ci' which are instances of narrowings

6f € and which are also intermediate steps in the production of (C')* s

Because of finite termipation, (C')% must eventually be one of the cy' .

Once the appropriate narrowings of a set of clauses ars foundyths ground
refutation can bes lifted in the usual way without further need of narrowing.
In fact, since the ground refutation is irreducible at each step, thes lifted
refutation will bs such that all resolvents ars irresducible, and in addition
each most general unifier is irreducible. Slagle (17) has callad this kind

of deduction blocked resolution . These facts are summarized below,

Theorer 2 If (R is a complete sed of reductions, 8 4s a set of
clauses which comtains x = x and no other eguations, and S U ER®R)Y is
equality-unsatisfiable then there exists a finite set of narrowings SN

of § from which the empty clause can be refuted by blocked

resolution and blocked factoring.
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Theorem 2 now forms the basis for a refutation complete
algorithm for equality unsatisfiable sets Qi which contain no
occurrences of equations other than units and for which the set of
equations E(u(f ) of q(f are consequences of some complete set of
reductions 6{ .

2.1 (1) set QJO = OJ* , from which we may assume all tautologies
have been deleted.

(2) Form all blocked resolvents (B of rj k and all immediate

narrowings ?7 of G{ .

(3) Set Jk-&l: JRU (BUT[ and return to step (2).
To illustrate this algorithm let us return to the subgroup problem
of 1.32 -~ 1.34. Again we assume the presence of the complete set

of reductions for groups. Following 2.1, J o consists of

Ry

2 ¢ € H,
xéHV #H . (1
y Vvxee(y*) eH, and

1 4n.

The only blocled resclvents of J o are

|

&
)
s}

£

25 ydHver(yl) €H by2.2and 23, and
2.6 x ¢ H Vx* (™) €H by22and 2.3,
Some of the immediate narrowings of J o are

2.7 x ¢ HV1e€H byld9and 2.3,

x1d H V1 €H by 1.22 and 2.3, and

A2
ow

L

2-

o

xéHVy'l¢ HV x*y &€ H by 1.24 and 2.3.

On the second round 1 € H 1is produced by block resolving 2.2

and 2.7, so that [J is produced on the third round.
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Notice that since blocked resclution with narrowing is complete,
ordinary resclution followed by simplification (with narrowing)
is complete. Thus the refutation completeness of 1.36, derived
reduction, in the degenerate case when dQO of 1.36 (1) is a
complete gset of reductions,is a corollary of the refutation

completeness of blocked resolution.
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2.2 SPECIAL PARAMODULATION

In this section we establish the refutation completeness of
1.36, the derived reduction algorithm, in the degenerate case when
there is no complexity measure. Here we modify the appreach used
to establish the refutation completeness of blocked resolution.

The basic idea of this section is to take the equations of a finite
equality unsatisfiable set of ground instances of a general finite
equality unsatisfiable sat, extend these ground equations to a
complets set of reductions, use Theorem 1 to get a ground refutation,

and with an analog of Lemma 2 1lift the ground result.

Lemma 3 If G{ is a set of reduction relations with the
finite termination property, then GZ has the unique termination

property iff the following lattice condition holds:

3:19 if t is any termand u and v are immediate reductions
of t, then there sxists a term w and two sequences u =
uO——a...—avun-_-wand v::vo—-—a-:..-——?vm:w
of immediate reductions from u and v which terminate with w .

For a proof of Lemma 3 consult Lankford (11).

Lemma L If (R is a set of reduction relations with the
finite termination property and * 1is a simplification algorithm,
then the lattice condition for 6& holds iff each apecial equality
inference t == u of ® has the property that ¥ and u*

are identical terms.



Proof ( ==>») Let t = u be a special equality inference
of & . This means there are members L —> R, and L, —> Ry
of & , and a most general unifier & of L, and a subterm of
L, which is not a variable such that ¢t = (LZQ-)' and u = B.ze
where (L,6)' 4s the result of replacing one occurrence of Lle
in L2e by R16 . Notice that t and u are immediate reductions
of L,6 , and so by the lattice condition with the help of Lemma 3

it follows that t* and u* are identical.

(&=) Let t —>uy and t ~3> vy be immediate
reductions of t by reduction relations L, —> Rl end L, —> Ry
of fK . If I‘l and L2 do not "interact]' then reducing ug by
Ly —>» R, &nd vy by L, —> Ry in the corresponding positions
that t was reduced produces ug—> w and vy -—>» w . If Ll
and L, do interact,then without loss of generality assume that
L, &3 replaces a subterm of L262 , where 1,6, is replaced
by Ry163 in t to produce ug and L,6, is replaced by R,6,

in t to produce Vg *

If the subterm of L,&, replaced by Llel corresponds to a
varlable position in L,, then replace all other occurrences of
16; in L, 92 which result from that variable in 6, . Thus we
have t : (0‘01&282-..) -‘—?uo"ﬁ & 8 8 —‘}(voiLz(ez')'ol)

where the substitution 92' = {tl;’vil,...,tj'/vij,...,tk/vik}
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is obtained from the substitution 92 ] {tl;vil,...,tjfvij,...,tk/vik}
by replacing the one corresponding occurrence of Llel in tj by

Ry £ « Next form the immediate reduction (...Lo(85")...) —>
(+0eRo(O5%)ess) = w . On the other hend,we have t = (...L,©,...)
~—> (eesRp83..0) = vy end by forming a similsr sequence of

immiate reductions we have Vo -'—-‘}’ * v ® “"‘"’? (oc-Rz( 92').00) e W oe

If the subterm of L,&, replaced by Ly 91 does not
correspond to a variable position,then there is a special eqﬁality
inference u == v of I1; —3> Ry and L, —> R, and a substitution
@ such thet ug = u6 and V= v® . By assumption u and
v are identical, and by performing the corresponding reductions to
those used to obtain u’ and v*, we get ug P ... —p w and
Vo —» «-e —P W . This completes the proof of Lemma 4. It
should be noticed that Lemma 3 and Lemma 4 constitute a proof of

lek, the unique termination algorithm.

Theorem 3 Let > be a relation which satisfies
2.11 (1) exactlyoneof t > u, u>t,or t and u are
identical, for each pair of ground terms t and u,
(2) if ¢ 4, u and v are ground terms, t > u and
W 1is the result of replacing one occurrence of ¢ in
v by ugzthen v > w , and

(3) there is no infinite sequence t, > by > t3> e
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The lexical order (14) and the Knuth and Bendix complexity measures

satisfy 2.1l and may be kept in mind as a model for the relation

of this theorem. Let E be a finite set of unit equations and

¢b a finite set of ground instances of f, . Delete all equations

of the form t = t from 37 and using the rslation »» express

the remainder of g as a set of rewrites (RO .

2,12 (1) Set EO = the set of triples (t = u, €,L —> R)
where [ =3 R 1is a rewrite of 620 and is the
substitution instance of t = u under € . It may
happen that w == t , instead of ¢ == u , dis in E
but then u = t can be derived from e, by special
paramodulation. So without loss of generality we
assume that if t= u isin £, then u= t isin
E,.

(2) Form all the special equality inferences S of 621( .
Delete from S 8all equations of the form t == t and
divide the remainder into two sets 5; and 82 s where
Sy is the set of all equations which wére obtalned by substituting
Ly -———}Ri into a subterm of Lj that corresponds to a
variable position in t4 for some (ti = uy, 84,13 —> Ry)
and (tj = uj, 93'1‘3 o RJ) in 8}( s and where S, .
is the set of equations that were obtained by substituting
into a position that does not correspond to a variable.

{3) Further simplify each equation Lj' = Rj of Sl to
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(Lj')' = Rj’ which is the substitution instance under
93' of ty = uy s where 53' is formed like 92'
in the proof of Lemma 4, and replace S; by S;' which
consists of all the corresponding (LJ')' = Rj‘ .
Delete from S;' all equations of the form t = t ,
and express the remainder as rewrites, which are then
used to form El the set of all triples (tj = u,, 8.7,
(Ly")' —> Ry") or (uy= ty, 650 ,R5! —> (1y")1)
depending on whethar (Lj')' > RJ' or Ry' > {LJ')' .

(L) From S, , because substitution is into a position that
does not correspond to a variable, we can form 52
the set of triples (v = w,&,L —>» R) where L —3 R
is 2 reduction obtalned from 3, and is the instance of
v=w by © andwhere v = w or w=V is a
special paramodulant of two equations that are first
coordinates of two triples of éik .

(5) set £, = E,UEWE?S Rk+1 the
third coordinates of &, . 1+ If £,y ; and O
are identical then terminate, otherwise return to (2).

The algorithm 2.12 terminates and the terminal set of reductions

fRT is a complete set of reductions.

Proof If 2.12 did not terminate then by 2,11 (2),1it would
follow that there is an infinite sequence tl g t2 g t3 I

contradicting 2.11 (3). We establish that (RT is complete by
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showing that the lattice condition holds. Qur proof is similar to
the (&= ) part of the proof of Lemma 4. Let t —> u and

t —3> v be immediate reductions by L, —> Ry and Ly —> R,

of GQT + The case when Ll and L, do not interact is obvious.
Wnen L; and L, do interactjconsider the triples (t3 = uy, 91,
Ly —>R)) and (4, = up, Ol —> Ry) of £, 5and without
loss of generality assume 1; is the subterm of L, that is
replaced. If the subterm of L, that is replaced corresponds to

a variable position in t,,then form &' (as in the proof of
Lemma 4) and perform the corresponding sequence of reductions

t = (soelpees) —> soo = (oauly'.0.) where Lyt = tol G50 .
On the other hand,we have t = (eeilpess) = (eeeRpeee) — o0n
=3 (e Ryteos) where Ryt = uy( 62') - If L,* and R, are
identical then we are done. Otherwise,one of (t, = uy, 8,1,Lyt —> R,t)
or (uy = ty, O,1,Ryt —> Lyt) dsin €, . Thus it is clear that
there exists some w such that U =P o0 > w 80d V = .04
-3y W o The case when substitution is into a position that does not
correspond to a variable is handled s;milar to the corresponding

part of the proof of Lemma 4.

Theorem 4 If J is a finite equality unsatisfiable set of
clauses for which no equation occurs in a non-unit clause,then there
is a refutation of [J from GX together with x == x using

factoring, resclution, and special paramodulation.
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Proof Let 27 be a finite equality unsatisfiable set of
ground instances of J « Using the lexical order with Theorem 3,
form 8‘:‘ the terminal set of 2.12. The resulting complete set
of raductions ERT is used to form &‘7 * s Where ¥ i3 any
gsimplification algorithm. By Theorem 1 there is a blocked
refutation of [ from &/ . Using the equations of £ g a0
apecial paramodulation,we can derive a set o SP from o which
has the clauses of &J* as instances. The proof of this is
similar to the proof of Lemms 2 and so is omitted. The oxrdinary
lifting lemma for resolutlon now lifts the ground refutation from

&”" in the usuval manner.
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2.3 DERIVED REDUCTION

In this section we establish the refutation completeness of
1.36, derived reduction. Our approach is motivated by Section 2.2
and especially by Theorem 3. Now, however, if we try to duplicate
the proof of Theorem 4, beginning with an equallity unsatisfiable
gset of ground instances,and use Theorem 3 to extend to a complete
set, several things go wrong. We no longer have only equations at
the general level but also reductions. Moreover, the general
reductions, equations, and clauses are simplified during each
reund}) so it follows that these simplifications at the general level
often force simplifications at the ground level which cannot be
duplicated by the original ground instances or their inferences.

And in addition, because the general level reductions are determined
by a complexity measure, we must find a relation 2> which

satisfies 2.11 and is also compatible with the complexity measure.

Let us consider the complexity measure problem first.

A complexity measure is a structure 2 , = where

2.13 (1) > is a subset of the Cartesian product of the terms

with themselves,
(2) o2 1is an equivalence relation on the terms, that is
(a) t ~ t for any term t ,

(b) if ¢t »~ u then u = t , and

{(¢) if t 2 u and u X v then t 2 v ,
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{(3) &£ ¢t >u and u > v then ¢t > v,
(4) if ¢t > u (t @ u) and € 1is any substitution
then t8& » u@ (t@ = ud) ,
(5) if t > u (t % u) and w is the result of replacing
one occurrence of t in v by u then v > w (v w) ,
{6) there is no infinite sequence >ty >ty > el

A complexity measure is said to be ground regular in case

2,14 (1) ¢t >u or u>t or t ®u for any ground terms t , u ,
(2) t > uxv implies t > v for any ground terms t , u , v .
It is now easy to see that
&3_5_ if 8 complexity measure is ground regular then exactly one of
t Pu,u>t,or t 2®u is true for any ground terms ¢t , u .
The complexity measures 1.16 of Knuth and Bendix with =« the
identity relation and 1.29 with t 22 u defined by fftfl = [Ju]
are ground regular complexity measures. The ground regular
complexity measures are those for which we can show derived
reduction is refutation complete., We now define a relation >
satisfying 2.11 which is compatible with a given ground regular
complexity measure. Let R be any relation satisfying 2.11 and
_2;35% for each ground term t there are only finitely many u
such that ¢t R u ,
let C , = be a ground regular complexity measure, and for each

pair of ground terms t and u let

2,17 (1) ¢t >u if tCu,
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(2) w>t if uct,
(3) t>»u if t ~ u and t Ru, and
(L) uw>t if ¢t 22 u and uRt.
It is easy to show that > defined by 2.16 and 2.17 satisfies

2.11, and 2.17 was designed so that if t Cu then t > u.

Theorem 5 If 2> is & ground regular complexity measure then

1.36, the derived reduction algorithm, is refutation complets.

Proof We assume a ground regular complexity measurey > , =
which has been extended by a relation R satisfying 2.1l and 2.154,
30 .that we may assume > satisfies 2.,17. Thus we may assume that
> satisfies 2.11 and 2.16. We then take a finite equality
unsatisfiable set of clauses J and a finite equality unsatisfiable
set of ground instances g . Let & be divided into the
reductions R($Y )0 and the remainder (_5’ o + Throughout we 2ssume
equations of the form t = ¢ are deleted. HNow at the general
level by 1.36 we have lﬂk s Ek s And k © At this point each
member of b x 1s a substitution instence of a member of 6{:
while each member of R(& ), is an instance of a member of @k U g’k .
We also assume that each ik ig such that if t = u is in ak
then its symmetric copy u = t is there also. As redundancies
are eliminated from @k and gk in 1.36 (2) the correaponding

simplifications and deletions are made in R(J ), . The ground
k
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reductions that are used in making those simplifications are added
to a(b)k . A3 clauses of Jk are simplified in 1.36 (3) the
corresponding simplifications of clauses of g i are made, and the
ground reductions that are used in malkding those simplifications are
added to R(&)y - as R, ., E‘k-l-l’ and Jk-!-l are
formed in 1.36 (4), R(&), , 1 1is formed by performing the
corresponding inferences at the ground level and in addition adding
all those reductions of R(éj)k which correspond to immediately
reducing one of the terms of substitution which makes some membher
of R(ﬁ)k an instance of a member of Rk U gk .(1ike was done
in the formation of 92' in the proof of Lemmz 4). Because the
complexity of the left sides of each reduction that is added to
R(Y )k is less than or equal to some expression in & s it
follows that eventually no new additions are made to R{{ )k . It
also can be shown that the terminal set R{{Y )T ié a complete set

of reductions. Moreover, &/ can be regarded as an intermedisate

T
step in the formation of &f * where * is a simplification
algorithm using R(Y )‘I‘ « - To complete the proof we modify the
proof of Theorem 43 form ﬁT’* (= &™) while simultaneously
forming special inferences at the general level (along the lines of
the proof of Lemma 2), so that the clauses of &T* are instances
of JT 4+ i for some 1, and by Theorem 1 obtain a refutation

of O from ¥ by resolution which can be lifted by the

ordinary lifting lemma for resolution.
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CONCLUSION

We conclude with some questions and remarks which wera

suggested by the results of this paper.

L.

2a

5

Does there exist an algorithm which will declide whether or not
a set of rewrite rules has the finite termination property?

If a set of rewrite rules does have the finite termination
property, do there exist polynomial functions and a constant
8o that 1.28 will detect that fact? Is there an algorithm
which will construct a collection Ar such polynomial functions
when they exist?

Equations whose aides are identical up to permutation of
variable symbols, such as commutative axioms, cannot be used
as unrestricted rewrites without giving up finite termination.
Can the notion of rewrite rule and simplification be enlarged
in a non-trivial way to include permutation axioms?

Special paramodulation has been announced refutation complete
as a positive solution to the functional reflexive problem.
The statué of the refutation completeness of special
paramodulation should be settled at the earliest possible
moment. ,

Closely related, is derived reduction refutation complete
when equations occur in non-unit clauses?

Can one of the decision procedures for elementary algebra be

used as an efficient basis for 1.312
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Are there decision procedures for 1.29 when the functions Py
of 1.28 sre not polynomials, but from some other specified classa?
How useful will sets of reductions be as part of a practical
theorem prover? Many provers, such as the UT interactive
prover of Bledsoe and Tyson (2), have long recognized the value
of reduction and used sets of reductions

in an ad hoc manner. With the gystematic use of reduction we
expect to see substantial improvement. 3Sets of reductions also
occur maturally in various approaches to program verification,
such as Boyer and Moore (3) and Hofvitz and Musser (8). It
should be determined if the methods of this paper facilitate

these and similar approaches to program verification.
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APPENDIX

Many of the theoretical ideas contained in this paper have been
implemented by Nevins (12). In particular, his treatment of equality
is for the most part an implementation of derived reduction. The
primary difference is that Nevins (12) did not treat associative
axioms by reduction, but instead used an associative unification
algorithm. We have discussed this difference and we believe that it
accounts for much of the improvement in the x> = 1 group problem
mentioned earlier. Another difference is that Nevins (12) did not
have a complete set of reductions for groups and in particular
used equation 1.25 as & rewrite in the opposite direction. But we
believe that most of the improvement reported by Ballantyne and
Lankford . 1s due to the treatment of zssociativity. For the general
predicate calculus Nevins (12) used a human-oriented system of
natural deduction which incorporated reasoning by cases. We deo not
knew of an analogy to reasoning by cases for resolution for which
refutation completeness results are known, nor do we know of any
refutation completeness results for reasoning by cases. But the
notion of canonical inference, that is ordinary inferences followed
by simplification with the intermediate simplifications discarded,
is equally applicable to resoclution based and natural based deductive
systems, Nevins (12} did use canonical inference, and we believe

that accounts for a substantial part of the power of his natural

deduction program.



