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The relations WH and ~n correspond reapectively to inter-convert-

‘ ibility and reducibility of A-formulae.

W Summary of Thesis
; A relation r has the Church-Rosser Property if . ,

i submitted in August 1y6l for the degres of Ph.D, in the University |of ..
_ ‘ i N\JWM Implies that there exists Z with X WWN and Y WWN.

Newcastle upon Tyne, by James Roger Hindley. .

oo .
: a
"The Church - Rosser Property In the first two oﬁm@wm%w of this thesls, abstract theorems

and m result in Combinatory Logic" are proved which do cover the original Church-Rosser Theorem as & specla)

In "Some Propertiss of Conversion" (Transactions of the case, and give a simple way of extending it to the new conversion .

' "}
,M American Math, Soc., 1936), A. Church and J. B. Hosser showed that any  Tontioned before, g&&%@ﬂ

. two inter-convertible A-formulae could both be reduced to the same oATmeHEpTer  abstract result, due to ZQSSmmu is applied HJ

formula; this is called the Church-Rosser Theorem, Abstract forms bhe later oUm@MmHm.wo give bmw proofs of & simple oobmww&mdo% Lemma Hum

of 1t, which unfortunately did not cover the original result as a recursive-function theory and & lemmsz in R. Harrop'!s paper ’ R

3 1 i
special case, were later proved by M. H. A. Newmen and H. B. Curry. na wmwm¢w<HNmﬁwow wwonwmswm wow Propositional omwozww_ (Proc,. London

A Curry and Feys in their book "Combinatory Loglc" 660<mm,ﬁ5m Theorem Math. Soc., 196L). ww i

o RIN ne
”m " end extended 1t to & new kind of conversion. Out of an attempt to apply my sbstract theorem directly to the

Ex To introduce the abstract "Church-Rosser Property" the "strong reduction” HnwdeoS (see the book "Combinatory Logic") arose &

w, following notation is used, Suppose r 1s any binary relation: : wwooﬁ that this relation cannot be HMEW#@H% axiometized, which proof is

E . "X r YY" means that X bears the relation r to Y. Inecluded ag the last chapter of the thesis. o

~

"X 3 ¥ means that eitBer X = Y or thers 1s & sequence Mo~....xsa - I am very grateful to Dr. R. Harrop of the University of M :

such that X = No« Nod.wwv en, Ns T NB end - Newcastle upon Tyne for his advice and encouragement, also to the

=N\(wﬁ= means that elther X = Y or there is a sequence No“...ux

ZO%ﬂﬁwHSHdethEHSHme%oﬁmaﬂnmwpobZWoWuﬁmﬁommaomdohw?mio&ﬁ
n -
with a Research Studentship.

such that ¥ = X Noﬁ MH or Mww No~ seey

0&

X 1T Nd or Hud X

N and X =Y.

n-1?
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INTRODUCTION

When they were developing their system of A~conversion
in the nineteen-thirties, Church, Kleene and Rosser needed to proves
that eny two interconvertibls A-foruulae ropresented the same
function. ( See _.,m;—: or the end of this chapter for details. )

They first did this by setting up a correapondence between X\ -
conversion and combinatory logic, and using consistency results

from H. B. Curry's paper "Grundlagen der Kombinatorischen Logik" mu.&.
However they soon found a more direct way, part of which involved
defining a reduction-process and proving that any two interconvertible
A-formilae could both be reduced to the same formula. This result
has been called the Church-Rosser Theorem for A-conversion, and I
will be dealing here with more general forms of this theorem, which
can be applied to other conversion relations, though the M-system is

by far the most substantial application.

To introduce the Church-Rosser property in its abstract
form needs a little notations

If r is any binary relation,
"X rY¥" means that X bears the relation r to Y,

._M).uuw " megans that X r ¥ or YrX;
L

-

"X 3,1 " means that either X is identical with T
(vritten " X=Y " for short)
or there is a finite ssquence Nof,.nw such
n

that Mnxom MOH Nww cias s xu&wﬁ Nn and Nzu Y. !

( The relation WH corresponds to the reductlion-process mentionasd
befers. )
u N,)w.w " means that eithsr ¥ =Y
cor there is a finite ssquence MQHZZM. sueh
n

that NHNou No)\N ses 3 X e X

i1’ n~1" {r'n *

and X =Y ,
n

( ~~, corresponds to interconvertibility. )

These relations can be represented \3\ diagrams; for example:

Xry 1z L~y

X g X=X g X=X X
: N VR SWA
Xi // Xy X545

Y X, y

/ 5=y % e

X,r¥, £rX, X

In the third diagram, X r J 2
gramg oH th 1 29 3 5 uu. M,\N etc.

4 relation r has the Church-Rosser Proparty if and only if

°

(CR) Whenever N)\Humw there exists Z such that X >Zand ¥ > 7
. T “r




]

For examplsi A

N\,

gz

A1l the known proofs of this property begin bty proving

soms forwm of %ha apacial case

<

(D) Yhenevar U

Conssquently the first two chapters of thiz thesis will deal with
the sonnections between (CR) and varicus forms of (D) for sas genaral
‘a ralation "r" as possible, Their results will be applied in
Chaptaer / to give a new proof of the Church-Rosser Theorem for A\~
conversion. In Chepter 5, a few other simpler applications will
be discussed, including a consistency lemma in recursive function
theory. In these simpler applications the results are not new
and the proof of (D) is the main step, the step from (D) to (CR)
being almost trivial. ?m\v,ﬁv.ﬂwV
While trying unsuccessfully to apply this theory to
combinatory logie I managed to answer partially a question posed by
Curry and Feys in their book "Combinatory Logic", so this result is

included as Chapter & of the thesis.

411 results which are not mine will have their sources
mentioned.

I am very grateful to Dr. R. Harrop of the Unilversity of
Newcastle upon Tyne for his help and encouragement during the work
for thls thesis, and to the Northern Ireland Ministry of Education
for financing most of 1t. I also wish to thank Miss K. Hedworth
for duplicating the thesis, and D. E. Schroer for sending me part of

his thesis [3].
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A notg on M=conversion

To help the readsr gst the feel of the work, I will describe
A—conversion informally here and state the results of Church and Rosser,

though most of this section will be dons more rigorously later on.

Dafinition O-1

h~formilas are dsfined inductively as follows:

(1) There is an infinits (recursive) list of symbols called
"yariables" which, together with some "constants" (perhaps
none), all ars X-formulaa.

(11) If X and Y are »formclae, then (XY) is a A-formula.
(Sometimes (XY) is written as "(X Y)"; the space betwesn "X" and
UYH yill be varied to make formulae more readable.)

(1ii) If x is a variable and X is a h»~formula, then (Ax X) is a
A-formula.

The phrase "defined inductively" means that the only
A-formtlae are those obtained from the variables and constants by a
finite number of applications of rules (ii) and (iii). In other words,
an object X is a Mformula if and only if the statement "X is a
A-formula" can be deduced from (1), by (ii) and (iii) used as rules

of inferencs. For example, if x and y are variablas, then
(A x), (y (O (39))) and {(xx {(ax (xy))) are A-formilae.

Corresponding to each inductive definition is a method of proof by

induction, on the steps used in ths definition, which can bs reduced

to induction cn the natural numbers.

In the usual interpratations sach A~formula represents a
function of some sort; the variables rangs ovar functions, and (XY)
represents the value of the function X at the argument ¥. (Ax 2) re-
presants the function whose value at x is Z; for inskanes,; (Ax x)
represents the identity funetion. Howaever, this thesis is not
concerned with interpreting the A-systems, but only with their formal
propaertiey ——- the "grammar! of the A~languagse.

Capital letters X, Y, Z, M and N denots \~formulas in
this section and small letters x, y, z denote mutually distinct

variables.

Definition 0.2 "Occurs"

(1) Any A-formula occurs in itself;
(i1)  If (XY) occurs in %, then X and Y both occur in Z, and
if (Ax X) occurs in Z; then X occurs in Z.
By this definition, x does not occecur in (Ax (yz)) .
The phrase "An oecurrence of X in a formula Y" has a
fairly obvious intuitive meaning, but the formal definition i3 rather
complicated and is left to Chapter 3., For exampls there are two
occurrences of x in {({(Xz x) x), one in (hx (xz)) and nene in (Ax {yz)).

A variable x is bound in a formula Y if and only if &

formula of the form (Ax X) occurs in I3 any occurrences of x in

(x X) are said to be bound occurrences; whils any occurrences not in




formulas of this form ars fres. In ((Ax (xy)) x) for example, the

left~hand "x" is not an oceurrence at all, tha middle "x" is a bound
occurrence and the right-hand "x" is free. Also x is bound in

(xx (yz)), even though there are no cccurrences of x here.

Substitution of a formula for a variable

Intuitively, substituting a formula ¥ for a variable x
occurring in X means replacing each occurrencs of x by Ny but this
could cause trouble if not done carefully. For example (Ay x) and
(Az x) have the same Interpretation (the fumction whose valus is
always x ) yet simply substituting y for x in each formula gives
{(Ar 7) and (2z y)s which have different interpretations. This
difficulty led Curry in mmu to modify the definition of substitution

~— gee clauss (iiic) below.

Definition 0-3 Substitution

If N is a A~formula and x i3 a variable;

E,

H

v,

]

x
xgw ¥ for any variable or constant y distinct from x: w

(a) ﬁmw
® [V

(11) mM\WMANMV = AMWMMN NmMMMv for all Mformulae X and ¥;
ﬁ

(119 () [V Jox 0

(b) Mz\LCQ x)

(ax X) for all A~formulse X;

my% Mm%wxv 1f y # x, and elther y does not occur

free in N pr x doas not occur free in X;

-8-

[ ¥
v =
(c) H\LCQ 0 = Av& M Lw\w@ if ¥ # x, 7 cccurs free in N
and x occurs free in X,
z being the first variable in the list given in Def. O°1

which does not occur free In N or X,

Note Definition 0-3 is an Inductive definition, but inatead of

introducing a new predicats as did Defs, 0°l and 0+2, it is an
algorithm for calculating ﬁmmuw for all Ny, x and X: +{he fact that it
does give a unique value for Mwﬂgw is easily proved by induction on
the definition of X,

ﬁmmqw is the result of first altering any variables bound
in X which are also free in N, and then replacing www.mwmm accurrences
of x in X by occurrences of N, In this way no varisbles occurring

free in N become bound in Mm%ww.

Ayu ?\x:N\w?v %:S&owumw.o@v

(rz %V by (1b) and (ia),

Example: HWWHAV% x)

I

Conversion of A~formulae

Definition Qo4 The relstion o

X bears the relation a to ¥ if and only if Y is the result
of replacing an occurrence in X of & formula of the form (Ax M) by

Aw% megzv. where y 1s any wvariasble not ocecurring free in M.




For example; in the notation defined earlier,

(xx (2x)) o (Ay (zy)) since HWMQANNV = (zy)

but not (Ax (zx)) a (Az (22)) because z cecurs free in (zx).
The relations mww and ~. are defined as before,
o1
~ being called "o~squivalence" as it is transitive, reflexive and

symmetric, a~equivalent formulae ars always given the same

interpretatiocn in applications of A~conversion.

Definition 0-5 The relation 8

X bears ths relation B8 to Y if and only if ¥ is the
result of replaecing an occurrence in X of some formila of the form

((a M N by TN? .

For example; ((ix (zx)) y) B8 (zy).

The relation a8 is defined by " X a3 Y if and only if

Xa¥Y or X 871" eand 2,5 and ~gp are defined as baefore,

The replacement of a part of X by another formula

according to Definition O-4 {or 0+5) is called an o (or 8) contraction

of X, and a succession of contractions is a reduction. The reversa

of a contraction Mm.m. replacing mZ\wwz by ((hx M) szwm called an

expansion. An o or B or of conversion is a succession of

contractions and expansions; hence X is aB-convertible o ¥ if
and only if X ~guple The term "M-conversion" is used to cover

all the various sorts of conversions, including some which will be

defined In Chapter 4.

The original system of Church and Rosser consisted
essentially of the relation o and a restricted form of B in which M
had to contain some free occurrences of x. Actually the restriction
was made by allouing (hx ¥) to be a M-formila only when x cccurred

free in Y. With thils restriction on formilae and B-contraction

they proved the following thesrams. (3us Mﬂw‘ page 479}

Theorem 1

swmdmdmﬁx \{dbwh thers must exist Z such that X WQmN and Y meN‘

Corollary

wa \(pm@H m:m N‘\/dmmm with no formulae of the form

((ax M) ¥) occurring in Y. or Mm“ then Y . Y .

1 17 7% "2
(Such formilae as ww and Mm are called B-normal forms of X.)

Theorem 2

If X has a B-normal form, ¥, then a number m can affactively
be found such that any rsduction starting with X will end at Y, or

8 formla Y' o~equivalent to Y, after at most m G-contractions.

Corollary

If X has a B-normal form, then so has any formula occurring in X.
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The Corollary to Theoram 2 would be false 1f B-cuitraction CHAPTER 1

warg not restricted; for Instance If X = ((hx y) N) with y # x, and

N had no B-normal form, X would have the normal form ¥ bacaude X 8 y. Properties (D) and (CR)

(Such formulae N do exish.) This was one of Church's main reasons
for restricting 8, as in his Interpretation formilas without normal
forms were meaninglsss. - Howsver Theorem 1 still holds trus without

the restriction on 8, and I shall not be concerned with Theorem 23 !
| After a section on notation, some simple connections between
lndned sy ragnlha conld nob by adapted $o prova 1.
the properties (D) and (CR) are investigated here, partly with a view
In Chapter 4 I shall prove the analogua of Theorem 1 for
to extending Church and Rosser's Theorem 1 to include a third kind
unrestricted B-contraction; the wHQOHWMNMWHEIWMWMMWMI%o the restricted

of contraction which was invented later by Curry.
S~contraction, but for reasons of space I shall not do this.

Notation

These abbreviations and remarks will apply throughout the thesis.

Symbol. Meaning
= is identical with

= implies
&> is logleally equivalent to
iff if and only if

s o therefors

€ is a member of (a set}

1] the emply set
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Symbol Meaning
laas than or equal to (said of intugers)

> greater than (said of integers)

for i= mos.n for every integer i such that mg3i and i<n

ERE there exists X such that

m A oaoX 8 there exist a non-nsgative integer n and a
o n

finite sequence Now cocy Ms such that

The sequence whose membsrs are MH‘ 520y Hs in that order will bs

denoted by =ANHwnuow Nav=w =mxugnuow Nﬂw: will denote the aset

whose members are NHW aeoy Nb and unless stated otherwise, it will

be agsumed that such sets are indexed so that 1 # j = Nwm Nu.

The meaning of =*xwwnc,. Nuw= is extended to be an empty set when n = O,

When certain things denoted by symbols are said to be
distinet,

1t is understood that no two of the symbols denote the same
thing; e.g. it was said above that in MNH“.QBVM w&sm subscripts will
n .

be chosen so that NHb cany xz are distinct.

The letters myn,h,i,jk will dencte non-negative integers

unless otherwise stated. As a sub~ or superscript, zero is written "o, not "0"

No rigorous distinction will be made betwesn the use and
mention of symbols, and quotation marks will be used just whenever

they seem natural. References to "Corollary 2°1", etc., always

indicate the corollary of a lemma, not a theorem.

defined by

Unless otherwise stated, al]l the relations mentioned will
be binary relations, and if r is any binary relation,

"X ¥ Y " means that X doss not bear the relation r to Y,

"XrY " means that X rY or X =Y,

" Non qu ool Ns " means, if 1gn; that Nwlwn Nu for i= l...n

and is also taken to mean =Nou Mn: whan n = 0,

Similarly stetemants involving a variety of relations may bs strung

together, for instance "X r Y, Y = W and W r 2" wmay be shortenad to

WrY=Wr2¢

o

Now the definitions from the introduction can be re~stated;

X3 ¥ iff mNo:knu X=XrXr .er X =Y

Xno ¥ iff mxo:k% LS PR SLVRRITES S0

— the "X = Y" clauses being included in the notation as the case
vhen n = 0,
The relation mw& i1s transitive and reflexive;

transitive, reflexive and symmetric. Also
Nam&xmwﬂvxw%@w)\%,

Further, the relation % 1is the same as ¢ that 13, if s is

N

defined by "X s Y 4ff X} ¥", then xV\

X2 .
J & X2 Y. (~ s

r s
alsc the same as ~\/, in this case.)

If r and 3 are any two relations, a new relation rs is

LrsY 1ff XrY or XsY.




dev g ste, are defined as befors. So X ».¥ implies X Wﬂmw

and N\(Hw implies N\)$mw B Similarly three or fuur relations
can be combined.
A relation r has property (CR) iff
In, T = J2: X2, 2 and ¥ 2.1,

and r has property (D) iff

UrXandUr¥ = J23 X} 7 and T2 Z.
If "(P)" denotes a property, =Amug= will often be used to denocte the
gtatement that r has property (F). For example the above two
statements are Aomuv and Auuv“ and Church and Rosser's Theorem 1
asserted Anmpmvo Cartain mmmmmmwmmwuom of (D) and some other
propertiea will be denoted by mmvmnmouwvnmm for mxmswwm r has
property Auwv iff

(l): UrXandUrY = J2: Xpz ad Yrz.

A list of relatlons' properties used in oumunmﬂm 1 and 2 13 printed at

the end of the thesis for easy reference.

Throughout the thesis the concepta of set; member, sequence,

function, and obther notlons which sheuld te familiar to most mathemat—

~lclans, ars taken for granted.

~16~-

The first result simplifies (CR).

Lemma 1°1

For any relation r, the following three properties are equivalent:

Amuv" quxmbmdwu.w vaNw NV\&N mnm MWH.N.

(BQ): anN Ea qu = Jzs NVaN and Y227,

\
Smnr x)\uw = Jzs NWH.N Ea mwau.

Diagrams:

(@ (B)

Proofs

Aomuu = Amﬁw = ﬁonv , becauss Amnv is a gpecial case of Amav
which 19 a special case of Aomnv. It remains to prove Amuv => Aowﬂv.

By definitlon, X~yY 1iff m?o._:muw X=X,y X Ny e~y K =T,
hx?Lb drn o

so it 1is sufficient to prove by induction on n &:mﬁN for 0%n,

~ : Z .
XK e e X = J20 X 2 2 end X3 N
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Bagig: When n = 0, that is X =X 8 choose Nau X,
n 4 o
Induction step: When n> 0 and Nusw exists with No 2p Nle

and X . 2 2

nel Zr “p1t \\\R\\\ﬁ//
\\‘
X 1\ Xa

Either Nnﬁ L \

\

IfXrX then M N by the transitivity of > , and
n n=l n-1 r

Nn may be chosen equal to Z, ;.

Hw xuxwu X, use ﬂonv with "U", "X" and "Y" being X ., Nu mza

Z_, respectively, Yo get Z such that X, 2. % end Z,_q 2y 2o
x:l_
\,o X,
/ .
Z 2
n-1 [
~/
®3z
xo.v Z , because X 2 Z .- Choose Z = %, complating the
Induction.

This proof was suggested by Curry in Hmu and is

~18-

congtructive ( as are all proofs in this thesis) in the sense that 1t
sets out a way of using the given existence - statement Amﬂv to
obtain Z.

To avold repetition the equivalence of (G); (B) and (CR)

will often be uged without being explicitly mentioned.

Theorem 1°1

kD)

For any relation r; (D .

implies AowHVb

where Auwﬂv says that UrXeandUrY¥ =y J2: XrZandYr
\u/c

n\\\ o

m//\h

4 z
Proofs 3

It is enough to prove the following special form of (G.) by
induction on n:

Uy Xand UrOr ... r U => T2 1> 2 endUrz .
When n = 0t choosse 2= X.

When n > 0 and by the induction-hypothesis 2 exists with X > 2

n-1 Zrl 1

and U

n-1 £ Nﬁlvw




" /\ Lt

*3z,

By definitio U r4a = v
J s n-1= “n-1 A dan Nncw or cutHH Nzxw :

If U .=
£ -1 anHu let Ns be dﬁ. Then dudeNs ,and X wwmu

because X = =
ecause ww Ns:H G:IHH dn Nu a

If U rZ Hu m.mumu”_rv Ab V to U 1? U_ and 2 1 to obtain Z
such :~m.w mﬂ-lH Nﬂ and NH» ulH Nn . X WH‘Nﬂ because 1 WH; Nﬂ 1 r Z.

This 18 the simplest and most widely applied form of the

Church-Rogser theorem, being first stated explicitly by M. H. A.

Newman in mwu“ it 18 thls form which will be applied in the examples

in Chapter 5. An example in Mmu and another later in this chapter

show that the unmodified property (D) does not imply (CR).

A IO

i A B IR SR

-20-

Ccmbining two relationg

Given two relations r and s, each having the Church-
Rogsser property, what extra conditions will ensure that the relation
rs has the property too? Theersm 1°2 will show that Acmvu stated
below, is sufficient, and after that theorem a few other possible

conditions will be examined.,

Lemma 1°2

Suppose r and s are any two relations. N

If

©): UrXadUsy => J2: X332 and YrZ

then
UrXandU3Y = H2:
s )
(%) Conclusion
v <
X
. Y
S e
+
< /e \\M
n/‘uN
Proofs

Tt is enough %o prove that




ity e hivaré dive i Lt

qo ¢ X and dom de oce 8 ds
by induction on n,

Wnen n = 0z Iet No be X,
When n > O and Z,.1 exists with X > Z

Either qnn =2

17 Tp-1
or du:H r Nanw.
‘/
s i
N A
iz,
= 3 =T sU =2, and so
T =2 s let Z_be Uy ; hence X 2= U R
) X272 .
&~ T nymn nyn
T LTI s apply (D<) with "U", "X" and "Y" being LAY N?H

and U respectively, to get Z_ such that an r Nu and Nd Z.2 .
n -

n = 1 3 'n

H X B
ance uww Nn

By the way, putting s = r, Lemma 1°2 implies Thecrem 1-1.

Lemma 1°3

(D°) implies that UxXandU2Y => H2: X3x7Zand Y >2.

ol \m T

22w

o
\—\
[

N,
Proof: u Z

It is snough to prove by induction on n that

sae : 3 > L at >
Ur Ureoe 70 and U >, ¥ = J13 U 2z, yed T 2 7

When n = 03 let Z be Y .
o o

Whenn >0 and U > Z and Y > 2

n~l g np-1 I applying Lemma 12

with "O", "X" and "Y" being U
e

1’ db and NblH regpectively gives Nﬁ

such that U, WW 2 and 2, 4 T 2o Henee Y ww Na, as required.

Theoram 1°2

If r and 3 are any relations, each having the Church- Resser
property, and AUNV i true; then the relation rs has the Church-

Rogser property. (In shorts Aomuw. Aowwv and (DR) imply Aomﬂmv.v
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Proof:

Slnee U rs X <> UrXorUgsZX, (G } will follow from a
o o ra

procf by induction on n that

(1): Uys X and U rs Ujrs ... rs U, = d2:Xp 3 ad T Ha,
(11) 5 doH. X and 1 vy = 19 1y and dd WH.Nna
Proof of (i)
When n = 03 let No be X,
When n > 0 and X Wﬂm N«TH and dﬂlH Wm Ndlu.m
Either U s U
n-1 n
or dbAH r cnu
N:L /
. )
NS
>
iz,
If Ty s Uy apply (B) to U 4, Z,qend U to get 7 such
that du ww Nn and NzIH me Na 3 henes X wwm Nn o
1f dnlwu ds y apply Lemma 1°3 to auaw_ db and Nslw. to get Nu
such that U mwm 2, and Nu..H mwn Ns 3 hence X WWm Nn. ending

the proof of (i),

4s the conclusion of Lemma 1°3 1s symmetrical in r and 9,

i

iy

the proof of (11) can be got from that of (1) by interchanging "r®

and "s",

This is the theorsm that is applied to extend (CR) to

Curry's system of \-conversion. (Ses Chapter 4)

Proving ( CR ) from ( D) is rather like doing a jigsaw-
puzzle with instances of ( D ) as the pleces. In Theorem 1°2 the
pieces are of three kinds; one sort (unspecified) allows Aomﬁv to
be proved, another sort allows (CR ), and the third is (D?), which is
a kind of "connecting-pisce', What other possible connecting-
pleces could there be? If the "p" in (D%) 1is weakened to " WW=~ the
resulting condition does not give Smﬂu from Swuv and Aomm: in fact

(07)s UrXedUsY = Y3 Xor X ) ¥

ia not sufficlent, as the example on page 25 shows,

v %)

An example in the Appendix -shows that
(04, UrXandUsY => JV: XrVagay
is also insuffieient. .

Acuv"




(0”) and (B*} ars not even sufficient when Acmﬁv and Aommu are
strengthened to QHHV and Acwmvm but if "r" and "s" are interchanged

in the conclugion of Guvu the condition so formed, together with

To prove GHH.V in both these cases, choose Z = X

=Y, Hence Aowuv

1 .
(D ﬁv and GHmvu implies Aomdm

the Appendix,

This follows frouw Theorem 123 in

It may be interesting to see if there is a simple way of
telling whether o not a form of (D) can act as a connecting-pisce,

but I have not looked into the question,

A gvstem satisfying AUHFY dev!mu& Cuuv but not Aom.umw.

If A; B, G and D are four distinct objects; define the
AT B Bas i

and the relation s by .
BrcC AsD

AN

C.

relation r by

r

.

I
4
it
=3}

UrXandUryY = either U = A and X

i
(@]
°

or-U=B and X =Y

by Theorem 1-1, Similarly Auwmu and Aommv are satisfied.
Also; UrXandUTs ¥ = either U =B, X =C and Y = A
or U = =B and Y =D
= Y WH. X or X Wm Y,

which proves (03).
However Aomwmu i3 false, because G g D yet there is no 2 with

C WHmN and D W\Hm Zs

This example also shows that the original unmodified
form of (D) does not imply Aomv. since from the above,
U X
rs Yand Urs ¥ = mNu X Wamwwaw wu.mm.
yot Aomev is not satisfied.




]
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= frAds?Y

or XrBsi,

giving AUNJ .

Yot C ~_ D without there being Z such that C 2., 2% and D Zrg &>

Two minor results mentioned Hﬁ the Chaphar. 8

The property (D) says that

UTrXandUsY¥Y => JV: XrVgsV¥.

The following system satisfies QHL_ Gwmv and (D%) but not (cr ). |2 The theorem below has no applications of which I know,

beyond the remark on page 25 about interchanging "r" and "s" in the

If A, B, C and D are four distinet objects,
conclusion of (D4,

ArB BsgC
define r by M and 8 by w &
BrA AsD :
Theorem 1.3
If r and s are relations; (D' ) and (0! ), together with .
. r 8 . i
(p7): UrXandUsY => qV: XgVry \ﬁ
X 7
impl, CR . .
mply H.mv m/.w \\\Fi.\
UrXendUryY = U=4A and ¥ =Y =B ’
) ivin AUHV
or U=B eand X =Y =4, g g T Proof:
UsXandUs Y =3 U=4 and X =Y =D Ag in Theorem 1e2, it is encugh to prove
giving (D) . S
or U=B and X =Y =G, 8 (1) : U,r X and U rs U;rs ... T8 U = MNn, X2 2 and U 3. 2
UrXandUasl¥ = {elther U=4, X =B and I =D (11): Ugs X and 4, o, ' = ' ' o s
OH.d.Hmu X =4 and Mﬂon

NowUrXand Urs Y = either UrXand Ur Y

or UrXandUs?X




= ?‘H;mu q%2: X rzZand ¥ r 2, by SHH.V

f or mf XagVry by (D5)
=> [either Jz: X 2, % &d Trz
or X Wﬁm Y
sither X 2, 2 and Y r Z
= Jz: rs
or X de Z aend Y =12

= 21 X 3.z

Thus vaw with "ra" instead of "s", is satisfied. Hence by Lemma 1.2, .

UrXx U > =3 : X
rXendU 2 Y = 1z

which implies (1).

UsXendUrs Y => Jeither Usgs X and U
or UsXandTU

= either MNw XaZ

or {V: Y gv

either X'g

=5 ZyVs
mu or X =

=  JZ,WV: X 3Z and

and Y p Z.

Wﬂm Z and Yr Z,

ay¥Y
rY

1
and Y g 32, %va
rx by (D%)

Zand YgV=2

Zand T gV a2

YsVriz.

Using this fact, (11) will now be proved by inductinn on n:

When n = 0O: choose Z=X.

When n > 0: suppose U, 83X and U, rs uH rs oso IS us, Then by

the above inference applied to qog X and au\

there exist Z and V such

Ty 5

e T
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that X g Z and dH 8

Define W as followss

Ir dwnf let W=10, . Then V Zpg W and U, WH.m W

the induction-

Ir du, 8 V5 then, since also U, vs cm 'S sen Is d: 3

1
hypothesis may be applied to qu,w V and a: to obtain W such that

V> W and U >

=rs n *rs We

Now V r 2:

If V = 2, choose Z tobe W, ThenX gz="V Wﬂm W= %, and

dd WH.m W= Nd~ a3 required.




IfVr Z; since V W&m

Z, such that 2 > Nu and W

Zrg 2, . Hence X > ; Nﬁ and

Zrs n Zp

Uy 2pg &y completing the induction-step for (ii).

Actually Theorem 1°3 can be improved to show that Q”_.mu and
(6R) {not nscessarily (D)}, together with

UrXendU%Y = H2,V: XgVy Zeand¥2 2
<

»

imply Aomu.mu o

W, (1) can be applied to V, Z and W, giving.




CHAPTER 2

Reductions

Here the main purpose is to deduce (CR) in a system which
covers cS-conversion as a speeial case, though that part of the matter
ig left to Chapter 4. This deeper result is got by assuming a more

complicated form of (D).

Diagrams of the kind that I used in Chapter 1 suggested to
M. H. A. Newman that the Church-Rosser property could be given its

most general form in topological language, as follows,

Informally speaking, a set of things called vertices is

supposed to be linked together by cells, each cell running from one

vertex, its gtart, to another vertex, its end. A cell may start and

end at the same vertex, and not all the vertices need be linked

together.

Example 1:

Hnmxmavwmww <Hm oo;y <m mwmnwm<mﬁwwommmna Sy ceoy am the cells,

with arrows showing their directions; for example ¢, starts at <H

and ends at <m. vy Yy

B ”

vy
. <y
Example 23

A system like these 13 called a Reductlon-complex,and

can be defined more rigoromgly as an ordered triple (G,V,7) in

which G and V are sets whose members ara called =mmHHm= and "vertices"
respectively, and f i3 a mapping from C to some of the orderasd pairs
of vertices.  D. E. Schrosr does this thoroughly in [3].

Any relation r generates a reduction-complex, obtained by
defining a cell to run from X to Y if and only if X r Y, However
not every reduction-complex is generated by a relation; for example
the system above, in cw#nw.nu and cs both run from <A to <m~ but are
distinet cells.

T anfl st Sk, a2 bl f
\VIQAWMMHMWL Q\NMWW avﬁn\NNNWe -

A Reduction from X to ¥ is a sequence of cells, say

AHHV..g.xnv. such that the start of xq is X, the start of NH+H is

1 (for 4= 1...n-1) and the end of x 1is Y. The reduction

is said to gtart at X, end at ¥, and n is called its length.

the end of x

A reduction or cell starting at X will be said simply to be "“at X".




Example: X

=, The length of this reduction is 3,

A null reduction is one consisting of no zells, though

a starting-vertex is associated with it and it is saild to end at the
saeme vertex as it starts, Any null reduetion will be denoted by "0V,
although a null reduction at one vertex 1s not the same as a null
reduction at enother vertex. The length of a null reduction is
dsfined to ba 0,

Vo distinction will be made between a cell and the
reduction consisting of that cell alone, and reductions or cells

which all start at the same vertex are called co-initial.

If b 18 the reduction Axw‘o..wxauw ¢ is the reduction
A%H_.g«uwsv and b ends at the start of ¢; b+c is defined as the
reduction Abeou..Haw%kun.w%uw. Also b+0 = b and O+b = b by
definition, for all reductions, b. Then if either exists, (a+b)+c =
a+(b+e) ﬂwcd not in general a+b = d+m“w and the reduction Axwg..uwabv

can be written as =MH+.n.+Nn=a

For reductions b and ¢; "b = c¢" means that b and ¢ are
co-initial and both end at the same vertex. If b= ¢, then

a+b > a+c¢ and b+d = c+d, for all a, d.

Examplas  Hare, b= c,

For any reduction, b = XytooetX 3 define don 0, and qu

the k-th stage in the reductlon, to be NH+,,.+NW. for k= 1...n,

Whenever a set of cells is mentioned it will be assumed

that its members ars co-initial.

In this chapter,
X Y, 2, U, V, Wdenote vertices,
X; ¥s %, U, Vv, w denote cells,
a, b, ¢, d, e denote reductions, and

a, B denote sets of co-initial cells.

The conventions on page 13 are medified to allow

=MQH.uanwasw= to dencte the union of Gys caoy Gy g not a set of n sets.
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The subject of this chapter is the rslation r dsfined by
"X r Y iff there is a cell ruming from X to I" in a given reduction-
complex which is dsscribed in the following pages. For convenience

the subscripts " " will be omitted from " S ", W~ W and =\4r=“ ete,

T b by
Obviously X > Y if and only if thers is a reduction from X to Y:
"X > Y by b" means that b is a reduction from X to Y.

For this relation rj (B.), Amnv and AUHV become

(B): a and b co-initial = Jesyd:  ate = bed ,
(a): a and x co-initial = Je;ds a+e = x+d ,
(p): x and y co-initial =2 Jesds x+c = yed

(B) (G) (D)

a b a _ -\

_ _ N/
: L 3d Je nwm
N, 7 \ /
.un/& m\Mu ™~ ° )

NS ~, _
» Je Q/Q

The complicated form of (D) mentioned earlier involves a
special kind of reduction called an "MCD", whoss definition needs the
following concepts. xk%mw

For every palr x; y of co-initial cells, thers is assumed

——

to be a set, N\%. possibly ewmpty or infinite, of cells all starting at
J
\,m.~M%MMw>ths AL\RXAWW\\NNMuAYNPMwWh

a4e,)

324

the end of ¥. These are called the Residuals of x with respect to v.
o B8
K\»\!/u \vrvﬁ\“ x, .\\
y
Nn k\ / x k/x

Example:

N\\%\ W
The set, Uﬁ\.U s of residuals of x after a redustion,b, co-initial

with x, is definad inductively by
*/q contains only x,

N\U+% is ths unlon of all Nﬂ\

y » for all x! = H\‘Nun

Example:

If o ‘3 a set of cells co-initial with b; a&f is the union of all
x\f. for all x = a. If o = g; o\d is empty too. From these

definitions, N\m+d - AN\WVd for any reduction a+b. Often =N\%=

or =x\W= will be used to denote the individual residuals as well as
the set of residuals, but the meaning will be clear from the context.
Also =uww = 2" will mean that z is ths sols member of xAua

A development of a set a of cells is a reduction, b =
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= Xpte.e+xy in which xy = % for iz l...n.  If o = @, its

n’ -1
development is a null reduction. The development b is complete

(and called a "C. D." of a) iff % = #,
b

For thes given complex, there 1s assumed to be a relation
< , which only holds among co-initial cells: in Chapter 4, cells
will correspond roughly to replaceabls parts of formulae like those in
Definition 0-5, and the relation < to that of one part being inside
another.

"X g5 y" will be taken to mean that x and y are co-initial
but not x < y.

=x\m & 7/," means that there do not exist x's Uﬁ\N.

and y's ¥/, with x'< y', so it is trus if X/, or Y/, is empty.

M. B. "<=" and "¢." have nothing to do with the inclusion

relation betwaen gets of residuals, which relation will always be

indicated by "

18 a subset of =N,

A call v in a set B of cells is minimal in B iff

xsf and x £y = x <ty .

A Minimal Complete Development ("MCD") of a set a of cells is a complete

development, b = ¥q+ees+x_, of a guch that

Uu
for i= l...n} x = aer;H and x # X = x¢ %,
In other words, an MCD is obtained by taking as the next cell a

minimal residual of a. Of course not every set need have an MCD.

-3

Lemma 2°1

Suppose that there 1s a certain class of reductions called
"special reductions" such that every single cell is a special
reduction; then (G) follows from

1 If a cell x and a gpecial reductlon b are co-initial; then
(6*):
there exist special reductions d and e for which x+d = b+e.

Jelsr) N \

Proof':

The following property which implies (G) is proved by induction

on the length of a:s

a and y co-initial => MWuo" a+b =¥ y+c and b 1is a special
. reduction.
When a = 0: choose ¢ = 0 and b = y, which is a apeclal reduction

by the hypothesis of the lemma. Then a+b =b = y = y+c,

When a = a'+x and there are b' (special) and ¢’ with al+b' = y+c!':
apply AOHV to b' and x, to obtain special reductions d and e such
that x+d & b'+e.  (Note: b’ and x both start at the end of a’.)
Choose ¢ = c'+8 and b = d.

Then a+b = a'+x+b = a'+x+d ¥ a'+b'+s ¥ y+c'+e = y+c, completing

the induction-step.




Diagram for tha
inductlon-step: y

a

. /
N\/&.L ¢
N\

AN

N,
Fd(a)y / 3elsn)

Corollary 2°1

If Un\Vn = f for all x, any single well y would be an MCD of
the set containing y alone; so by Lemma 2-1, AOJ with MCDs ag the

special reductions would imply the Church~Rosser property.

On the next page is set out a list of conditions on
residuals and the relation <, from which the Church-Rosser property
will be deduced after a few remarks and lemmas. In the list, xy ¥y,

Zy Yis eoes ¥y aT0 arbitrary cells,

~ .
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Sujw If x and y are any co~initial eells, then there exist

an MCD, a, of x\w and an MCD, b; of w\x such that x+b = y+a,

(0% If (D7) 1s true and z is any cell co-initial with x and v,

then 2/, = 2 y+a 1in the following two cases:
(1) zs¢x and zy,

) yox, zaxy 2y and B/ & Y/ o
(A1): x<y = y+x 3 and for all x, x<* x.
(A2): xcyandyecz = x<z.
(83): If x £y then un\% has no more than ons member.
(a4)s N\N =g .
(a5): y1 ¥ x and %Hﬂmwm = ud\x = u\m\un .
(a6): 1r y; <€ x for 4= l...n then there exists k (L<k<n) such

that I Ak = E#ww and ﬁ.\x < ww\x .

These conditions are written out on a page at the end

of this thesis for easy refersnce.
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Remarks cn the conditions

Remark 1: Residuals were only defined in order to state Acqvu

while the significance of ﬁbmv will come out in the proof of Theorem 2-
Ir %\w were ever infinite, only a finite number of residuals could be
involved in the MCD b; but this would not mean that residuals could

be re~defined to exclude the "redundant" ones, as then Acmv might be
upset . In using Aoqv the MCDs b and a may be referred to as =M\W=
and =M\W= respectively, so that x + 3/ = y + M\W o So when there
-is only one residual of x with respesct to y, =M\W= and =N\W= both

%aww denote that residual.

Remark 2: If the conditionsare satisfied when all the cells in

their hypotheses are distinct, they can be proved in their full
power thus:
(A1): If y = x then y ¢« x because for all x, x < X.

(42): If 2

i

%y then "x<= y and y « 2" contradicts the first
part of (Al).
If x =y or y = 2, then by the second part of (A1},
xt y or vy z-
(A3): If y = x, then %\W has no more than one member by (A4).
(A4): Only ons cell 1s mentioned.
%H\ .

x
If y;= x or y,= x, then %H\n or %m\w 1s empty by (44), and

(A5): (A3) shows that there is at most one residual

1.

G
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so "L/ ¢ 72/ by definition,
If y = Vo5 (41) gives 71/, Aw,%w\wuu%m\x if there is one
regidual of ¥1 with respect to x,
and if there is no residual, 1/, & "2/
by definition.,
(A6)s  The indices are chosen so that 1 £ § =3 ww& %u s

and ._wu = x" would contradict (Al).
(0”): If y = x, then by (44), ¥/, and x\W are both empty.

Let a = b = 0, which 18 an MCD of ¥/, and */y.

(0%):  1fy =x, then /.0 = %0 -

AN\%v\m

(a = b = 0 by above.)

If 2 =y, then u\

]
[}

g/, by (a4)
-4,
and %/pup = %\H+d = Aw\wv\r = because
b 1s a complets development of %\N .
Similarly if z = x.

This remark saves a little work in applying Theorem 2°1 to A-conversion.
The reader may have noticed that the first part of (Al) is deducible
from (A2) and the second part, but I have stated 1% separately for
clarity.

Remark 3: (A4) brings Corollary 2°1 into play.

Remark 4: By (42) and (A1), any finite set M%Hw.o..%uw of cells

has a minimal member, if it has a member at all.
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i ¥ y 7. Y ¥
. ! 1 n 1 le-1 k+1 / In A
Proof: When n = 1: y_ is minimal in iy 1}. . M \ yecuy \ M = M \ seony \ 5 /o 3esay \ M and this
1 M Hw 7y Ty Y Yy Ty Vi
When n > 1 and M%Hg.o.w% w has a minimal member %x“ w ) has no mors than n-1 members. Supposs b 13 an MCD of these n-~1
» "l : w
If %bn& %w~ then %w is minimal in M%Hb,.nm%mw. W cells; then %w+d i3 an MCD of M%Hu.nﬁb%mmc

Ify <y s then 7, is minimal, because for i= l...n-1
n

X To any MCD, b, corresponds a finite set of cells of which

, TSV, S Y ey by (42) “ b 13 an MCD, because if b = ?Hf:lxav and 18 an MCD of an infinite

” mist be a residual of some Yy € O Hence b 1s

an MCD of wwwwe.nz%swc

which contradicts (A1) if i1 = k; and contradicts fie set «, then each x

the minimality of 7 1f 1 # k.

Also, if %x is minimal in ~%ww§3%dw“ then %u.,n\m%w for all i= l...n

Lemma 22

(including k) because %xan%w by (A1).

Assuming (A1) ,...,(46), ﬁcqu and Acmvu
(a8) says that in certain circumstances. there is a %x
If b and ¢ are any MCDs of the set Mwwwnn.‘wsmow cells, and xnmuwu

which not only is minimal in M%Hmo.ouwanCa also sach member y' of

«  (Roughly; any two MCDs
¥ ¥ ¥ 7.
W\N is minimal in * H\W.o... WIH\mew%.%W+H\N.,u.. d\w M.

for 1= l...n, then ¢ b and un\n = H\.U

have the same end, and the same residuals of cartain other cells.)

Proof:

Remark 5: By (41);...,(44), every £inite set *wwmanog%smom cells

Th 1 3 o
has an MCD. a result 1s proved by induction on n

When n = 0: the only possible MCD 1s null,
Proof: When n = 0: O is the MCD rsquired.

i Wh = 1 1y MC 1f,
. When n = 1: vy is an MCD of Mwwmv because MH\WHH oy (44). en n the only MCD 1s ¥y tae

When n > 1: Yyreeery can be re-laebelled so that the first cells
When n > 1: using Remark 4, choose the first cell of the MCD n

-

of ¢ and b are v and y_ respectively. A%H might be the sama as %m.v

2

¥
Then each H\W has

to be any which is minimal in {y,,...,¥
Tx 1 X

n° .
v } Then ¢ = %H+n_‘ where c' 1s an MCD of the fewer-than-n cells in
at most one member by(A3), and W\WW has nons, by (44), so
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Y, M
2/ aees WY M s and b = %m&f whers b' 13 an MCD of the
%H WH

fewsr-than-n cells in %H\ s soep °n/ .
T2 )

If x = ¥y for some i, then ua\a = N\U = f by the definition of

complete development.

The induction-step 1s done in two stages.

From now on, assume x # %H for i= l...n.

Stage 1: By definition of b and ¢ as MCDs, %Hnm. u\H for all i £ 1,

and wuﬂw%m for all j # 2.

Therafore by (45), %H\ o« usw\ for i= 3...n. R
261 71

If %m\w # #, it must have at most one member, by (A3}, and by above and

1
the proof of Remark 5, there exists an MCD olﬁ\um....:&w\%wm whose first
cell is uum\%w. Suppose this MCD is .<$H+o=. Then c" is an
MCD of ?\%\ s s o) , = w& ﬁX
v sene v
(%, ﬁv £ ﬁ: QHQN\& oy m\.ﬁv

By the induction-hypothesis, v«m‘\.“\ +¢" ¥ ¢! , bacause they are both
1

MCDs of Tm\ y sasy 0/ W .
71 ¥

I1r %m\w =@, defins c" to be e!. Then %m\wﬁgz = O+e" = ',

1

Residualg of x:

By (A3}, ua\%u. either is empty or contains only ons cell, x!'.

§m—

42

X
X/ - g, X/ = i =g.
It */y = @, then %/, = § and \Fum\_ﬁ;@ g

me\ uTn.w “arm:wu\?mfiﬂwww\H.S.HHNZ_.:, moia
71 1

induction~hypothesis applied to cf, A%w\w +n=v and x' showsa that
71

N_\o_ . x! Top ,ony . Alsoy by ;mvax\g.%m has at most one member.
/() (%)
/o=

)

T2

-«

X x
Thersfors \n = \N%H+n _V I <

N
i
-

Nﬁum\ﬁs_ \

,+n= i3 an MCD
71

Summarizing; whether %m\% = @ or not, ¢
= 1
of M%Hv.a.w%sm with the same end as e,

X
y )
+2/ 4eh)
/4,
¥

Similarly, if b" is an MCD of \

3/ ) n
N%N +%H ,\.%NJ‘. s \%ﬂm +%H_n\,% Mv

then %m+.<uq\,%m+w= ig an MCD of W.%Hfoiwnw with the same end as b,

and un\ =
c

X _ X
and \‘O = \?‘« +%.u,r\/ iu:q o
2 Jo
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Stags 2: By (0", %H+%m,\/u~ = %whﬁ\% and by (0®) part (i) , If x\f u?@. then x' ¢z by the induction-hypothesis, znd so
1 2
by (43), U_n_\N has at most one member. Since M_\N = U,n\dU » this
the residuals of x and of Y35 0oy ¥, &TE the same after either : S
4 ; glves the first part of the result. To show X'/ <& Yy, for
reduction. ( from Stage 1, each can be seen to have at most one i 1 \U

. i 1= l...n, suppose y" is any member of i/ ;5 then y" & uL\ for soms .
residual,) Hence applying the induction-hypothesis to ¢", b" and [ b 2
member y! of Vi Bt By the induction-hypothesis, x!<£y';

o~ ]

b x ) v
L \mjb‘m\%wv m. which is the same as \m%mﬁu\wmvv shews that c" = b" . hence by (45), Xy MQ , Therafore MMN < ¥V, as required.

z z
and X - X _ X
r \Qﬂwm\wmo@ = \?H J2 \w@ Lu_w = \?m +.ﬁ\u~m +¢_m .

Thersefore ¢ Q?i%m\%%&i x ?mem\.wwé_.v = m%m.*f\,%mg:y z b,

and N\U - x\o , using Stage 1. Remerk 6: If x, Yys eee» ¥y ere mutually co~initial cells, b is
an MCD of ﬁﬁ.:o:%ﬁw and unn.mu@ for i= l...n , then .c+N\w is an MCD
of Mx.‘ %Hu.i&aaw s .
) Proof: If b = zy+..e0+z ; L 2:3 sh x
.hmsam 2:3 1 +2. 5 Lemma 2°3 shows that \_uw <= 7
If b i3 a development ommﬁx enasy %uw and x«\nww for i= l...n, for k= Ou.. m~1, g0 at each stage, ux 1 is minimal ;
+
b'q
then "/ hes at most one member, and X/, <= ¥y for 1= l...n. x
b b \,o in ﬁ \c 3 %H\U 3 ooy %:\U mw satisfying the requirements for
k k k
an MCD,

Proof:

Similarl, if oss sao i
Use induction on the length of b: ¥r 1 X s Xpr T1» 5 ¥, ere mutually co-initial, b is

an MCD of soo = - .
When b = 0: then. /. o M%HV .%L and xuﬂmwu for i= l.c.m and j= l...n; then

b = % and Nﬁm%w = %H\U for i= l.s.n.

b + any MCD of MU.J.\GV.ZJUAE\Uwv

y
When b = b'+z, z being a member of u\,c_ for some j: by the
will be an MCD of waa.n.,.xaw %H‘:Z%mw .

induction-hypothesis, either un\v. =for % - n?_m for some x'.

If x\dﬂ = @, then x\w = @ and hence un\,o v wu\.c for 1= l...n.

AMsgo , if §>1 = %u. AW%H_ then the reduction b defined by
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b =0 b nv»wvuawbzxcx«&hmipi{&\&m%i

o] > ks 1

%, .

- V7, o, I‘i\t\.. y r 4 -
Iﬂ\h‘\\‘\\l‘\\ \W\.« ﬁﬂﬁ\n\ﬂ“‘“ﬁ“ﬁ“\l‘l‘\-“\\: a\\‘q\‘iﬂ. VT > Vr
Cewrdid a&«.h..\h\.

is an MCD of ?H;ZZ%L o .*\N.\rmbeﬁal\hv. ey b=b

k.

Remark 7: If x, wwu ceay %z ars mutually co-initiasl, then an

MCD, called an "x-MCD", of Mww‘ aesy %nwnms be constructed as follows,

If n = 0, the x-MCD is O, Otherwise, first re-number
the cells Y19 eces ¥y 8O that for some number m:

for i= l...m, xﬂmwu and x & vy if there are no such 7,

put m = O,
for 1 = m+tlsoon, x< w‘w or x = ww if x = %a._.u for some }J,
arrange the cells so that
J =1,
Also, using Remark 4, re-nmumber y . S % so that
m+
h>j = a+rﬂm”% . Ir V.1 = % do the numbering without A
altering y . (This is possible because y <£x for h= l.,
m+1 m+h

oo ~m; by (ALl). )
Then %a&ﬂu\u for 1= 1l...m and j= l...(n-n, because

otherwlse x <y <« yy orx=y

m+]

contrary to the mm:aﬂwos of 1. Hence by Remark 6,

-y < %w“ which both imply X<y,

(any zoo\ow %H_...e%t + (any MCD of { ¥ aﬁW...Z%wwV

will be an MCD of ?T::w j .
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For the first part of the x-MCD; define an MCD, b, of M%H...C%EW
as follows:

b =0,

o]

If by is defined, then by Lemma 2°3, */y & Y1/  for 1= l...m
K by

and N\d has at most one member x'; since Nﬂmw.u for i= 1l...m.
k

Also each uﬁ\ﬁV has at most one member .ﬁ. (for 1= 1...m) as in
% ;

Remark 5.
(1) If there are no w.wﬂ x': choose the next cell v in
b to be any one minimal in M%u_..:..%a , if m%w“.....ﬁ.awk 4.

= ' = N =
Then UWL. = dwﬁ? If M%H.....%aw # , that is H\dw g

for i= l.,.m, them let b = ,ow,

(i1) If there are an !<x':t chooge v to be the one of

Y V4
these %w given by (A6). v is minimal in N%u_.u....ﬁ_w
baecause
ﬁ < x' = ﬁ,ﬂf by the definition of v, and
wmﬁwx_ = ﬁ«mf since mﬁﬂ v and v < N_w implies
vl <x' by (A2).

i
Because of the minimality of v at each stage, b is an MCD.

For the rest of the x-MCD, note that 1f %s&\d i1s not empty,

it must have at most one member y! by Lemma 2+3. (for j= l... n-m)

m+j

Now for each stage b, of b, h>] = wa,&\,a = wa&\v .
k k

k




il

Theorem 2-1

This s proved by induction on ks suppose h > j; ; 1), ..., (46), MUNV and numv together imply

When k = 03 vasiﬂ\,U = wa+rnn”%5+. = wa+u\w . | . If a cell x and an MCD b are co~initial, then there exist
) [ €*)

3~

. MCDs e and d such that =xH ¥ ble,
Voo s

: When b, .= b +v and ~M™h m+J :

k+l™ Tk \ww ¥ \ww Hence the Church-Rosser Property, by Remark 3 and Corollary 2-1.

Lemma 2°3 shows that V.a%\@# = v, since %5+¢nﬂw<w for

i= 1...m and v is the residual of soms such Vie The proof takes up the next 13 pages. Pirst of all, let

Hence by (45), Aws*r\wwv\\ # A.A\S &uwv\w
. v

that is, %5+ﬂ\w <7 %a+&\w as required.
k+1 k+1

m%wu...vwnw be a set of cells of which b is an MCD, and let b be an

x~MCD of m%w.....wuw. By Lemma 2.2, b* has the same end as b {though

N\¢# may be different from N\vu so, replacing b by b* in ﬁnwwv it is

encugh to prove

Hence b>J => y' o&y' , and so the development of
m+h m+]

If x, Yyse-«s¥, axe mitually co-lnitial and b is an x~MCD of
m%%+-...wwwmamwwum& as In the third part of Remark 6 is an MCD.

@
mwwu....%uw. then there exist MCDs e and d such that x4d = bte.
Call this MCD "a". (If m = n, let a = 0.)

The proof of AQH.V splits up into four cases:

. - 2+
: The x-MCD of { y ,+..,7,} is defined to be bea . () for i=1l...n, x<fy; amd x ¢y, .

“ 2 =

T Actually there may be several x~MCDs, depending, for exampla, on the (2) for some i, x LA
particular minimal cell v chosen on the previous page. (3) for i=1...n, W»nwnx and x # Igr This overlaps with Case 1.
(4) for i= l...n, = # Iy-

The vhole result is implied by Cases 2 and 4 together.

In the proofs of Cases 1, 2 and 3, the term "{G2)" will be used

to denote (G!'Y with the following statements added:
"d 1s an MCD of {73/ ,...,%n/ ] and e is an MCD of a subset of %/ sand
1f z is co-initial with x and z¢<x and 2z knw» for i= l...n,

u .
then /xtd = “pre ",

vadwocmw% mﬂNv implies Anw.um the clause about z is just to make some

vy alls form coselive S gl B fo B
((Ses Cubim 2 foorf of Cace 1)

ﬁ&l:nﬁu&&,
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Cases 1 and 23 )

Aomv will now be proved in Cases 1 and 2 together, by induction on

x
n. Further it will be proved that e is an MCD of the whols set \,c.

Bagls: When n = 0 and so b = 03 choose d = 0 and e = x.

X
Then d is an MCD of @ and e is an MCD of {x} which 1s the same ag \,c.

|

Induction-step: Assume that n > 0 and Aomv&um true in both Cases

1 and 2 for all n'<n-1 (for all x,z, Tyseeey ,}+ Suppose that x,z, b
n

and ?Hf.:%uw are givem as in Ammvm the two cases are now separated.

Case 1 of the induction-step:

For i= l...n, x ﬁ%w and x # vy- Here the number m of Remark 7 is the

same as n, Re-number %H.....%n so that ¥y is the first cell of b, and

suppose b = y +b'.  y, will be called "y" for short. By (A3), x\q

has at most one member, and by G,.J.

un+%,\,un = %+N,\W~ .

Also ﬁ\xﬁw\ FOr 4= 20aall 5 o v b w e e e e e w e (D)
X
Proof: Since b 1s an MCD, f.ﬂm% for 1= 2,..n.

Ir %Hﬂxu then by (A5), %H\Nﬁ ua\un .

Ir %Mﬂ X, then by definition of b as an x~MCD, y must have

been chogen by (ii) on page 46. mmzom.wu\xmﬁ uwx by (46).

tedl S REE e
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N .
H i/, = 7 £or 1= 2ooalle o o 4 o o o o o o o(II)
ence \v« v.\\,uav H\A%mm\, )
¥

Proof: As in (1), wwﬁw for 1= 2...n.
if M\Hﬂwxy then use Abmv part (1).
If yy < x, then as in (1), y must have bsen chosen by (ii) on

page 46, and hence y < x. Use (D811) together with (I).

8
Also by D71) ¢ v v v v s ee ve . .. (IIT)

% b
\Q@% ) \Qm\m
As in Remark 5, there are no mors than n-l1 residuals M%m\u\_...vuﬁ:\uN M
If any of u“\u\ N\ul %N\%u ceey wn\u\ is non—-empty, suppose its sole
membsr is x', z', %w.. erey O %m respectively.

By (A5) applied thres times; for i= 2...n,

2 Y X T z X/ o v e v o o (V)
Ly EIs K E Ty wma Y |
The proof now splits up into two sub-cases, according as um\uN is

empty or not.

Subcasa (1);

By Remark 7 there exists an x'-MCD, b", of m%m‘..:%_

When X\% is not empty, and its sole member is x':

*. By Lemma 2°2

n
1 1 1 ) 2
and (IV); Db!' = bv, un\.c_ = un\U__ and N\.c_ = N\U: ./MHH. \% = Mm_wuw
not &
By (IV), the induction~hypothesis can be applied to x', z', ?m....\.uﬁm
and b". MOWum 2 is applied if x' = u‘u., for some 1, otherwise Case 1
! '
is cmmm.w Hence there exist an MCD, d', of M%m\x_‘..lw‘:\x_w

. X!
and an MCD, &, of \U: such that

if N\w £ d.

. N— N—
.U: = 1 nm.— Q. =
+8 = x'+d', an “ ire) A\un.im_v
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(2 -~ Yn)
W\\)

- A
< (31,-.53)
% =’ ;

/ \/ ,.,, b

Choose d to be A%\xﬁ_v.

Hence x+d = x+%\x+m_ = yax'+d! = yeb'+e & jiblee = bee.

vow Yi/, - 9\%\& n f\@m ok ﬁ\?ﬁv by (10). (1574 49)

' %N\ ¥y
So d' is an MCD of ?L\.\wv».... so?%\xv ; hence by (I) and the

second part of Remark 6, d is an MCD of Muﬂw\ yeresin/ w s as required.
X x

Also e ig an MCD of xw\c: = NVG_ = mx\wv . = u&u;d& = N\,U.

Regiduals of z:

If n\% # #; then

Z, _z _ (24) _ (&) G ; -

\Qimvl \@tofmvs u&wfmv N %N@.imwl .\Nﬂ:mw By the induction
hypothesis applied to b¥;

mu\?x\wvm_ HAN\?QQN_ by (III).

= ? x+d 88 required.

If N\% = @, then N\NNﬁ«\\,uan N\m%&.um\“\vn #, and so N\un.vQ = 4.

Z _
Also \_u+m = 3/

= & = 2
{y+b'+e) ~ 7 7 x+d °

-52-

Subcase (ii); When N\% =@ and so Vﬁ\,U = g

then W+N\,N = ul,un\,w = y+0 = y

nd u\w e - s
Yoy oy e N,

Choose d to be «N\wiu_v and e to be O.

The rest of the reasoning is the same as on page 51 replacing

1

"xt" by "0" and "a'" vy "b'", and letting b" = b'.

Cage 2 of the induction-step: . for some i, x = ¥ -

Define m as in Remark 7 and let b' be the "b" of that

, / fx, £d)
remark, znd b" be the __m.__wﬁ..*sosw its first cell, ‘e“ \v\ .ﬁﬁ\

Then, since x =y _, either b = b'+x'+b" or b = b'+0+b", according

m+1
as */p, = {x'} or .  ilso m g n-l.

5SS

Applying Case 1 of the induction~hypothesis do”M%Hu....%aww

x and b, gives an MCD d'. of MHH\NT.C%S\KW and an MCD e' of un\G_. such

that U= blegt 2% 7%
a x+d! = b'+e!, and edt = blagl =+ o v e e e o (V)

for any cell z* with 2%y  for i= 1...m and z*£x.
i




Since there 1g no mors than one residual N\GZ there can be only

one possible MCD, e', of Uﬁ\,c. . That is, e' = x' or O according

as un\.a_ = Mx@ or f#. Therefore by the previous page, b = b'+e'+b",
Yms2 Y.

Also,by 1ts definition, b" 1is an MCD of % m+ \m‘c.+m_v...._ n\?;mww B

Choose d =(d'+b") and & = O.

Then x+d4 = x+d"+b" = bl+gt+b"

it

b = b+0 = b+e.
e 1s an MCD of x\d.dmomnmm x\v = MJH:L.\.G = ff since b i3 a complete
development.

4 18 an MCD of ?\ yeoesin/ M .
x p 9

Eoo? d consists of

T+l by (V) with as z*.
\mu?m_u v wa&

(for j= 2¢.. n-m)

i),

¥,
Since by (45), s&\Uﬂ ﬁ%u\x for i= l...m; the second

N
But aL\?_._.l

part of Remark 6 shows that d 13 an MCD of

A&EQZOU 4l Oﬁ“m%u.\unh ey WE\NW u + Amﬂ MCD of Muaaiwm_ _V.v see s%N_ _v v .
. +0 +8

TR T A D ST

b e e A e

=

:
¥
¥
¥

- 5

of M%H\x. .. ..%a\xw uxn:,m\un. . :w:\u« wu = M,ﬁ.\xu e ..u\a\xm by(44),

gince =X
Ve :

1

2 z . n 1
Also \Wuni.wﬂ \mu?«nw_iu: = N\?_.vm_iu:v by (V) with z as "2¢".

N\d = N?;.mv *

Case 3: for i= 1...n, .f.ﬂ.x and x # 7y

The overlapping of this case with Case 1 is necessary
O.F
for it to be applied to Case 4 later. {é, is proved by

induction on n.
When n = 0: let d = 0 and & = x.

When n >0: if there are no wm with x < %H‘ use Case 1.
Otherwise by Remark 7, b = wf&*. where b! wm an x-MCD owNwH:.:%H‘THM
snd b° = 0 if vxs\.o.u I
v'af /s (v,

As in Remark 7, X<y, and y AW%H for i= l... n-1 . Call Y, "y,
n

By the Msmﬁnﬂwoﬁnv%noermmum mvv:mm to x, b’ m:m?w.....u\an

there exigt an MCD d" bmw.wp\w...;,v.ﬁww.\xw and an MCD e' of a subset of Un\q

oe Wit 2% z%
such that x+d' = b'+s', and \Q?m.vu \?;mo. e v e e .. (VD

for any cell z* with z*<*x and N%ﬁwu for i= 1.., n-1.
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Now y &£ x since x <y, so by (VI) applied to y;

Thera = praan) e v v e e e s (VID

1f ¥/ 1 = #, then b = b'; define e = o' and d = d'.

Hence x+d >~ b+s and N\on+& = N\?+md by (VI). Also e is an MCD

of & subset of */y, =%/, . d would be an MCD of Mﬁ\xt:.«s\xw

b2
if ( n\xu = f end at each stage d, of d, Qn\unu foan Qw\xw
d k dy dy
for i= l... n-1. The former is true because

Qu\u&w = Ywa = Toreer (v (VID }, = B, The latter is true

by Lemma 2°3, since uaﬁ\un ﬁwu\x by (45}, for i= l...n-1.

From now on, assume ux\v. ‘k. &.
Vi & v s Py F= T and B FEF oo L(VITD)

——
Proof: b! is an MCD of T‘H.....%a Hw and hence is a

development of MN. Fyaeeesy L,m. Since y & x and y .ﬂnww for

1= le.. n=1, Lemma 2:3 gives u«\w_ 7= */, »  Similarly

z x
\.u_ *= \w_ . b' is also a development of M%. Tpreeesy ..Hm

~56-

2
so by Lemma 2°3, \U. *“ %\d. .

Suppose that Xy seeesXy (0 < h) ars the members of un\G__ whoge residual Wn\mw
G

dras the cells of o' ( compare the second part of Remark 5 ); meNm
A

then e' is an MCD of MNH...SKL. Also suppose Ha\ﬁi = ?_w. and
N\,c_ = T@ or #.

By (VIIT); y° A\hxw and z' uﬁxw for i= l...h, and z' & y' (4if 3!
exists ).

Now by Remark 7 there exists a y'-MoD, e&*, of TAHT.CJMW.

1 '
By Lemma 2°2, e'= " and %\m* = U<\m_ because y'! ﬂmxw for i= l...h.

. z! !
Similarly \m% = N\ L. ( See the diagram on the next page.)
8

Case 2 or 1 (according as y'! is or is not one of NH“...NEV

cen be applied to z',.y!, wa.....xﬂ and €% to obtain an MCD, 4",

< t
of M H\%:....xd\%_w end an MCD, ", of %\m# such that

#ed of ol
%\E\q%

1 1
F n o~ 1 " 4 — 2 i
g%+e yi+d and \T._»fé__v = \.Cliw:v .« .

(1f 2' exists)

Let d = d'+e" and e = 4".
Then e 18 an MCD of _ﬂxw\%_ .....Nﬁ\%_w. which 1s a subset of Auhn\,u.v\ ”
7
which is th x\ xs
e game ag (breyt) = b

By Remark 6, d will be an MD of Tw\x...:ws\xw ir o/ =71
N P4 x

~
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n
for i= H.Z?ud and e" 1g an MCD of ( \x\a_ o But the former is

Vu—
true by (A5), and for the latter, e" is an MCD of \%:E% is the

_ wuiw w <Hdmoa5
same ag %\m_ = A \‘oﬂ\mﬂ - \?:m_v \\ x+d ) oy

an MCD of F\ yeeesTn/ w
X b d

Also x+d = (x+d'+e") = (b'+e'+e™) = (b'se”+e") = (blay'+d”) = bee.

\ b
././
=
2
e
\m:
Residuals of 3z
If N\d_ = MN_W s then )
z z = 3} = % by (IX), since e = d".
\d+m = Nd.+.<n+mv = A\%:.mv \ﬁmk+m=v 7
z! z! 1
- ( \m*v\m: - { \Q.N__ = N\Am_+m=u = N\ﬁd_+m.+m=v
b
= I
h \Axa:m_.v by (V1)
z
= UNATQ. .

2 = y (VI
Ir N\G. = &u then N\U+m = & t00. Also \AG:.Q_V = &‘ 8o U\ A vu

u NA
N\u?d_ =g Therefore \xa =g = \d+m b
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Case 4: for 4= 1,..n, x # v,-

In this case (G!') will be proved without involving (62).

Given x, {y ,...,7,} 20d b as 1n (L"), et b* and b”

” 1y

respectively be the reductfons b and a" of Rematrk 7. Then b = b'+b".
Since Hﬁ%w and WB,& %.uwh for i= 1...m and j= 1...n-m,

there must be at most one member in each of N\w. and wEJ\‘ 45 by

Lemma 2.3, Also, by a proof like the first part of (VIII),with

%B.J: instead of “y';

T F e e

(Here, %HJ <=z becanse Nﬂwﬂﬁ by the definition of m in Remarxk 7.)

Case 1 applied to =, m.ﬁww..iwaw and b* gives an MCD, 47,

of Tw\&.....%ﬂ.\ w and an MCD, e*, of x\v. such that

3 % ‘
b'e' = xid' and warrm.v u u\mﬁ&.v ......‘..onv

for any cell z° with mw«ﬁn and Nuﬂuww for 4= 1i...m.

($11eesYm, Fmarroes I

z

( Yy 1= 35 )




-55. -60-

= 4!
%B,J. satisfies the conditions of {41}, for j= l...{n-m), so Let d '+, .
y,
Now for j= L. nwm, "R/ . Tmyy . Tat) pary BY GID
. i

since e' = x?,
7ﬁ:u\uwm.
= ’

so d” is am MCD of Mﬁwgv\Lm.....-ﬁwU\wwﬁ.M.

For i= l...m and j= 1,.. n-m, %ﬁfu\xﬁ v.u.\un by {AS5). -

¥ .. A
nl.u\\nc..fm.v = F:J\mui.muw e e e e e e s e e e .. (XID

? 5 X
Define MB+~M...QH.~. x' to be the sole members of wiw\v.....uﬁv\v_. \u_
Tespectively {if they are not empty). Since e' is an MZD of N\w..
\v. = ?.m or .

2 X

e’ = x* or 0 according as
Hence the second part of Remark 6 shows that d is an MCD of

IR RE VRIS YA ) ﬂ

Suppose N\c. = MN.W .

u.‘w Remark u thezre exists an x*-MCD, B, of M%%‘TH....QMW. By Lemma 2-2, Also xH = (xhd™+d") & (b'+e’Hd") = (blMx*4+d") = Av.+d*+mw
b” = B, since b" {s an MCD of .ﬁ#w.....vﬂ“m. By (X}, w_w+ o= x? & (b'+b'"+e)

y 3 R\nm\hpl‘w?e;\n.v.w\»a!&bm\l
for j= 1...n-m. = bte

! Y,
5% Al bt
\&P\QQ\L\D‘ Uﬁ\s\t A W.Q\.f\.ﬁﬂtl‘!w\sﬁ
vRQT\.bH}MW .P.ﬂ).\g* N

Therefors Case 3 {ox Case 2 if x' i{s one of umw_, Hence Amu..u is satisfied.

H....uwwv is

applicable to x?, Mu«m:.u......vﬂ% and w»... giving an MCD, 4", of

v?! 3 x?
M u._:ﬁ\x:..:wa\x.w and an MCD, 2, of a subset of \w,u.. such that Subcase (ii}; When x\v. = @, then e' = O,

Let e = 0 and d = d'+b", (See the diagram on the next page.}

" ® b,

The rest of the reasoning is the same as in Subcase (1), replacing

et by 0" and T by :w::. and letting b” be b,
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DYagram for subcase (11):

The proof of Theorem 2+1 is now completa. Though it
looks rather complicated hers, when it is re-written to apply only
to ap-conversion it becomes one of the shortest current proofs of

the Church-Rosser Theorem.

62~

Other people's results

Several authors have proved abstract analogues of the
original Church-Rosser theorem, the first being Wewman in ﬁwgv whqge
results wozm<m&.mo not include A~conversion as a special case (as 1s
shown in the review magv.

His main results are:

(1): If r and 8 are relations and there are no infinite "chains®
No g xH s Nm Sesesue (not even chains with repeated members like
No 3 xH

and

sX 8X) s.... are allowed)

UrXandUsY = Jz: ¥ Zp By and X WmN by & non-null reduction,

then

UpXandUyY = Jz: Y

s Z, and X WmN by a non-null reduction.

r

(2): (CR) 1s true for any reduction-complex satisfying the
following conditions: (x, v, z are any mutually co-initial cells)

x ‘
ANVHV" \W u&wwmsaoswwwwxn%. A H\W Hmmmwwsm&mmcmwonm.u

Amwmv" x #y implies that there are no cells common ﬂm;x\m and u\\mw

Amwuvu If x and y are distinct and co-initial} there exist

developments a, b of x\W and %\W respectively, such
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that x+b = y+a. %Nwwvmwmo holds when x = y; compare

Remark 2. m
ARVAVu If ANDMV is true and z is any cell ep-injtial with x,y,
then 2/ = 2/ .
x+b y+a

Finally there 1s assumed to be a relation J (which only holds

betwesn sco-initial cells) such that

(7.): If x J y, then Uﬂ\u\ contalns exactly one member.

(3.): If xJy, then x' J y' for all x' = %/ and y' = %\N.
z

(3): (CR) is still derivable if ARVHV is replaced in the above
1ist by Amwwv given below and an extra condition Aquv is added.
ARMMV" N\W = @ for all x, and if H\% = ff then either x = y or

%\x has exactly one member.

(7,): Iftx#yand xJ 2 and y J z, then N\W has mWNoﬂH% ons

member.

Result (1) is like Lemmas 1°2 and 13 of this thesis, and
results (2) and (3) neither include nor are included by my Theorem 2°1,
aB~contraction being a system satisfying my assumptions and not
Newman's, while the example overleaf satisfies Newman's assumptions

and not mine.

bl

Cells are numbersd from 1 to 8.
J is thusm& by the statements ! \b/// N

334, 473, 576, 67 5,

wa;wwmmawmm ¥/ =8 for all x, S\ 5/
. Y= {5.6]
RARRERY Wil
m\m = m\m -8
i =420

ANVHV. ANva‘ ANVNVM AHHV and Aumv can easily be verified.
For Aumvn If xJ y, then from the diagram, z must be x or y, and
hence sither Un\N or ¥/, 1s empty.

If x = y, then it must be proved that for all z co-initial
with x, x' J x" for all members x', x" of un\N. This is
immediate if 2z = x or N\M has only one member. Otherwiss,
un\N = vamm or Mwuuw. and the result follows by definition
of J.

For mmvmv" : The only pairs of eo-initial cells

{ %, y} vithx £y are mm.uwa Mm.mw. and Mwumw..

w+»\w = 347 = 4+7 = A+u\w . mwwmewH% for Mm.mw.
For MH~NW" 3+7 = m+b\w and m&&wu a development owmw.aw = wm.

Likewise m+m.um a development of H\m ; and as required,
1+(3+7) = 2+(548). /

For ANVNV" Since thers are only two cells at any vertex, z must be

z
the same as x or y, and hence \u?ﬁU = N\W+w = f, because

-
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in each case b and a are complets developments. (Compare

Remark 2.)

Howsver, if there were a relation, < , satisfying (#1) and (A3);

1 <2 == 2¢1 vy (A1)

e M\H would have no more than one member, by (43).

Therefore 1 ¢-2, and so by (43), u‘\m would héve to have at most one

member, which is false. Hence this example does not satisfy

(A1) and (A3) together, although it satisfies Newman's assumptions.

H. B. Curry has also "generalized" the Church-Rosser The cells are numbered from 1 to 21 mmm run from an u 1
: pper point to

Theorem, in TT but his result also does not include af-contraction.

for all x, un\uh = g,

(Ses [4] and page 149 of Curry and Fays' Tw ]

The conditions -from which he deduced (CR) are as follows. H\ - Mm w 3
, 3= s97 s \H =13 . h.\Hm - Q\Hu = 21, Hu\x. = urw\q = 16,
vy, x, _ /2 = g 279
(A 7/p = 4 for all x. , el 252150 | 5 =8, 000, M5l
/1 = 4,7 1/2 = 6
Abuv and Ab\w as before. 4 ,w ’ w~ / 4 . \u.m = @\Hm =20, 15/ - 15/9 = 18,
_ | . /1= =10, 10/ = 4, /10 = 19
(7)) If x J y, then °/_has at most one member. 5/8 = m\ _ °F
i . ¥y = m =11, HH\HQ - &u Hﬂ\ = 20
6 11 = °
(31 If x J y, then x' J y' for all x' e X/ andy' =Y/ . /9 =9/6 = 12. 1 _
2 ’ z L %/18 = & Hm\wm =22,
a\.u" For all co-initial x and y; x J yory J x. J 1s defined by
17 2, 233, 3731, xJ x for all x; and for all x and y

Again, of-contraction satisfies my assumptions but not the ones above, i
distinet from 1, 2 and 3 xJy.

and the system on the next page satisfies these conditions but not

my (A1),...,(A3). (A !
Hv. va. G.mv and Cuv can easily be verified, and Amvmv 18 proved
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by checking each pair of co-initial cells. The developments .
involved are complete in each case, so Abuu need only be verified
when x, y and z are distinct. (Compare Remark 2.) The only such
trios are {1,2,3], {6,9,15],5,8,14, ana §4,7,135.

Testing Mm:@_wmw for ARK.V :

15 - (1572 _ 18 _ (15/9) _ 15

\?m\mv h m\%\mv = /T \m\@v ) &?m\%.

6 220/ _g. 12 _ 6

\H%@\Gv =0=2= T = &f&%.

Similarly @\H%m}mv =g = @\A?G\mv . So Ab\,v is satisfied.
The trios Mm‘mbk.w and Mh.qpuw can be checked likewise.

Testing Mwuwuww H

1 1 1 .
\\mtb = ( \NWG = N~\~U where b is either (5+11) or (8+11)
. (i.e. a C. D, of w\w ; see diagram.)

14 14
- A\mﬁc 8 @Lc
1
u‘qbp umm%
1 659 DY 9 1
A\m‘.m_\uv = M wHu = Mo\ww. \wa = Mmom = A\mi&» which

varifies AD\.V when z = 1, When z is 2 or 3 the working is
similar.  Thus Abu.v is satisfied.
(A1) 5...,(A3) are not satiafied together because (43}
would imply that 1<C3, 3< 2 and 2<< 1, and hence (A2) would give

1< 2 and 2 <1, contradicting (Al).

Part of Curry and Feys'! proof in TQ of the Church-Rosser
Theorem for af-contraction is done in an abstract form, and shows that
(CR) holds when there is a relation F (which only holds between
co-initial cells) such that

(A) and Abbv are trua,
3

Amov" xFyandyFx & x=7.
}): xFyeandyFz == xF z.
AmNV" (not x F y) = un\% has exactly one member,
(H.): Ua\un = @ for all x.
Ambv" If x Fyand z #y, then for each x' & un\N there exists
y'e v«\N such that x' F y'.
s - =
Ammv. ¥Eyo=m oxEy H.oH.mE.N_mx\

Ammu" x'Ay' => xAyorxAz 2

md&%.m%\uu
Amqv x' Ay' => xAyorfotyAlaz)

where "x A y" means "x F y and (not y F x)".

Also uﬁ\u\ is finite for all x and y.

In fact Curry and Feys prove more than (CR); they prove
V Any finite set a of cells has a complete development, and if
(E):
¢ znd b are any two C. D.s of o, then ¢ = b,

and

Am_v"% If (E) is true and z is any cell co-initial with a, then N\n = N\c.

From (E) they deduce (CR); see page 72 later. they do not
actually mention the :x\w is finite" clause that was mw<mw above,

but seem to use it implicitly ih the deduction of (CR) from (E).
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Using (E) =nd (E') 1t can be shown that any reduction-

complex satisfying AD%. AB%_ Amov. seny Amqu will satisfy (Al);..

.oy (46}, Q,J and Aomvg as long as x\% ig finite for all x and y.

Proof:

Given a complex satisfying Abuv. AKVN.V. Amog. sooy Aqu in
which H\w is always finite; define
xCy iff xFyand x £y.
Then X<y iff x Ay, because x F y dmplies (y = x <= y F x),
by Amovo By Remark 25 (A1),...,(A6), (D7) and Gumv need only be ”
proved when the cells in their hypotheses are distinct.

For (A1): x<yamdy<x => xFyoandyPFxandy#zx,

contrary o Amov.
x<x => xFxand x £ x, which is impossible.
For (A2): x<yandy<z => xFyandyF 3z, and z # x by (Al)
= zZxand xF 2z U%Amu_.v
= X 2.

For (A3)

x&y => notxFy (since "x #y" is assumed)
= H\% has only one member, by Ammv.

For (A4): Use (Hj).

For (A5): 7y < x and ol ﬁ%m => (not 71 A x) and{not 71 A %wu

HVsoﬁ ﬁ > wm v».ow.wﬁ. %M m M\N

maamyp wm m wm\x. by (H).

= wm ﬁmwm , giving (A5).

e e it e AT S S B R

For (A6): " Given %H_..:% and x with y < x for i= l...n,
n i

Remark 4 shows (using (A1) and (A2) ) that the s is a %#

for which 1 # k = 7, Am%r. since y, < x and A 1s

the same as .,nuw.C*qV inplies (not vy A wa_nu for all %m. m%w\x

and:all yt m%r\: Hence y! £ y! as required. (For all i#k)
k™ /x 1 k

For (D7) and :umf By Remark 4; for any co-initial cells x and ¥
there exist MCDs a' and b' of the finite sets x\w and u,\x
respectively. The developments b, a, given by Abuv are
x _ X

\ul.m T /x+b by Abbv

& by Amuv. and similarly for b.

x
complete, bacause ( \«L\w

Thersfore by (E) and (E'), b and a have the same ends and
residuals of z as b' and a' respectively.
Hence a' = a<=1b by Abwv

~

N u N
m.dnw \%.fm._ = \ul.m = x+b by Abbv
z w+b? ¢ Proving qu and Acmv.

Since Ammv 1s stronger then (A3) there are systems
satisfying (A1),...,(46), (D7), (0®) but not (H,) end (H) together,

for example the simple one overleaf.
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relation < is defined to hold

it

Muw»\%m M\H = &.

u\\. = A\m = 5,
(41),...,(46), (D7) and Aumv can fairly easily be verified, but Ammv

would imply 1 F 2, and hence not 2 F 1 by (H)), and so m\H would

To apply the abstract part of their work to om:oosmmwo&won‘
Curry and Feys prove first that Church's restricted aB-contraction
satisfies ﬁmpmv. Amwuu~ and Amovv.u..Amqv. which imply (E),
and then extend (E) to unrestricted ap-contraction by a separate
short proof, since unrestricted B-contraction does not satisfy Ammu,
A more direct proof of Aomev using Theorem 2°1 will be given in

Chapter 4.

In his doctoral thesis, ﬁmg. which 18 not yet published

28 far as I know, D. E. Schroer has exsmined abstract forms of the

. have to have exactly one member. T2, def fyom m%r.tu et AMK.,,“%Q.XA»\

-7 2=

Church-Rosser Theorem in detail, and his work dces apply to
conversion, I do not think his results include mine, or mine his,

but have not proved this.

Property (E)

Most of the derivations of the Church-Rosser property,
except ﬁwu‘ this thesls and perhaps MMM« have proved (E) first and
derived (CR) from it, roughly as follows.

If x, ¥y ++» ¥, 8Ye co-initial and b is a complete
development of M%H.u...%nww then by (E) there must exist a C. D., e,
of N\U and a C. D., 4, of W%H\chuq.ws\xw. Abwmcam:m these two sets
are fin‘te.) Since x+d and b+e are both C. D.s of Mxy %Huuoau%swh
(E) shows that x+d = bea, Hence Lemma 2¢1 with C. D.s as the
"special reductions" gives (CR).

Since (E) is a more powerful rasult than the bare
Church~Rosser property, it may be interesting to know what extra
conditions (if any) have to be added to (A1),...,(46), (D7) ana (D%)

in order to derive it.
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Property (D)

Also common to most of the derivations of (CR) ars the
two forms of property (D):  one seying that to any pair of co-initial
cells x and y correspond reductions b and a with x+b < y+a
mm. g Aoqu or Amvuu w and the other form saying that N\x+m = s\w+¢
as well. Mm. ge Aomv or Amwuvb

In their original proof for restricted af-conversion,

Church and Rosser proved separately each case of ANVuV that had to
be used, but ABwmemmam so obvious in of~conversion that it was not
explicitly mentioned: this omission was pointed out by Newman, and
it has been suggested that 1t makes their proof incomplete (see mmg.
page 149 ). However Kleene does not agree with this criticism

(see Mou. page 285). Since the result is correct and mest proofs

have gaps anyway, the point at issue seems to reducs to "Did Church
and Rosser know at the time that they were using Auuxv besides Auvuvm=
which 1s not very important.

Aomv does not seem quite as strong as Amwuu. and there 1s
in the Appendix a complex possessing (A1),...,(46), (D7) and Acmv yet
not ANVAV. However its residuals can sasily be re-defined to give
At Amuxv. and I do not lnow of any examples where this re-definition
is Havommwmeg Also in the Appendix is an exemple showing that

Ameu and ANVAV by themselves do not imply (CR}.

The history of the Church-Rosser theorem is given in ﬁm%
page 149, end short notes are in TN~ mmuw and page 285 of ﬁmg.
Ladridre in ﬁHog page 376 shows how ths theorem can be viewed as
rastricting the forms of proofs in Church's logical system based on

A-conversion (which is described in 6.
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Cells with Positions

It is interesting to note thet assumptions (Al),...,(a8),
(07) end (D®) can be greatly simplified in the following circumstances,
which are true of many relations defined by replacing parts of
formulae by others, as in B-contraction.
Every cell x is assumed to have a thing p(x) called its
position associated with it, such that if x and y are co-initial,
x#y = plx) # ply)
but p(x) may be the same as p(y) if x and y are at diffsrent vertices.
There is also agsumed to be a relation <, holding between positions,
such that for all positions p, q and r;
(Bl) p<gq = q+&p; also p+# p for all p;
(B2) p<q and g<r = p<r;
(B3) gq<p and g<r = p=rorp<Lrorr<p.
Then the statements "p < g%, "p = q", "q < p" and "p _ q" (which is
defined as "p Zq and p¥ q and q X p") are exhaustive and mutually

exclusive.

Definition 2°1 Residuals (of y with respect to x)

This is not a proper definition, but a set of assumptions
about residuals, whose lay-out any future definition of residuals
will follow.

(1) If p{x) = ply), and s0 x = y, then u\\H = U.ﬂ\% =g,

76

(1) It p(x) h ply), then there is supposed to be a cell v

starting at the end of x, with p(v)

1}

1%: also a cell u

starting at the end of y, with p(u) x), such that

H
o

X+V T y4u, u\\um 1s {v} mm:m un\u« is {u}

(II1)  If p(x) < p(y), then either (a): Mﬂ\un =g
or (b): v~\Uﬂ contains only one
cell, v, and p(v) = p(y).
(v} 1f ply) < p(x), then ¥/x is a finite or empty set of cells

THI:}L such that 14% < p(x) or v?uvnv?&‘ for i= l...n.

To apply Theorem 2°1 to a complex like this, define
xCy 1ff plx) < ply),
giving (A1) and (42) from (B1) and (B2), also (43) and (44) from
Definition 2°1,
For (A5): Suppose vQHV q&w?& and v@ww qu@m: then by Def., m.HQ-m@.

¥
either H\N = f#,or ww\x has just one member uxu_, and v?‘t = ply,).

1
Ir v@mu < p(x), then for each member v of uﬁm\k, plv) < plx)

or p(v) = p(x),by Def. 2:1(1V). Hence plyy) ALplv), gn.m:mm

otherwise vqu.v < plx) m»dw (B2) 1f p(v) Av;vw which is falss.

Therefore E.‘\Mv £ p(v), that is ﬁ.aﬁf as required.

If v@mw 4 p(x), then either w‘m\x is empty, or it contains
only one member 5 and ﬁqn_mv = @Qmua Hence w@mv A\Asﬁqn_m:

thet is, wmﬁ%m as required.
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(46) and (D7) must be checked in each particular application of this

note, but va can be greatly simplified hers, as follows.

For three co-initial cells x, y and z, which may be assumed
distinet by Remark 2, there are 27 ways that p(x), p(y) and p(z) may

be Inter-related using "< ". Let p = p(x), q = p(y) and v = p(z).

Then
rlp pla alr
orr<p and or p<q and or q £r
or pLr oaﬂAp .

or g p

Out of these 27 possibilities the followlng ones contradict the

conjunetion of (Bl), (B2) and (B3). (Proved by checking each in

turn.)
rlp kp<q ka<r , r<p, p<aq,.a<r
r{p, a<p, a<r p<Lr; pla, r<aq
rlp, a<p, r<a p<r, p<a, alr
r<p, pla, a<fr p<r, a<p, alr
r<ps; pla, r<a p<r, a<p, r<aq

r{p, p<a, afr
To help in the checking, remember that (Bl),...,(B3) imply that for

all positions p, q and r; p<q=> q<p; P03

p< qand g <r = p<r; q<pend q<r => not p}r;
"p < g", "q <Dp", "p _p._ are mutunally exclusive; also q < p and n_ r

= n:.,n. (because "q = r", "q <r" and "r < q" imply contradictions.)
{‘uw_\ch«Aw. noibll\\wm_.. «NﬂAV.\&r@ww\r\n«rg.

v A r<p .mum.wﬁ. \n\x?‘«m \..1_1...
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The remaining possibilities are:

rlp, pla, alr

rip, pla, a<r p<rs vpla, qlr
rlp, pla, r<a r<p, vpla, alr
rlp, p<a, alr rip, aLp,s ajr
rlp, p<ag, r<q r<p, g<p, qj|r
r<{p, p<q, r<gq r{p, q<p, r<q

p<r, pla, g<r
p<r, p<q, a<r p<Lr, q<p, q<r

pL<r, p<Lag, r<gq r<py 9<p, g< T

Ir Cumv were proved for the left-hand column of cases,
the rest could be dealt with by interchanging "q" and "p".

The third and sixth cases on the left, and their mates
on the right, are irrelevant because (1) and (i1} in Aomv only
require the conclusion to be true when

either (1) r £ pand r £q
q<peand r<pand r-£q and N\xaﬁ w\x;

lor p<qand r<gqand r < p and N\%,mﬁx\u\ .

or (1i) |

(Because x and y may be interchanged in (ii).)
In the first and fourth cases on the left, r n pand r T:

in the seventh and aighth cases on the left, p <{r snd q < r. Now
Hence if case (a)

H+”.\,.\.N and wﬁx\w« are both developments of T. 1.

never happens in Def. 2+1(III), then the following lemma, with




a = Mxv u@« shows that A\W+%\, has ¢nly cne member, and the position
" x

of that member is r, in all four cases menticned above. Similarly

N\W+M\W has just cne membery, with positicn r.

2 z
Hence \«N,L\\Nv = \Oix\%v

because two co~initizl cells with the same pesition are identical,
| e
P L
Lomna 24 $L5%Mﬁ€ 1pmv
Assuming thet case (a) naver happsns in Def. 2¢1(ITI):
if 2z is co-initial with the members of ¢ ¢ is a development of c, and
for all x ¢ o, either p(x) | p(z) or p(x) < p(z),

then N\o has exactly one member, its position is p(z), and

for all xte o\nu either wAN_u\ plz) or p(x') < plz).

Proof:

Induction on the length of ¢ is used.

When ¢

n

0: the result is immediate.

When ¢ = c'+v and v ¢ Q\n_.. then bty the induction-hypothesis,
2

\w= has only one member, z', end p(z') = p(z) and either p(v) EGAN.V
or p(v) < p(z').

If vA<V~ p(z'), then by Der. 2+1(11), Nva is one cell, whose position

Now N\o = NAW.+<yH N¥<u

is p(z'), which equals p(z}, giving ths first part of the conclusion,
If p(v) < p(2'}, then by Def. 201(IIT) and the assumption that case

-
Amvnmdmwrmwnmnm“ N\< must again be one cell, whose position is plz!'),

Now any x'e P\o must be a member of x\w for some x"e o\nmn By the

induction~hypothesis, either nﬁx=v\ plz) or p(x") < plaz).

—BU-

1 y
By Def. 2°1, since x'e */_; p(x') = p(x") or p(x!) <plv) eor

dﬁ
p(x') = p(v). Hence sithar plx?) “vawv or plx') £ o(2), as required.
Mewwm is immediate Iif p(x?) = p(x") er p(x') = p(v); if p(x®) < plv)
1t follows from (B2) if p(v) < p(z), end from the boktom of page 77

if wﬁdv‘ wﬁuucm The lemma is now proved.

In the second case on the left on p.78; if case (a) of Def 2°1
never happens, then N\W is one cell with position r. By Def. 2:1(1II),

xyw and u\\x are both single cells, with positions p and q respectively.

N AN\ V . .‘
mewwoam = y and 1s one cell, with position r, by
° Aw+x\wQ \ﬁx\wv ’ ’
Def. 2-1(II). Since u_ P; N\un is one cell with position r, and

Z 2 . N I
AW+N\WVH ( \xvﬁw\xv which is one cell with position r if case (a)

z
never happens. Therefore Aw+xm¢ - N&W+M\WVD

So when case (a) never happens in Def. 2°1(III), the only
cases in (D®) left to examine are the £ifth and ninth. By part (ii)

of (0%), even these cases are only needed when N\w.ﬁwuwwe

Summary

When
each cell x has a position p(x) such that p(x) = ply) = x =y,
thers is a relation < satisfying (Bl}; (B2) and (B3),
regiduals satisfy Definition 2:1, and

(B4)s case {a) of Def. 2.1 never happens,
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then by Theorem 2°1, the following propertiss together imply (CR):
(")
(46)
AUmv when p(x) <p(y) and p(z) < p(y) and N\wvﬁnxww , and

either mﬁxv_ plz) or p(x) <p(z).

This section saves quite a bit of work in Chapter 4;
in P~contraction the most complicated case in which to prova
2 2
= 18 the sixth in the ligt, and this has been proved
\mun Lﬁ,\,unv Au:um\,vxv g ’ n " F
The ww L x\% clauss

irrslevant. (as far as (D) 1s concerned.)

avoids another difficulty.

~8la-

Appendix to Chapter 2

A Complex satisfying (A1)....,(46), (D7), (0®), but not AD\*N

Defithe o
e8idualst /. = @ for all xj

x

Ye=8, =5, 8/y =10, 9 =11,
m\u =9, 3p=1, m\w = 10, /¢ = 13,
H\m = 6, m\H = 4,
45 =11, 5/, =12,

The relation = ia defined by "3 < 2v,

(A1) 500.,(A6) are eaagily verified, and Ach can be proved by checking
each pair of cells in turn.

For (p8)1

by Remark 2, the only cells to consider are myw 2, mws

1
H\AMQ\MV = A\Nv\a\mv =&y =10 = F = H\?m\uva
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2 2
Similarly NW+m\Hv = 11 = \mw»nw\,wwc

Since z = 3 satisfies

neither (1) nor (ii) of Aumvv Aomv has now been proved.

3 _ 3
However ADN.V requires also that D&m\_wv = NNL.\,N\ R
which 1s false bescause
3 _ 5 - 3 _ 7 = 1
b2A) = 4 = B vty = g = 13

But defining q\m = 12 instead of 13 gives Abuuw end
does not upset (A1),...,(46), (D7) or Cumv“ 80 this example is not

very satisfactory.

A Complex satisfying ADmv and WNVN.V but _not (CR)

mmmwaum,wmu, un\Vn = @ for all X3
Yo 2 My o= {65, Y, = 3 = 4,
¥y = Ry = 4 5 = O5 = 1,
85 = 4 = 2,3, 5, = 8/, = ¢.

s Ah Y A1 e e 1
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Abmv is proved by checking each pair of cells. For MubHM in
Q.l

particular, ab.wnﬁ?m\mv and so/is a complete development of
1
1655 = /3. 01sac.D. of 7y, and (3+(6+:1)= (140, satistying
AN
( )
For ﬁba? The only co-initial trios ave {1,2,3] and{4,5,6].
Consider mfmvmw“ by the symmetry between 2 and 3,

H\mmm\mv = H\?N\mv.

2 4 2,3 2
Also \GL?HCM \Amﬁv = m ) : = # = &\o = \D.+ov.
3 3
Hence &.f e C. D, of 1fy) = NT a C. D. of 2/;) b¥ the
line above and the symmetry between 2 and 3. Hence

by the symmetry between mfmuww and *?m.mf Abuv must be

gatisfied in all casss.

However (CR) is false, because C-—~D yet there is no Z with C » 2
and D > 2.
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Definition 31 A typical set of formulas,
GHAPTER 4, ( When written with a capital "F", "Formula" will refer to the
set defined here, of which A-formulae and others are special cases.)
Formilag (1) There is assumed to be a set, not empty but perhaps infinite,

of things called atoms, all of which are Formulae,
(1i) There is also a set, perhaps empty or infinite, of

construction~opsrations ("constructors" for short ), and if 4 ¢

This chapter is just a collection of definitions and

ny constructor, with m argument—places
lemmas about the structure of formulae, which results will be any ’ v argument—pla ’

X .oequwa all being Formulee implies that RAMH‘.qnhxau is a Formula.

useful later on. The concepts of occurrence of a formula, the 1
position of one formula inside another, and replacement of parts of Tt 1s also assumed that
formulas are formalized, and the lemmas show that the definitiona do (a) For all constructors 4 and Formulae X., , X3
. 19 eees X
have the properties one would expect. mANHuwu.“x ) is not an atom.
m
As all the systems of formulae which I use are defined (1) If xﬁxwhuonww ) = \Awwueeu‘Nnu for some constructors g, ¢ and
m
inductively, Definitions 3°1L to 3°5 will be inductive, either intro- Formilaa X X, T Y then d =/, m=nand X, = Y
s H\unew Bu Hvanu& Su ) u. H
—-ducing a new predicate or being algorithms for calculating something. . for i= 1...m.

Since this chapter was first written, Rosza Péter has published a

The lett X ¥ U, v Wd bit F 1
paper, [l1], showing that such definitions correspond to primitive- ® ‘etters X, I, 2, U, V and enote arbitrary Formulas

in this chapter, and denot tructors with d o
recurdive functions. In 1t she defines positions much as I do in n apter, and 4, ¢ denote constructors w M 8nd m argumen

laces respectively.
this chapter. P esp s

N, 7 clen Pt Coref e, -
Corry Lt b et \WHQ%N\ g ‘

Example: A-formulas have as atoms the variables and constants
mentioned in Definition 0-1, the construction-aperationa being:

(I); putting two A-formulae side-by-side in parentheses
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(IT): putting a A-formula into parentheses with a "\x" on its left
(for each variable x).
So there are an infinite number of constructors. Atoms are supposed

not to contain parentheses; then (a) and (b) of Def. 3-1 can easily

be proved.
Definition 3°2 "Occurs"
(1) Any Formula occurs in itself.

(11)  If # is any constructor and g(X waa..xav occurs in X,

1
then xw occurs in X for i= l...m. -

When Y occurs in X, X is said to contain Y.

The Formulae occurring in X are all those obtained by
breaking X down into "simpler" Formulae, for example:

{y Ox (y)))
yx))

w\ (x AH

(=)
N
y x
(y Ox (320}, 75 Ox (32}, (yx) and x all occur in (y (Ax {(yx))).

If U occurs in X, how are two different occurrences of U

in X to be distinguished? The simplest way seems to be to associate

-85~

objects callad "positions" with Formulae occurring in X. A position

is taken to bs any finite ssquence of non-negative integers whose

first member is o. {For convenience, zero is written " in positions.)
If t and s are any sequences of integers;

"ts" denotes the sequence consisting of all members of t in order
followed by all the members of s in order.

t <s (t iz an "extension" of s) iff there is a non~empty sequence u
such that t = su.

"t-s" denotes the position ou (NOT just u) if t = su. So t~3 = o
if t = s, W:oﬁ: denotes Aouwwv...vwzv if u is AHH,....H:V.W

t . s (t is "disjoint" from s) 1ff t £ s and s €t and t ¥ s.

The length of a sequence is the number of members it has.

An integer i will not be distinguished from the sequence
whose only member is i, so by the above definitions, a sequence (i,],%)
may be written as "ijk", " Unless stated otherwise, the letters p,
q and r will denote positions in futurs, and in Chapkars 3 and bs

s, t and u will dencte finite or empty sequences of bOUs:mmmade intsgers.

Definition 3°2 can now be expanded to include positions.

Occurring at a position

Definition 3-3

(1) Any Formula occurs in itself at position o.

(11) 1r &Axwacwn‘xaw occurs in X at position p,

then X; occurs in X at position pi, for iz l...m.




"U occurs in X at position p" will often be written as "U < X" or

P
as "X contains U at position p". Induction on Defs. 3°2 and 3°3
shows that U occurs in X <= Jp: U< X, -
p
and if :AHW X, then only the first member of p is o.
Example: For »~formulas the definition of occurring at a position is W
i
(1) X < X for all *~formulae X,
il If (X, X)) < h
(11) (Xy X;) <5 X, then () Cpp Xand Xy < X

If (& X,) <~ %, then X Lo
s 1

The positions of formulae occurring in (x (Ay x)) are as follows:
(x (Ay x)); position o

AN ,

x; position o1 {(\y x}3 position oz

|

X; position o021 il

Definition 3°4 Component s

A component of a Formule X is any ordered pair (U, p) for
which cAu@ X. (Us p} is also called an occurrence of U in X, and
will be denoted by :@w: for short.

Hm En and K@ are componants of X;

bﬁ is in m {or .@n contains m "} iff p=gq or p<q,

1
c@ uﬁg Aoﬂ cm is disjoint from lp=u iff p _po

For instance, (x (A\y x}) has four componants altogether; (X (\y Nwr

(v x) ,x and x__, there being two occurrences of x. Also
=2£ 027 o1 021

X is in (Oy xMom but x_  1s not. x,, 1s disjoint from X

Definition 3°5 Replacement

ch Aw xms&<wmmswmonaswmmﬂrmnmmﬁwd Mm ﬁwxw ow

raplacing U by V at position p in X is defined by the following

algorithm:
W {Fofx = v,
Cy Ef;::ﬁv
(1) If A(X 5e0nsk ) S, X 5 then wlx-ﬁ? = PY X
m 1 Exiisxaw
where xm = xu for all j £ i, and Nm =V, (for i= 1...m)

It will be shown later that (1) and (11) do define replacement in

all cases, Sometimes WOHEH:WWWMIvMN is called "replacing md by V',

Exampla: Replacing (Ay x) by (zy) at position o2 in (x (hy x}):

Hels oaltx 0y ) = [E80L ol y0) by (a0

(x (zy)) by (1).

i

Now it will be shown that positions, components and
replacements do have the properties demanded by intultion; most of

the proofs will be set out inm full, even though they are quite simple.
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Lemma 3°1

m:_ t irf thers exist u; s', t' and integers u.u. and j, such ﬁwm.ﬁ Proof:

8 = :uwm_“ t o= sumi and u.w # ._.m,. . (1) and (2) are easily proved.

For {3): If u = su® and u = tu" and s| t, then s = vis' and t = vjt!

Proof:
for some sequences v, s', t! and distinct integers 1, j (by Lemma 3°1).

‘ Hmmn ?i;:yav msﬁ:n :AH:::MT ian

aither there is a least number i such that rw P xwt in which case .

Hence u = vis'u' and so u|t, contrary to the assumption that u A te

define &s =f if 1 = 1; otherwise u = ;Hvﬁérw Hv

: (K. yoauyk, _)

I

1 1-1

j. =h =X In terms of components, this lemma implies that

1 i 2 i | .
b U inV dV_ in W in W by (2);
8! ugfwui:wav or f according as m > 1 orm = i; { Sp in dg and g In X, = Mv moE oy y (2
o= ?Td::{ or @ according as n >4 or n = 1, * If uv is in f and ﬁx then <d is not disjoint from W, by (3);
or there is no such number; in which case ww = xw for all 1 not ; Ir mv is in mn and Na is disjoint from EH; then u.w is diajoint from ,.@H..

greater than m or n, and so s<t,; s =t or t <, according as
Note that if; in Lemma 3°1, s and t are positions, then

m>n, m=norn >m
rH = W_. = 0, and 80 u must also be a position if s :e

Lemma 33

Two formulae cannot both occur at the same position in X;

Lamma_3°2

For a1l s, t and uj

i. @. dﬂuxmdmd\.ﬂuuﬁ”v U=V,

(1): g £ s; and 8 <t = tH£s.

(2): §<tandt <u = s<u.
(3): u<sand u<t => not s|t. Proof:
(4): a ‘ nuand t <83 = t _s‘ Induction on the length of p is used.

When p has just one member: p must be o, and so the deduction

of "U ﬂv X" using Def. 33 could not have used clause (i1), because




(11) adds a non-zero member to the position each time it is used.

Hence U must be X. Similarly V = X.

When p = qi for some integer i: the deduction of "U ﬁm X" mugt
have ended with an application of clause (ii}, so X must contain a

Hﬁeixau at position q, with U = xw and 1€ m. Likewige

for V thers must be some }Ht:zﬁm at poaition g in X, with V =Y

Formula g(X
1
By the induction-hypothesis applied to q, mﬁxwfixaw = &ch:awsvc
Hence by Def. 3-1{b); £ =y, m = n and xu = f for j= l.uam.

Therefore V = NH = U,

Corollary 3°3 YHXE = Y =X

This follows from Lemma 3°3 because X <, X by Def. 33,

Lemma 3°4
If t is a possibly empty sequence of integers, and X contains V

at position g, then
V contains U at position ot <= X contains U at position qt.

In short: If <m@ X, then dﬁow V o< cm@wxq

Proof:

Induction on the length of t i3 used.

When t 13 empty: cﬁm ¥ <= U =V, by Lemma 3°3,

and U=V = U<V, by Corollary 3°3 and Def. 3°3(1).

When t = si for some s and 1:

aﬁnmgx => clause (11} is the clauss of Def., 3:3 used last in the

deduction of "U .~ 1y,
gsi

=> X contaln: a Pormula mﬁxwgiéxav at position gs

and U = X (and 1 ¢nm),

== &NH?Z.\,NSV nom V, by the induetion~hypothesis app.

to s.

=> U<, V by Def 3°3(11).,  That ig, U<, Vo

dﬂom%\ => V contains a Formula Emwfoixav at position omm

and U nww (and 1g¢m).

= kxi::xav ﬂ@m X by the induction-hypothesis,

uv dmnm%? Z‘Edwm dﬂ_d X; completing the proof,

Corollary 3°4

Hﬂd <
L mza Yq are components of X and mv is in Mau then qﬁ.@:af

Proof:

U InV, => Ht: p=gqt, (and so p~q = ot)

=3 dﬁo& V by Lemma 3°4,

So p-q may. be thought of as the position of cv in¥
= q

o
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Lamma 3.5

=Am# I = u&.ww.....xa" &wp...:wavﬂn X and Uy, Mu
{and 1 <j¢m).

Proof:

If U ﬂwn M.‘_ and aﬁmwv..iwﬁv <, X, then Nu. ﬂm.u X by Def. 3-3, and

so U ﬂ.\\&nN by Lemma 3-+4.

The converse 1s proved by induction on the deduction of ¥ n«unwp...
Basis: zjt canmot be o.

Induction~step: When theve are ¢ and ¥3,..+,%, such that ,Ezww....mnv ﬂ.aN

and zjt = qi and U = {and 1 <n):

~i

If ¢t 1s empty, then q=r and i = {; hence %@mw.....mzv < X

and cﬂ.c N.u
If t 48 not empty, the last mewber of t must be i; say ¢ = sai.

by Def. 3-3({1). This is the rxesult,

Hence q = rjs. By the induction<hypothesis applied to q and
%nﬂw.....ﬂdwn X must contain some Formula mAMT....MEu at position T,

and #{T,...,7) Cos Nu {and j<m). Therefore 4H.ﬂomwxu.v that is

u ﬂamw Nu.
Cozellaxy 3.5
{1): If 1 <j¢m and U occurs in N.u. at position ot, then ¥ occurs

in &ﬁnwu.....ﬂav at position ajt. {From the first part of the proof.)

(2): 1r cf\v X and p< r, then X contains some Formula RANHTBSHEV
at position r and one of waulxa contains U.

Proof of (2)3

If p = rs for some non-empty s, then p = rjt, where j is the first

member of S, Lemma 3°5 now gives the result.

Lemma 3°6

IFU< X, Vo X and p | g, g0 that p = ris and q = rjt for
p q 9

gome 8y t and distinet integers 1 and j, then X contains some
and
Formula RAMHT.:NEV at position r, with dﬂomxw and <ﬂ\0dxu. MMME
< m.

Proof:

If p = ris and q = rjt, then by Lemma 3°5 thers exist By NH“Z:xa

such that kﬁxwuilxav <. X and U<y X Also there exist ¢, Y

e
«.Y_ such that &Qi::mav < X and Ve, J. By Lemma 3°3,

10

x@ﬁ::xav =yY(¥)5.00,Y ) and so by def. 3°1(b), § =y, m = n and

Nw = Mw for k= l...m. Hence <how Ru‘ a8 required.

Lamma 3-7
If U
o, and R@ are compenents of X and \_Mv is in M@. then either
Mvnw\ac or there oxist f, Xyye0osXy such that V = RANH.,I:.NBV and
mﬁ is in one of the componsnts me goses MB B

q1 qm




Proof:

First note that if V = m?u..::xar then for 1= l...m, x»ﬂﬁ X,

so X, 1is a component of X.
imnw
Since mm is in K@. either p = q or p <q.
If p = q, then mm = M@ by Lemma 3°3,

If p <g,; then p = gt for some non-empty t; hence p = gls for some i
and (psrhaps empty) s. Therefore by Lemma 3+5, there exist 4, va..

.:Na mz%saﬂ x:m:.;xsv < x. mwrmaamw.u. %ﬁt.:xav =V,

mv ia in MH because p <qi.

—q1

Corollary 3-7

(1): 1r qm and kAx yoreyX )} are components of X and bv is in
= —_—1 T mt
q

seesX th lther U = #(X,,...,X )} or U_is in an X, .
LIOSPRRYY Ev@. en olther U = #(X),..., Xy, . . B,
Mmmunm 1f U occurs in KANHV...mxav~ then either U = &Axww...axav

or U occurs in X, for some 1. (with Hmu.mavw

i

(2): If U occurs in an atom X, then U = X and the position of U in X

must be o,
(3}: 1Ir U %, Vg X and V is an atom, then p-4q.

(4): If atoms occur at two distinect positions p and q in a Formula,

p must be nwmuowmd from q.

Proofs:

For (1}, use Lemma 3+7 and the fact that a Formula can be
expressed as mﬁxwmoe.\xau in only one way, by Def. 3-1(b). The
part in brackets follows by putting q = o in the first part, and
using Gorollary 3+4 to show that U occurs in NH=

For (3): 1ifp < q, then mv is in M@u and hence by Lemma 3°7 angd
Def. 3°1(a), p = qs contradicting the assumption that p< q.

For (2): if qmw 4, then by (3) with q = 0 and V = X; p<o.

Hence p = o, since the first member of p is o. By Corollary w.mu U =X,

{(4) follows from (3) and the definition of "disjoint".

Lemma 3-8

Nnnv ¥ = p=o.

Proof:

Induction on the definition of X is used.

When X 1is an atom: Corollary 3-7(2) gives the result.

When X is kﬁwa...vNaw" If p # o, then by the second part of
Corocllary 3-7(1), NAHW X, for soms q and i (with 1 <i<m). That is,
mAxwa....Mav nnw . Therefore NH AMNNH by Def. 3-3, and so

by the induction~hypothesis, qi = o, which is impossible.

Corollary 3-8

If U ocecurs at distinet positions p and q in a Formula, then plqg.

Proof:

If p<q, then U annq by Corollary 3+4, and hence pP~q = o, by

Lemma 3-8. Hence p = g, which is false. Similarly n.*ﬂu.
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lacament

It may help the reader in understanding the next few

procfs and some 1ir Chapter 4 1f hs sometimes ignorss the positions

< : < :
and rsads md‘wh for %d\vwx .

Lemma 349

Definition 3°5 dees define replacement uniguely, for all U, p and X.

Proof:

Use induction on the deduction of "U AW Xn,

When U = X and p = ot only clause (1) of Def, 35 can apply.

t

When T = X., »p = q

and &Cﬂwviixav ﬁ@ X {and t €m): only

clause (11} can apply. If X contained ancther Formula &Amwuw.uvmnw
H = KAMH“eeamsw

by Lemma 3°3, and hence g = m = n and Nx = ww for k= l...m, by

at position q with U =¥, {(and 1 € n), then x?ifxav

Def. 3°1(b), So there is only one possible way of applying (ii),
and the result follows by applying the induction-hypothesis to

&Axwwnnuuxaw and q.

R i

.
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Lemma 3°10

If X contains U at position p, then

(1 .MI WN contains V at position p,
(2) |

[T - oo

“
——
=

o]

(1), (2) and (3) are proved together by induction on the deduction

of _Aunuv xn,

v
When U = X and p = o: MMﬂn*x = V, containing V at position o.

br el o
a1sofT-olx

i
|
o
N
<3
t
=
H
~—~—
(ﬁz
o]
N
o
?
=
£
m
o
@
e,
(¥}
\n
by
”
Ll

il
e
i
o

When U = X, p =qi, and u@ﬁ::xav % X (and 1 € m):

Define, for any Formula Z, "#(...Z...)" to mean Rﬁwwuo..“x_v» where
n

ﬁ =X, 1f § £ 1, and ﬁ =Z.  So g(...U...) = mQT::xsu because

J
U=1X,.
1 -
By Daf. 3:5, {qifx = JEG-Vee) dy nien contains 4(...V...)
q A )

at position p by the induction-hypothesig. Hence <AHWH *m|n@ X by

Def 3°3(11), giving (1).
If V = U, then m?..ﬁ: =

(AL..V..)
B\/.... .....\

ror (2); [ ﬁ:m W Hm mﬁ v...) @? oy above,

Voo.)

«..U...), and so by the induction-

hypothesis, X. Hance (3).




indietion-hypchhesis,

Wote: 1In (2), bohh sidss of the equation ds ewist; this will either

be proved or ochvious whenever an esquation is assarted in the rest of

this chapter.

Corollayy 3210

roof:

&Wl@z,thwN = &Iuwwx by (2), and this is the same as X, by (3}.

Lemma 3-11

If X contains W at position q and W contains U at position ot,

wumn Odw W

then @Mngdwx = i —eqtX.
W
(Roughly speaking; replacing mgﬁ by V has the same effect as
v
replacing @@ by .leAM:a )

Proof:
By Lemma 3°4, U Aﬁa X, so w«ua& X does existe. Yow the equation
will be proved by induction on the deduction of "U <, W',

When U = W and ot = o {i.e. t is smpty):

),
v v
qff = U qyx = wd.lﬂmx by Def. 35,

When U = X, and of = osi (i.e. $ = si)} and mAxwvaacvM Jo W
A m’, “os

(and 1 ¢ m): define "4(,..2...)" as on page 97, for any Z.

%mlomwwa WMA=¢°<‘G(V omwz
——qrk = (A qyX by Def. 3°5(ii),

W
7
PG .
Mﬂﬁll|mllWldmw X by the induction-hypothesis
applied to 4(...U...},

v
= Tﬂa&? by Def. 3-5(ii).

Corolla «11

(J: Irx= m@%..;xau and U<\ X, for some i with 1<i<m,

ot
then mk oix = 4 Wmiod? )
5 e 1% 4o
(2): 1f Z2<, X and U <Gy W, then
v
T et
Mqﬁmwlax = 7 Yk -
Proof:
(1): By Def. 3-3, X, <, % Therefors by Lemma 3.11,
: \i
v ot
7oLt X = o1y X  (Here, q = oi.)
X
i
v
" RA.‘=*QIO¢Mx aee)
= i oy X by Def. 3-5(it). )
Bl... X cae)

foﬁ? .ev) by Def. 3°5(1).
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(2): By Lemma 3°10(1), W wkﬁawx.
J 12 q 7,
v '
v Twi: -
Thersfore by Lemma 3°11, iy qtnjgqiX = ar{—qr X
W Z
I@IO&ME
= Md arx
Z

Lemma 3-12

If U and Z occur in X at disjoint positions p and q respectively,

then Z occurs at position g in MWJUTF and

e - Bl

That is,roughly, replacing M@ does not affect ,NA_‘ and the order in

which the two ummwmoms.msﬁm are done does not affect their result.

Proof:

By Lemma 3-1 there exist r, s, t, 1, j such that p = ris, q = rjt
and 1 £ j; by Lemma 3.6 there exist g, xflixs such that

ARps v X)) < X, U X, and 2 Sy Xy (end 1<m and 1< m).

For any Formulae Y and Y,, define i@ oY . ..Mmivz to denote

1 t [ [ — to_
mQH:i.Nav where xp =1y, Nu =Y, and Nw = xw for all k distinct

from 1 and j.

Whenr = o

Case 1

then by Corollary 3-3, RAMHT...MSV =X.

fy
Therefors Wlalﬂww = Tﬁ-&mwx = E‘CM$8WN
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By Corollary 3-5(1), Z< Bl.. #u%‘ omwxui‘xuiv‘ satisfying the

first

part of the theorem.

ks

. M e IV £l
Similarly QALN QTF 50 W@In:NInW

does exist.

bl

W.vm\o.?w Bl.. *iw\wl oww xuiexu.:v

H
B
Joa

’<

O
[0}

S
~

TNFQN?%L by Corollary 3-11 (1),

'V W
= Mﬂ vzm.awxg using Corollary 3°11 twice, as above.

Case 2: When r contains more than one member: ~defins Y %o be
B(Xy,ve,X ). Then U<, Y and 2 To34Y by Corollary 3°5(1);
define p' = ois and q' = ojt. Applying Case 1'to p',q', U, 2 and Y
v W v M v W
iv Z< {=—p! KoY oy = ]V W
gves @_Mclw, NN :cm t= mc p' MN@.T:
N
also U< .M@I@*Nu
Pz
RV . .
v bretY v v
By Lemma 3-11, Ma @wx = " X, Hence Wq‘@% N.ﬂn Mdl&x“
by Lemma 3°10(1). So by Lemma 3°4, 32 ﬁ(:u.ud MIMI MNM that is
v .
Z ﬂm mlml Tn._ Similarly dﬂuﬁ mglnmxw so both Formulae in the
ma:mﬁoz in Lemma 3912 do exist. Dsfine Y* to be Mmlm_mwc

W oy y 7
Fal{telr = {34l TJ% By abaove,




A
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wa by Corollary 3°11(2),

e} (o]

¥
1} £ by above,

T
v i1

= Wﬂs W@MIQVN_ nging Lemma 3°11 and Corollary 3°11(2)

as above.

Lemmg 3°13
If W occurs in *lewx at position g and q | p, then W occurs in X

at positicn qg.

Proof:

By Lemma 3°12 applisd to *Mlmwxm :,nm mwlmWNMIﬁwqusswnw is

the same as X by Corollary 3°10,

Relations dafined by Replacement

Supposs that a relation r (it will always be obvious
whether """ denotes a relation or a position) 1s defined from a

glven set of ordered pairs as follows:

XrY iff Y= *MIm%x for some pair (U,V) in the given set,

with U< X.
P
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A1l the relations in Chapter 4 will be of this typse.
Lemma 3°14

Supposs Nnnw Z and W nw Z': then

(: XrY¥ = -Zr ﬁm;mwN and *Mlan_ r *m‘ MN_\

Proof:

(1): IfY = M«|oawx“ for some member (U,V) of the glven set

X 4
the first part of the conclusion follows by the definition of r.

¥ v
and soms position ot, then by Lemma 311, wllnwm = Ml.vdwmg and

mQﬂﬁrmmmaosnvmw&w Nnuv *%&mww_ w%rmaamutHoAHVumod%armwwuma

M: w . MM w x M _l ﬂm w _ o
part, MS pj&' T {3p #mnv 2! =17p)? by Lemma 3°10(2).

(2): By induction onny. X =X r X

Bagis: when n = 0, then 2 = wmmmwm by Lemma 3:10(3).
) X

2 *n
Tsool xz = Z 2. )—p2

X
Hsasaauoslmdmv":dm:sVo“awms Nxzuw nwm ds MN d%d:ammnoza
x
N

X

part of (1). Therefore 72 2 M.|m|vwm by the induction-hypothesis
X

and the transitivity of 2 The sscond part of the conclusion

v

is proved as for (1).

Y 1
(9 By (U, X~y ¥ = N\J\HWA? and mﬂ%_&urﬂ%:
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and (3) fol'cws from this as did (2) from (1)

°

In the next chapter Lemmas 3°1 to 3-9 will often be used

without explicit mention, though applications of the more complicated

corollaries and of Lemmas 310 to 3-14 will usually be indicated.
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CHAPTER 4

A~-conversion

Theorem 2+1 will be applied here to prove the Church-
mommma Theorem for oB-contraction, which will then be extended by
Theorem 12 to cover Curry's newer form of aosdnmodWOSV To make
sure that Theorem 2°1 really does apply to aB-comtraction, the results
in this chapter will be proved in detail, even though most of them
are u:mﬁMmNMWWHnmAMOSm 0® those in Chapters 3 and 4 of [5].

Because of thi- the proof of (41),...,{46], (07) and Aumw for
af-contraction will actually be longer than the:derivation of (CR)

from these properties.

A-formilae have been defined in Def. 0-1 and further :
described in Chapter 3. The "constants” mentioned in Def. 0°1 are
used in various applications of the A-system; for example Church and

Rosser used a constant, §, in a way to be explained later.
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In this chapter, capital letters M, N, U, V, W, X, Y and 2
will denote arbitrary -formulae and Vv, W, X, y and z denote variables,
unless otherwise stated. Also "formula" here will mean "\-formula',
For sase of reading, some parentheses will be omitted from formilae
or parts of formulae; the ocutermost pair will usually be left off,
end if NH. xm~ X are Aformulas, :NH Nm X" will be.used to denote

3 3

3 H)
({xq X,) xuv. Similerly "X, X, xu...Ns will denote

(oo((xy %) %)) ..o, Also "(ax ¥)" may be written as "ix. %",
1 %27 %3 n

For example, "x (x. yz) v w" denotes (((x (nx A%NVVV v) w.
When 1t plays no great part in the reagoning, the
position subscript mey be omitted from the gymbol for e component or

occurrence. For instance, U may be referred to as "the component UY

P

ou =un Hmws Mn: mey be shortened to "U is in V", when there 1s only one

occurrence of U {and one of V) under consideration.

A verlable x is bound In U 1ff thers exist ¥ and q such

that (ax wvnnaﬂwu any occurrences of x in (ix wvn are said to be

bound. If there are occurrences of x in U vhich are not bound,

x 15 sald to occur free inU (or be free inl.), and the occurrences

in question are free occurrences. It can sasily be shown that a

variable v is free in (XY) 4ff 1%t is free in X or free in ¥; and
thet v 1s free in (Ax Y} 4ff it is free Jn Y and distinct from x.

A component Ku of a formula U 1s said 4o be x-bound iff LE

there exist 2 and q such that (\x anmuq (and hence 2 AWun and Aﬂ.}&\

,&
nh
Ax
Hn is in m@p.
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Substitution of formulas for free variables 1s the same
a3 in Definition Q3. From Definition 3-1(a) and (b} (which hold
for A-formulae) by induction on the definition of X, ?\Lm can be

shown to have a unique value for each W, x and X.

Define the rank of a Mformula as follows:

The rank of any atom is 03
If the rank of X 1s m and the rank of Y is n, then the rank
of (XY) is men+l;

If the rank of X 18 m, then the rank of (Mx X) is m+l, for all x.

———
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Lemma 4°1

(1): ﬁx\xwm =Y for all x and Y.

(2):  If x is not fres in ¥, then |/, ¥ = 1.

(3): If wig any atom, then Mi\xuw has the same rank as ¥,

. v is free in Y and v £ x,

(4): v is free in M \Lm &

or x is free In ¥ and v is free in N,
These are proved in Mmu as Theorem 1(a) and (b}, page 95,

and Lemmas 1 and 2, page 96.

(3) is the reason why "rank" is a

useful concept, as will be seen in the proof of Lemma 4°7.

Lemma 4°2

If x vevy X
.Iﬁuvu 3 ’Mus

clause (iiic} of def. 0°3 is not used in evaluating ﬁa\xﬁwh then

MZ\Lw = Ml_mlwww :.m{ﬁaw&.

are the free occurrences of x in Y, and

Proof by induction on the definition of Y: (the cases correspond to

Def 0-3)
(1}: (a) When Y = x: then n = 1 and p, = oy and

?\ Lx N = Tm; wx.

(b} When Y is an atom distinct from x:

then there are no

free occurrences of x in Y.

(11): When ¥ = (UV) and the result 1s true for U and V:




-109-~ -110-

Each kS mist be either in U,  or in ¥,, by Corollary 327(1); . w Lemma 4°3

1 :
SUpPOSe X 4ee.5X._ &re in U . and x yevesx are inV__. o If clause (iilc) of Def. 0-3 is not used to evaluate T\Lx“ then

“pT P ot “Pmst’ Pn oz :

v is bound in X iff v is bound in |Y/,]X.
Therefore by Corollary 3°4, x seeasX are the free occurrences : X
; “py-oil Tpmot ; i
of x in U, and x yuessX are the free occurrences in V. Proof:
IHUE.TH!OH I.ﬁﬁADN i

= Induction on the definition of X is used, the proof being

ca\wga ?\ww<v by Def. 0-3(11),

g o o oo
lulnlmudlouw vou WMIMUEIO % UE.: Oz2(ew- X ﬁﬂ 2

by the induction-hypothesis.

N
Then ﬁ /. juv)
L arranged in cases to correspond to Def. 0-1,

(1): When X is an atom: v cannot be bound in X or T\LN‘

(11): When X = ANH NNV“

= Tm\n% vor wwwan TE\T by Corollary 3°11(1),

+ Pn v is bound in X <= for some Z, (Av Z) occurs in (X1 xmv

used n times.

&>  for some Z, (Av 2) occurs in Xy or in xm“

(xx U)}: then x is not free in Y. (using Corollary 3-7(1).)

(1i1) : (a) When Y

"

i

(b) When ¥ = (Ay U), y # x and either y is not free in N

&> v is bound in M%\LNH or in T\LNNM by the

or x is not free in U: induction-hypothesis,

N N leas :
_“ \Lw = (Ay ~.\L3 by Def.0-3(11ib), and the induction-step is like e v is bound in T\LN.

(11) above, except that now each x_ must be in U .
Pi ot (111):  When X is (w X):

(c) When ¥ = (\y U), vy # x and v 1s free in ¥ and x 15 free (a): ‘then w=x: By Def. 0-3(iiia), P/ ]X =%,

in U:  then Def. 0-3(iiic) would be uged in evaluating MZ\LN_ contrary (b):  Vhen w £ x, and either w # y or x is not free in oF

M%\LN = (w T.\wav“ and hence

v is bound in X <& v =wor v is bound in Xy,

to the assumption.

& v =wor v is bound in T\Lx by the induction-

H~

Note:  If clause (1iic) of Def. 03 were used in evaluating —HZ\LwJ
, &> v is bound in Mw\w~x5 hypothesis;

then there would be a variable which was both fres in N and bound in Y,
so Lemma 4°2 appiles to N, x, ¥ if no variable free in N is bound in Y. (c): When w £ x, w =y, and x is free in NH"

Def. 0-3(iiic) would be used in evaluating T\N X.
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Lomma 4°4

If U = X, no variable is both free in N and bound in X, and m@

is not xz-bound;

then (1): M/ Ju < [/ Jx

. N/
era (2): [V, J{lofx - L7

a [ dx

Sinca U is not x~bound, the free occurrencas
-q
Kot veoesX (0<m) of xin U correspond to free occurrences
oty oty

X yeousX of x in X. Suppose X_ y...yx_ are all the free
qt, aty, Py Pp

By Lemma 4°2 and the Note on page 109,
N _ [N N
(e = e e e

By Corollary 3-7{4), Pysevusp &Te mutually disjoint, so by Lemma 3-12,

occurrences of x in X.

the order of replacement of X ,.s.,x does not affsct the result.
P Pn

Hence x yoveyX may be assumed to be the first occurrences in the

(ﬂ: @.as

list Mv~“:==~Mnsn that is, py = odw for iz l.,.m.
N ; 1Y N *

(el = feasd oo e

where ¥ 1s defined to be wmlbaiw vuo m%l@dwk.

Thersfors

Using Corollary 3°7(3), »p yeu.p are ell disjoint from g,

m+1

MdmoWﬁmm X eeesX are not in u w Therefore by

P Pn -4
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By Lemma 311 ugsed m times,

T«\i T.H.a wq
X ) X m,
U

2\ U
x %
= { e qX” by Lemma 42, since if clause
U

Lomma 312, U <, x*,

N (N * *
MWI@dL vee *Wlndswx

qf X7,

It

(11ie) of Def. 03 were usad in evaluating mm\chu it would be used

in evaluating Mz\xwx( By the above and Lemma 3°10(1),

MZ\WMG hm mz\x~x~ proving (1).

v
For (2), note first that in *dlnwxu the free occurrences of x are

X sevesX together with any that are in V_, since V_ 43 not
va+p vs @ @

x-bound.

If ¥V were x-bound in *Ml qu then V_ would be in some Z

q i} “n =pi
with (A Nvﬁ a compornent of %«(nwx. By Coroilery 3-10,

U
X = ﬁ«l WMWuQWNV 8o by Lemma 3°11,

u U

[Lapjx ) iy [ O [Fapl2) |y

‘. LN S . v ol
pHia Pllgaf* by
(xx 2) (x 2)

Corollary 3-11(1). Hence U, would be x-bound in X, contrary

to the assumption.

2\ v
N v _ M xg N ‘N v
Hence w \xWﬁmnnMx = l|l«\1@ mm(va+L v WMM:ﬁs*Mmﬂnwx~ as in the abovs

:\ 1
proof of (1), but with "V" and *Hnw X
U

instead of "U" and "X{",

u ?\L,\ MH w z Mlzl ? by L -12
7 q U q m|na+p A P, wmsammy.
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1/ Ty . f
= ~ L x*, by Lemma 3-10(2), V, %z 87 iff {there exist p, x, M and N such that

= )1

: | [

(Ox M) ) X and Y=

prX.
((x M N

q x*u by Lemma 3°10(2),

"

In effect, o~contraction is simply changing bound variables

AL ﬁ

If x is not free in some of X, U, V, Mmlmvxu then some of the

\x~x by the proof of (1). (599 later), and out of several alternatives in the literature, I have

used the definition from [5] so as to be able tc use some of Curry

and Feys' results.

replacements in the preceding proof do not happen, but the main lins
Any formula of the form {(Ax M) N) will be called a

of reasoning 1g the same.
B-redex. ( Curry and Feys in [5] usa the word "redex" to denote a
component, not just a formula. ) The corresponding MZ\xNZ is
called its contractum; each p-redex has a unique contractum, but

for o-contraction, each (Ax M) may be replaced by any one of an

infinite set of formulae, depending on the cholce of y.

Conversion
W , Another fact which promises to cause trouble is that
The definitions in the introduction can now be re-stated W : ) Aomv is not true. That 1s, there exist U, X and Y such that
in the language of Chapter 3. M : although U B X and U 8 Y, there 18 no Z such that X WmN mm& Y WWN
ase the example overleaf.
Definition 4-1 g~ and B~contraction

X a¥Y 1ff there exist p, x and M such that (xx M) < %,

P
Oy [P/ m
(hx M)
from x and not free in M.

and Y = pX for gome y distinet
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Example: U = Ox. Oy Ox. x3)) %) y (and x.# y)
Replacing U by Replacing (Ay (dx. xy)) x
710y (x. xy)) x in U by mx\Wwyx. xy)
N x
= A>% Aere uaxvv Na = VN..—“ \VMMN\NN?Q‘W
by Def. 4°3(iiic),
uﬂym. NNV“
N
(w (. xy)) 7 Y= Ox. (. 2x)) v
The only possible B-contraction The only possible B-contraction
in X 13 the replacement of X by in Y 1s the replacement of ¥ by
[/, O 50, [/ (e o),
= (. MMVN = (\z. zy) .

These two end-formulae are distinct and cannot be B-contracted,

though elther cen be o-contracted to ﬁrm other, so a good way of
proving (CR) seems to be to deal with classes of a-squivalent formulaa
instead of the formulae themselves. This appears to be in effect
what is done in [5]and [7], and is intuitively satisfying too, since
o-squivalent formulae have identical interprstations.

Before going on with this line of argument, some lemmas
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on substitution and o~contracticn are needed. First of all, a

relation e is defined which can be used instead of a.

Definition 4.2 mdnoosawmnﬁwou
Oy [/
Yo, ¥ 4ff (Y = prX for some p, M, x and y
(ax M)

7

such that y # x, y is neither free nor bound

in M, and x is not bound in M.
Since y is not bound in M, clause (iiic) of Def. 4+3 is not used in
evaluating m%\xgzm so by Lemma 4-2, Qonnozdumndwos is a simple change

of a bound variable. The "x is not bound in M" clause simplifies

later proofs, and Lemma 4°+7 will show ~ag to be the same as ~g.

Lemma 4°+5

If X ~yY, then the same variables are free in X as are fres in Y.

Proof:

If v 1s not free in ¥, and y £ x:
v is free in (\y ﬁ%\wuxu ¢ v Ayendv is free in Mand v £ x,
by Lemma 4+1(4),
& v is free in (\x M},

since y is not free in M.

The Lemma follows fairly easily from this.
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Lamna 4-

If r» 1s any one of the relations a, >

—~ p>
a? G s WQO. \(Qdu B85 \\w«

o’ o

or ~p’ then by Lemma 3-14,
XrY¥ => (X2) r (¥2) and (2%} r (2Y) and Ox %) r (x 1)

for all Z and x.

Lemma 4+7

X ~a T > X \/\QOH.

Proof:

Obviously X oY =% X o ¥, so it is enough to prove bthat
a¥ = X >(ddw. and this would be true if for all M and x,
(% M) ~a, Oy [Y/ W ce oo (D
whenever y £ x and y is not free in M.
Now to every M, x, y such that y #Z x and y is not free
in M, thers will be shown to correspond a formula ¥ in which y is

neither free nor bound, and in which x is not bound, such that

Moql and /0N~ [/ ]

Hence (I), because
(hx M) ~ag (Ax W) by Lemma 4+6 and the definition of N,

ay O [Y/,]N) by the defsnition of o,

o~

o Oy ﬁ%\quv by Lemma 4+6, since ww\wgz‘/moﬁw\x M.

The existence of N is proved by induction on the rank of M, the proof
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being laid cut In cases to correspond to Def., 0-3.

(1): When M 1is an atom:
Since y 19 not free in M and no variable can bs bound in M,

let N = M.

AHHvuzwm:xwm AZH ZMV and zH correspends to M, for iz 1 and 2:

Lot N = N
at AzH mvu giving

M = :f zwv ~ Azw z% by Lemma 4°6, since My \(gozﬁ
\/mO AZH ZNV by Lemma 4°6, since zm )(mdzmm
= N,
¥ = ¥ ¥ ¥ y o
and [Y/ [u = Q 8 A \Lzmv ~a, Q Z0m ] \Lgmv by Lemma 4+6

- |y

- ﬁ / Ju.
Also by the induction-hypothesis, 7 18 neither free nor bound in
AZH ZNV and x 18 not beund in (N

1 zmv.

(111): When M 1s (v ZHV and zw corresponds to 3wu

Let ¥ = (Aw Hﬁ\wgzww. where w is any variable distinct from x and v,
and 13 neither free nor bound in ZH. Therefore x is not bound in N

and y 1s neither free nor bound in N, by Lemmas 43 end 4-1(4).
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I
=4

- (s . W
Now M = (ax sz )(ddﬁwx ZHV a, (aw H \xgzwv
Therefors z‘)&d.z»
©

Hence z\)(ﬁ N and so x7is not free in'N, by Lemma 4-5.

Therefore by Lemma 4°1(2),

T\ ? =N W= T\Lz.

X Gy

(b}:  Firstly vhen v £ x and v £ y:

Let ¥ = (hw zww. Then M = (\v zwv )(ddAyd ZHV = N, using Lemma 4.6
and the definition of ZH.
Also T\Lz = (v [Y/,]9) by Def. 0-3(i1ib),
\/(@omy< ﬁw\xwsz by Lemma 46 and the definition of zwu
- T\Lz by Def. 0-3(iiib).
Since v 18 distinet from x and y; x is not bound in N and ¥ is neither

free nor bound in N.

/

Secondly when v Zx and v = y and x is not free

in ZH"

Let ¥ = (Hw :\ N.), where w is distinet from x and y, and is neither
yIm1 v

free nor bound in zH. Then as in case Amvv x is not bound in N and
¥ is neither free nor bound in N. By Lemma 4-6 and the definition
of N3 M = (ay zu )\oo?w zt a, (w T\szv = N. Since x is

not free in M, ﬁ%\w@z = z.)\sz = M%\Ngz as in case (a),.
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(¢): Wnenv £x, v=yand x is free in zH“
- ¥ - ¥y 2
Then M = (Ay zau and m \NMZ = (Az M \Ngﬁ \WMZHV‘ where z # y and z is
not free In ZH.
By the induction-hypothesis applied to y, z and zwu thers

exigts a formula W in which z 1s neilther free nor bound, and ¥ 1s not

bound, such that M, ~; W and [/, Ju ~ag [/y1M . Therefore

(rz ﬁN\

M=y ng )\po?\ W) a,

1) ~ (v Prle) oo oL

Now applying the induction-hypothesis to W\WQKHM which
has the same rank as ZH by Lemma 4°1(3), there exists N¥ in which ¥y
is netther free nor bound,and x 1s not bound, such that

AT R AL SRR A
Let N be (rz ¥¥). z # %, since x is free in My end z 1is not.
Hence x 18 not bound in N, and y is neither free nor bound in N,
¥ = (a2 ¥) ~ (hz MN\V\?{ by the definition of N¥,

o]

~— M by (II) above.
%o

Also ﬁ%\xgz. = (rz M%\xMva because z £ y and z ¥ x,

\/\poAVN M%\NQMN\szuv by above,

= ﬁ%\waz as required.

From this lemma and Lemma 42 can be seen that in Lemma 4e5,

not only are the same variables fres in X as are fres in Y, but the

positions of their free occurrences are the same in X as in Y. To
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prove this, it 1s enough to deduce 1% when X = (Ax M) and ¥ = ?%T\Lgv Corollary 4-3

with y neither free nor bound in M and x not bound in M. But in this

case the result follows by Lemmas 4°2 and 3°12, since the occcurrences
X V\ Y = X ~a Y.
of eny varlable free in X must be disjoint from ths occurrencss of x.
Also X — ¥ = NQoM owwpox“

._Q\O

= X Gy Y by Lemma um

Lemma 4-8 Hencs X \(o.ow = X V\pom..
Xa ¥ e ¥ oa X, Therefors X ~ ¥ = X~ Y by Lemma 4-7,
o
Proof: = X V\Po& = X >, 1.
It suffices to show that ()\y ﬁ%\L M) @ (xx M) for all x, M and
y such that y # x, vy 1a neither free nor bound in M, and x is not I In future, g will be used interchangesbly with ~ar

bound in M.
By Lemma 4°1(4), x is not free in h%\u&zm also x and y
are not bound in T\\LG by Lemma 4°3,

Thersf Oy [7/.0M) O X/ 10/0M0 000wt s s s . Wl
arsfors Y H L %o M \w: \L () v~ and é-contraction

T

If the free occurrences of x in M are Mv soeay3X , then the

. 1 Pn
free occurrences of y in .v«\ M are 000y by Lemmas 42 and

M L «MS.. .:mvs“ a In [18], Curry introduced a relation called M,
3-10(1}.

. . . defined as follows.
y ={X X l{s y >
Hence M .&M \Lz A.% il: 7,‘ nm:.x vHMZa wqxl.un,wz by Lemma 4°2,
X (¥ x
= Tﬂi Tﬂi &w\naxlwn@swz by Lemma 312, Definition 43

= M by Corollary 3-10. XM Y 1ff <there exist M, x and p with x not free in M,

The result follows from this and (I) sbove. such that (Ax (Mx)) & X, and
>

Y = m M wT. ’
(x (Mx))
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The idea 1s that (dx (Mx)) represents the mcsndwom whose
valus at x 1s (Mx), which 13 the value at x of the function
represented by M. Thus the functions represented by M and {Ax (Mx))
always have the same values.

Any formula of the form (Ax (Mx)) with x not fres in M

is called an a.nﬁmamxu and the corresponding M 1s its contractum.

A fourth relation, 8, has been used by Church in a
gystem of logic based on A-conversion. (See [6L) He included a
constant called "&" amongst the atoms in the definition of A-formulas,

and then defined the relatlon thus:

Definition 4°4

X 8 Y Aff <there exist M, N and p such that ({6 M) N) n_u X,

end Y = m.a: Mwwzw m::@x i M~ W,
but ¥ = Mi. MM,M,ZM,\MWV pIX if Mol N.

‘Also neither M nor N contains any free variable,

any other formula of the form ((§ U) V) in which

\no variables are free, or any f~ or Y -redex.
v and W are certain chosen distinct variables, independent of X, ¥

and p. Note that "6" denotes both the relation and the constant,
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but this should not cause confusion.

Actually Church replaced ((5 M) N) by (w. (Aw. v (vw)))
only when M = N, but this i{s not an essential difference from Def. 4°4.
In his system of logic, (\v. {(Aw. v (vw))) represents truth and
(w. {(ww. (vw))) falsehood; a formila X being true if and only if
X L(dmmhwd. (w. v (vw))). For further details, ses [6]: note

that Church did not use Jacosdamnduo:.

S. C. Kleene in [9] uses a generalized form of 8-
conversion, which he calls "a~conversion®. {Sea pages 283 - 4)
To include this conversion as well as &, Definition 4°4 1s generalized

as follows.

Definition 4°5

Certain formulae are called "&'-redexes"; these contain

no other -, M- or 8'-redexes, and no variables occur free in them.
Wo & -redex may have the form (M M) or{{(x M) N). With each &'-
redex 1s associated a contractum in which no varisbles are fres,
such that the contracta of ws% two a-equivalent 8'-redexes are
a~aquivalent.

X&' Y iff <there exist p and a &'-redex U such that

v
U ﬂv Xend Y = mc @wx‘ where V 1s tha

contractum of U,

The above conditions are satisfied by & and by Kleene's generalization.
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The Church-Rogser property
From Definitions 4+1, 43 and 4*5, no formila can bes two
. sorts of redex at once, and no variable is a redex.
Lat Mpn denote any of the relations By M, &%, BN or B8’ .
Then X ~ ¥ = X~ ¥, because X orY¥ => X o ¥ or X r ¥,
] = X=Y or ¥¢¥,
- Tri.
g-squivalence clagsss . Also X WH.W\ = JX,Y: % mH\ Y m\( and X WE.N:
Proof: Ir Ho T HH Teoul R\s. then for 1= 1.,.n,
An g-equivalence class (or just "a class" for short) 1is -
: ’ there exist NH 18 X 1 and Y ¢ um guch that X _r vy,
a non-empty set of A-formulse such that any two of 1tg members are , - 1~ 1 i i-1 1
o~equivalent, and any formula o-equivalent to & member is also a Then X, r I~ Lor 1 I R AREY ~4 Xp1T X
member . which implies X, Zap Y, msing Corollary 4*8.
S n
Letters H~ W. Wu L and H\i,.; denote a-equivalence
W= 5 Hence if the Church-Rosser property were true for the relation'r"”
classes, and the class containing X as a member will be called "X y .
among classes, 1t could be proved for ‘ar'and formulae as follows.
for all X, i
i X~ ¥ = X~ ¥,
It can be shown that no two distinct classes have ar r
i > and ¥ >
members in common, and that if X is an atom, X must be the only k = mw .\H.W “r W.
- - - : ' (" t X
member of X. Also X =Y & X~y Y. 5 = MNHV Nm. L Yeqx' e X, NH € W“
! Nm e W_ Y e w.‘. and
Definition 4-6 B=2 7~ and 8'-contraction of classes X! V\S.NH end Y7 WB.NM.
X W 1ff  there exist X X and Y mk such that X 8 Y. = Xz X Zorly 2aPa
. and Y > 71! 2 uging Corollary 4-8.
X g,& iff  there exist X e X and Y mw\ such that X vy Y. Zat Zar By g v 4

Hm.w iff  there exist X e X and Y mw such that X 8'Y,
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In the rest of the chapter, letters P, Q, R iHHH denote (4): Prove Abwdmpm hence Aowaqu by Theorem 1°1.

redexes (8, N or 31') and the contractum of any redex R will be (53: ( follows from (2), (3) and (4) by Theor 1.0
RY2N em 1.2,

CR_ )
. ans
called “Y@®)" By a note just after Def. 4+5, R can only

. i Actual i
be one sort of redex, so ¥(R)is uniquely determined by R. | ctually this method turns out to be nearly as short as
testing Bn6'-cells for Avmv would be, so the lack of Aommgw is no

| great hindrance. It might be possible to change the definition of

To apply Chapters 1 and 2 to the relation BW3' among

classes, a cell is defined to be any ordered pair A@_xuu for which

residuals or cells to gi 8
gome member of X contains a redex at position p. The.cell gtve (0 mzu‘ oub T heve mot menaged to do so.

is a p-, - or 8'-coll according as this redex is a B-, - or b'-redex.

mmWowm th i
p is called the cell's position. The start of the cell Anyuﬁv is e main proof of AowmAmb there are a few more

|
i
® X lammag.
X, and its end is me vw , for any X e X with a redex P at position p.
Tenme 5FF wilT sEew vhat ¥RE37end “1s Independsii® of X. :
By Lemma 3°2, the conditions (Bl), (B2) and (B3) mentioned Vﬁ : Lemma

at the end of Chapter 2 are satisfied. Algo if the positions of two ﬁ If x £y and y is not free in M, th
n M, then

P A .

(2Y: If x is not free in X, then

CAlAT PR IEYATS

co-initial cells are identical, then the cells themselves are
identical.

A1l that should remein now is to define residuals as in
Def. 21 and prove properties (A6}, (07) and -(0%. .

Unfortunately Aomv is not true for ff-cells with the most convenlent

Proof:

definition of residuals (see [5], page 119), so the Church-Rosser

These are Theorem 2¢ of [5], page 95; noting that in (2) abova,

M ~ M
M N \ N M
x -
\@ X = ﬁ xy\w EH\NNN by Lemma 4-1(2). Also note that in

property will be derived according to the followlng plan.
(1): Define residuals and prove Aoqv for pnd'-cells.

(2): Prove (46) . and Aumu for p-cells only. Henca Aommww by "
[5], the condition "x # y" seems to h
the et of-Chaptar 2. 3 y s to have been missed out of the

statement of Theorsm moH. (Tt is necessary there.)

(3): Prove (0?) — see Chapter 1 —— with §-ssiyd-end-78" as "a",
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Lemma 4-10
X ~a r = ﬁZ\LN ~a HZ\x?.
Proof:

This is Theorem 2a, page 95 in [5].

Lemma 4°11
M v o= [ [
Proof:

If any variables free in M ars bound in X, Qonooau.mn&wo:m in X
can change these variables to new ones, givinghd formala ¥ such &rm..d
X ~ Y and no variable free in M is bound in Y. Hence Def 0°3(iiic)
is not used in evaluating ﬁZ\LM« nor in evaluating Q\Lﬁ since the
variables free in W are .&rm same as those free in M.

Suppose R the free occurrences’ (if. any) of x in Y.
1 n
M _ M M B
Then M \LM = Wtﬁ& WMI@LM by Lemma 4°2,

~ W‘.@rvww coo ﬂﬁv%m by Lemma 3-14 used n times.
X x :

= HZ\NQN by Lemma 4°2.

< By Lemma 410 and the above, ﬂs\x? ~. MZ\NT ~ MZ\LM )\Q?\LN.

If x is not free in Y, then ?\LM =X ﬁa\LxV since by Lemma 4-5,

H

x is not frée in X.
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Lemma_4-12

(1): IfPisa B, N~ or §'-redex and no variable free in N or x

is bound in P, then M.Z\Lm is a redex of the same sort as P, and

éz\xi ., ['/.] ¥

(R}: IfPisa p-, N~ or 8'-redex and P ~y Q@ then @ 1s a redex

of the same sort as P, and ¥(Q) ~ ¥(p).

Proof of (1):

When P 18 a &'-redex:
No variables are free in either P or ¥(P); hence HZ\ Nm = P and
x
P/ ¥®) = ¥»).  Therefore Y[' 09 = ¥@ = [/ ]ve.

When P is a B-redex, ({Av U) V):

Then v cannot be free in N or x, and so NZ\L% = ((Ww ﬁZ\LS Nz\Lﬁ
by Def. 0°3(11) and (11ib), since v £ x. Hence MZ\HT is a f-redex.
Theref V%H\ 5 - BATY

erefors x = \4 ~ \Lq

~4 MZ\LT\LQ by Lemma 4°9(1),

= [/ I%e.

When P is an anwmmmx (av (Uv)) with v not fres in U:
ﬁz\Lm = (w QZ\LG v)) and v is not free in HZ\L U, by

Lemma 4-1(4). Hence MZ\Lm is an N-redex.

X@z\x?v = Mz\Lq = z\L ¥(P), completing the proof of (1},
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Proof of (2):

For S'-redexes, (2) is part of definition 45, For p~ and N-
redexes, it is enough to prove the result when P o Q.
When P is a B-redex, ((av U) V):

N 7
Suppose q = O N. \LEH P, with y # x and y not free in M.
{(xx M)

If Ox M) is in U or Y, then Q = ((av U*) Vv*) where U a U* ang
Vevt..  Then ¥(Q = [V ]u*

~ ?\Lq* by Lemma 4-11,
~ [/ ]u

= Y(p).

The only other possibility is that (e M) may be the same as (\y U,

by Lemma 4-10,

0 vhich case P = (Ox M V), Y(P) = [T/ |M ama q= (O (%] v,

Then ¥(@) = [/ [[7/ ]

v
[/}
~3 .\kﬂ M by Lemma 4-9(2), since ¥y is not free in M;

v
= [/
= Y.
When P 1s an W-redex (v (Uv)), with v not fres in U:
Or [/, 1w
Again suppose Q = {_~ - X' 7. Py with y # x and y not free in M.
(x M)

If (3x M) 4is in U, then Q = (Av (U"v)) where U a U¥ and S0 v i3 not
free in U*, Therefore Q is an Y-redex and ¥(Q) = d*\/\a U= ¥{(p).
The only other possibility 1s for (Ox M) to be the same as P.  Then
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Ve M= (U and 9= Oy [P/ ](00) = (3 (F7J0 ) = 0y ()
since v i3 not free in U.

Since y 1s not free in M, which is the same as (Uv), y cannot be fres
in U, Hence @ is an N-redex. Q) =7 = V\Cuv. completing the

proof of (2),

Lemma 4-13

Irx ~, Y end P 13 a g, N~ or §'-redex occurring at position p

in X, then at position P in Y there occurs a redex Q of tha same
Y(Q) %.
Q

sort as P, and M.MDUIV&M —~ ﬁ
P a

Hence the end, WW\M-F&LN. of the cell (p,X) on page 127 is
independent of X, because if X and X' are membars of A with
P <X end P! X', then ?@&x = ﬁ%m;%ﬂ_

P R Y

Proof of the Lemma:

It 1s enough to prove the result when X Qow.

¥ .
Suppose Y = En X, with y m X, ¥y nelther free nor bound
Ax M,

n M, and x not bound in M.

Case (I): ‘When (x zwnhwn"

’ ¥
Lemma 3:12 implies that mﬂ\n Y and MI%&N = ®8% M.\VLE ¥r) |

T f——prL,
{(Ax M) P
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which 1s o~egulvalent to NV\HMH&@TT Let Q be P.
Cage (I1): When (Ax M) zu is in P
v
Lemma 3°1l shows that Y = vax where Q is Oy _.\ 7@ P.
(hx M)

Then Q ~a P, and so by Lemma 4°12(2), Q is a redex of the same

sort as P and ¥(Q) ~ ¥(P)

Therefors wl%vwﬂ w 3 Wmlmlvwx

mirmwx by Lemma 3°10,

M.W\lnmx by Lemma 3-14.

Cage (III): When wn is in and distinct from (dx M) :
T

Wv must therefore be in RH. ; that is, p = r1it and P ot M for

gsome t. Therefore T‘\Lw q.oln,mu\\Lz by Lemma 4-4(1), since x is

not bound in M and so no component of M can be x~bound.

Therefore _Hux\q it (w Y/ qz:
hence _”%\Lm ﬂm? Y by Lemma 3°4, since (Ay T\\sz <. Y.

Let Q be ﬁ%\un”_wu then Q S Y since rit = p. By Lemma 4°12(1)

with "N" being y, Q must be a redex of the sams sort as P, and
¥
Q) ~, [/, ]¥P).

Theraefors %Odwm%\xgz ~a M%\HMVAER.. T«\Lz by Lemma 3°14,

= [ :xﬁg? by Lemma 4°4(2)

x P
since Q = M%\N
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Now for any z; z free in P} = gz free in P.

Proof: If P 13 a §'-redex, then no varlsbleg are free in

P or ¥Y(P).
If P is an ainm@mx (v (Uv)), then
z free M:m. &> 7z free in U and umd
&> z free in U Tw.ﬁw is ¥(P) w‘ since v 1s
not free in U,
If P is a B-redex ((Av U) V), then
elther z free in V and v fres in U

z free in Y(P)

(unich 1s [V/ ]0) g

or z #v and z fres in U

= z fres in ((v U) V), which is P.

‘ P
Hence y 1s not free in MV\M uodw? which will be called "M*".

Proof: If y were free in M*, then y would have to be fres

in ¥(P), since y is not free in M. Hence y would be free

in P, by above. P camnot be In any component of the form

;% 7) because y i3 not bound in M. Therefore the free

occurrences of y in P must be free in M, contrary to y not

being fres in M.

e [0 by e,

Oy M%\M?Ju 28
(A M)

~y sy 8ince y is not free in z*
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%o % .
Oy (= /. :
Then T«B & = m 9 Y by Lemma 3°11,
(ay. ww\ M)
(ay TA ) ot m w\ ) w Oy [Y/]W .
i H QZV (ax M)
@l ity
= W * aMM \ w X by Lemma 3-10(2),
(nac M)
~, MZ\ ﬁ%\ : Tc r{ ¥ by the bottom of
(e 1) page 133,
o~ W%vwx by the previous page.
R 4

Corollary 4°13
If in Lemma 4°13,

((av U) V) and Q = ((nz U') V'),

and ¥ ,.003Y (0<n) are the free occurrences of v in U,
P “Pn

1
then z ,...,2_ are the free occurrences of z in U7,

In case (I) of the proof of Lemma 4+13, Q was chosen to be P,

g0 the result 1s lmmediate.
Oy [P/ Im)
Hbommm:d.on fiﬂx)wall

1
possibilities: firstly (Ax M) may be in V, in which case V ¢ V',

7@?. There are thres

2 =v and U'= U, giving the result.

'
next, (Ax M) may be in U, and 8¢ z = v and U a U'; the
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result follows from a note Just after Lemma 4.7,

thirdly, (Ax M) may be (av U), and so

Q= {{ny M%\L M) V); Lemma 42 shows that ?\Lx = Tvm.

J .
vww flm‘mmLuL:
if n> 0, and hence the free occurrences of y in

as required.

and 8o y 13 not fres in M%\VLZ. '

In case (I7I), P in M and hence y is neither free nor bound 1

(Ow Y210 [7/.]v), ana

the freeé occurrences of v

énd x 18 not bound in P.- Q=[] =
since v must ba distinet from x and y,

in _HH\LG are the same as in U, Admwsm Lemmas 4°2 and 3°12,)

¥ .
H \ULZ are M@H».:R ,
If n = 0, that is x is not fres in M, ;msﬁ\\Lx = M

’

7
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The first step in the plan of attack osdwuum@ on page 127
18 to define residuals for f~; N~ and &'-cells; the proof of (D7)
will be Included in this definition, For convenience & cell (p, U)
may simply be called "p", when the value of U is obvious from the

context .

Definition of Residuals

1t (p,U) and (q,U) are cells, the set CPAS\?C@S

(or _.v\n.. by the above abbreviation) of the residuals of (p, %) with
respect t6 (g, U) 1s defined as follows. (Compare Def. 2°1.).

First of all choose eny formula U m&& in which
(1):

no varlable is both free and bound,

(11)1 no varieble is bound twice; more pracisely, if (\x Nvu and
1
Oy <vum are distinct components of U, then x # y.

This choice 1s possible because, in any member U! owNN. each
component of the form CMwaH can be replaced by (Aw ﬁsngsv. where
w ig distinct from all the other variables free or bound in U!.
After a finite sequence of such replacements a formula U of wrm
required type will be obtained. A .

If ({Ax M) W) occurs in U for some x, M and N, then x 1is
bound in neither M nor N, and no variasble is both free in N and

bound in M, so Lemma 4°2 applies to Mz\wwza

Now supposa that P and Q ars the redexes at positions
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p and g respectively in T. Notice that the question of whether P
(or Q) is a B> M- or &'-redex is indepsndent of the particular
member U of ﬁmﬁwmd has been chosen, by Lemma 4°13. Also if P or Q
is a pB-redex ((Ax M) N}, the positions of the free ocourrences of x
in M ars independent of U, by Corollary 4°13. Using these facts,
it will be seen that the Hmmwasmwm depend only on p, q and Akw
the only reason for choosing U as above is to simplify the proof
of (D7).

Cage I When p = q:

AUQV is satisfied because Q must be the same as P

¥(p).

Define n\p = g.
by Lemma 3-3, and so ¥(Q) =

Case II When p | q:

ﬁwmwwwﬂwdv . This 1s indeed a cell because by

Lemma 3-12, mﬂ.ﬂ wMWmN wq.

is the same sort of cell as AquNV.

Define @\@ = A )

It depends only on p, q and Nxv and it

To verify 7y
Interchanging p and q in the above shows that a\ﬁ = Awa Mwwmmwm$ﬁwv.

. 3
The end of n+ﬂ\w is NMWwNﬁw Mwww“mwa which by Lemma 3-12 ig the

Q
same as MMHMNQW mmwmwﬁwq s which 1s the end of U+M\ .

Q P p

Therefore Qiﬁ\wvn E+m\mvmm required.
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Cagse III When q < p:

By Corollary 3+4, Q@ must occur in P, Therefore P cannot be a

§'-redex, by Definition 4°*5.

If P 15 a B-redex ((Az W) V), then thers are three possibilitiaes,
by Corollary 3-7(1).

(a): If 9 18 M, define n\@ = AP ﬁm@azc
(0 (Y@ v
This is a B-cell because by Lemma 311, lemolvac = lllbbllwllv U

where r = g~-p11, and so there 1s a B-redex at position p in m%ovawd,

(b): IfQ 1s inV_, define Y/ uA

“q ~p2 q um.. pw ’
(@)

((rz W) m

w V)
U where
m p

This 1s a f-cell because mwxm.@an =

= q-p2, and so there is a f-redex at position p in yxmovawq

(¢): 1If @n = {Az 5?. define v\a = g.

Wote that in this situation Q = (Az W) and so mist be an dxnmmmx,

Therefore W = (N z) for some N in which z is not free.

If P 1s an¥-redex (Az (Wz)), then there ere two possibilities.

, P/ - R4 v
(a): 1f 9q 1sin M, define \n = AP M 3 ?

To show that this 1s an%-cell: by Lemma 3°11,
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?e - (rz ATM@H? 2))

¥
“gq D p U, where r = g-pi!, so T%vnnwc
contains (Az ( M%ov Ma z)) at position p. This is an W-redex
Q
because if z were free in MELZ. then z would be free in W, as in
Q

the proof of Lemma 4°13, on page 134.

R = (1 P/ _
(e): 1Ir @@ = T;vm& define \a = .
Note that when this happens, Q mist be (Wz) and so mist be a B-redex.

Hence W must be (Ax M) for some x and M.

The proof of (D') in Case ITT follows from that in Case IV

by interchanging p and gq.

Cage IV When p < g:

Then P occurs in Q and there ars five sub-cases as in Case III,

Subcase {a): If Q = ({Zx M) N) .mdm.lmv is in M , define

~qt
» where ot = p-qity this depends only on p, q, U,

To show that this 1s indeed a csll of the same sort as APN:"

By Corollary 3+4, P St M- Hence by Lemme 4+4(1) and the choice

N,
or U, [/ Jp <, [V M.  Theretors M P P ﬁ /ol qtUs by
Q
N
Lemmas 3<10(1) and 3+4. But E U= w%&@wd and

g ¢ Q
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N
and by Lemma 4°12(1), ﬁ\Lm is a redex of the same sort as P, giving

the result. Call MZ\LT "R,

To verify (07):

By Lemma 4°12(1), ¥(R) ~ MZ\N

] %)

¥ 1
Thersfore ME\UL MV\MEQWZ = ﬁ\uL V\:&od “.‘Z\LS by Lemma N...imv\
R

~g mvwmv o&m MZ\ULZ by above.

The reduction n+w.\,p first replaces Q@ by ¥(Q) which is M.z\Lzu
q

and then replaces R, by ¥(R), so ths snd of n+m\,@ is

) Z\ " 183 a
m‘mla.nw r%!n U, which is En U by Corollary
9 3411(2).
Also n\v = mf M.V..mll”m: m by Case III, and the redex at position g
¥(p) * x_ {¥(P)
in w > wwc 18 (O M) W), S.Bw.m M= M 5 onwz
So ?fn,\,mV first replaces Wﬁ by ¥(P) and then ((dx M*) W) by hZ\sz
~ N
/v
Hence the end of p+3/ is M UL q %3@ Rl
P ((ax M%) W) P
VAL ((x M*) W)
= - q q( U
(Ox M9 m Q

by Lemma 3-11,

N
= ﬁ \ Md by Lemma 3°10(2).

- [$%

:d

@ U by abova.
Q

This is the szme as the end of @+ﬁ.\, .
q
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Subease (b): If @ = ((hx zv N) and mm is in m@mu define

Py - ?mﬂf ﬂ%@.wlv eroy A@mn? ﬂﬁglwn

Q

ms& omH.....oma Aomsvmumdﬁmwomwdwozmom+.rmhaomooosﬂdmsommomx

in M. Then by a previous convention, m\@ = @ if there are no free

occurrences of x in M. By a note at the start of the definition,

9 q cv s whers ot = p-q2

n\a 1s independent of the choice of U.

To show that the members of n\@ are cells.of the same sort as AP‘RT

JADVH HZ\LS u whmlOme .... mmlomawz ,c%ﬁmaamb.w. HEm&mhoﬁmz

occurs in ¥{(Q) at positions 08y5.++508 , and so P occurs in Y(q

at positions omwf seey 08t by Lemma 3-4. Hence P occurs in

MNMDVQMG mﬁvomwﬁwgm pdeu ...u @mddu giving the result.

To verify Cud"
ince all the residuals' positions ame -e+» 98 t are mutually

disjoint, an MCD of v\n can be formed by replacing each me % in turn
i

by ¥(P). (Using the third part of Remark 6 in Chapter 2, and the fact that

by Case I, a8yt = gs8.t whonever 1 £ j. ) Define R/, to be
@mu& kS q
this MCD. -
P Y(P) w W%E w AL
Hence the end of g+ ,\w is M F—as,t{. 5 nmwﬁ . qr U
¥(P} ¥(P) NZ
- T om%w:.m 2 om%w \Lz U
q
Q

by Corollary 3-11(2) used n times.
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Now W.MMMIU om:»f.w eoa WHKHMHUV M
= MXMmuomsdwa: vawaom dwm w:; Mw.low”_.wz by Lemma 4°2,
= Mxﬁuvowsd -

M{omuw ceu WX o8 dwm z by Lemma 3°12,
¥

il

* *
MMIomsM.Z M.m..omwwz where N = M wmmuo&wzv by Corollary 3°11(2),

X x

I’
= NZ\LK by Lemma 4°2, gince if any variable bound in M were free

in N*, it would be free in N, by part of the proof of Lemma 4°13, on p.134.

z.*
Therefore the end of @Lu\,@ is ﬁ\Lz U.

Q q
By Case IIT, n\v = Au M:ﬂvwd and the redex at position g in
P)
..xlﬁll Wd is ((ax M) n¥
P Al
S0 the end of v+a.\,m. is ﬁ\ M q % U
(G ¥ ) LT
£3
VALY o] (o) R
- q
(O M) ¥%) Q
by Lemma 3°11,
z*
M
= H\L U which is the end of q+&/ .

Q q q

If x is not free in M, some of the above replacements do not happen,

but the main line of reasoning is the same.

Subcase (¢): If @ = ((hx M) N) and B_ = (x Eﬂ. define

m\@ = @#. This is independent of U.

By Case III(c), n\v = f, so to verify (D7) 1t must be proved
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¥ 7, .
that M.Iwul. MI.U\«S W o P = qi becauge Wmu = (Ax Zvo.ﬁ..(
¥ (P}
80 by Lemma 3°11, () w = wslm.l.o_wo u. Hence (D7) will
P ) q
be satisfisd if wy\ﬁm Swo = ¥(q).

But P = (Ax M) and so must be an y-redex; hence M = (V) for some Vv

in which x 13 not free. Therefore Q = ((x {(Vx)) N) and
¥(@ = [V Joo = ([ Jv m = (1 W) stnce x 15 not £ree n V.
¥(P) =V, so wxze? HM v O%E (V) W)
P (x (V)
= (v )
= ¥(Q) as required.
Subcase (d): If Q = (ax (Mx) and wm is in ma:., defline

Hu\a = Aﬁ.: llompwd » where ot = p-qi1.,  This depends only on p, q, U.
Tt 1s a coll becauss mmwle@wq = m..mlp? which contains M at

position g, and hence enntains P at position gqt, (Sinee P, M by

ot
Corollary 3°4.) This also shows that HU\@ 1s the same sort of cell
as A.P‘R 3.

To verify (D7):

The end of a+v\n 1s M‘Mwmadm NE@?
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= {=—qgtU by Corollary 3°11(2), where M'= M@g M. -redex. Hence (ay V) o (x [*/_1v), giving (07} and completing
) q Ty y ) 7 ) y
)] the definition of residuals.
By Case III, Q\@ = Av Mn«w]mnmma , and the redsx at position q in
¥(p) W
~—ptU 13 (ax (M%),
P s { (%)) For future use, note that if AP&C and Afﬁv are both
¥ .
Therafore the end of @+Q\m is Mw’ozlﬁ.\m,:ﬂl@w Mxtﬁmlvvwd ! B-cella, then the positions of the members of Hu\@ are achually
ax (M'x P
' independsnt of Nm in all cases except IV (b) stwwﬁm mH:.Emz are
W @M M;k %)) @wq "
:Vr.m (M) 9 involved m .

by Lemma 3-11;

It can be seen that no cell has more than one residual

H

mmw Wc_ which 1s the end of p+v\@c

Q
with respesct to an N~ or 8'-cell, Hence

(Db s Uns L ana QQQW = mwuhxﬁfwma wﬁFW.

Also, for the same reason,

Us L ana Qﬁ_m = mw" Hwé_w and wmw.

This is Aumv with B as "r" and 78" as "s".

1

Subcase (e): If @ = {(Ax (M x)) and m@ = (M x) o define
q

Hu\n&. H:wmum?mmvmsam:dowdrmowommudu mwsompu
q P

by Cage IIT, Aoqv follows 1f 1t is shown that
() ¥
Mlﬂ&c = Mlolnwc.

Similarly to Subcase (c), it 1s enough to show that Mzﬂmmvo-wo )@XADV o

Parts (1), (3) and (4) of the plan on page 127 have now

P = (M x) and so P nust be a B-redex. Therefore M = (\y V) for been proved, and only (2) remains. To prove (2), tgnore ell 3'-

some v and V, and hence q = (ix ACQ v) %), Then KEV - CQ iu and VN..omS.m in the definitlion of residuals. Then the property (B4}

Pis (A V) x), so ¥(P) = mx\u\?ﬁ
x

Therefore ww\%o_wo = go_ (e (Mx)) = (ax ﬁx\ Jv).
Azxu

So (D7) would follow if (Ay V) ~

that was wentioned at the end of Chapter 2 1s satisfled, because in

Case HHH;U\LHm only empty when q or p is an n-cell.

(rx Mx\uhi . But x # y since

Proof of (A6

no variable is bound twice in U, and x 1s not free in V bacauge ]
Suppose there are P-cells A@Huiv...iﬁva.ﬂﬁu_ 3.@3

otherwlss x would bs free in M, contrary to the fact that Q is an
such that vHA q for 1= 1...m, and choose U to be any member of Nm..
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Then B-redexss Pyy...,P ,Q must cccur in U at positiong Pyseeesby and

q respectively. Hence m.nnw go for i= l...m, by Corollary 3-4.
1 HI

Suppose Q = {(Ax M) N}: then each wmnw is either in K@__ or in anm

that 1is, each Py is either qitt, or nmﬁw for some ﬂHn

i

If no Py has the form mmﬁwh then choose k such that vw is
minimal in ﬁﬁwv‘nggwaww i.80 17k = Py *mvw,
Now @f.A at, = dHA t, = @:aHA@:dw = UwA Py
so 1£k = @aw.ﬁm@dx‘
By Case IV of the definition of residuals, each ﬁw\p has only one
member and 1ts position is nﬁua Hence vW\ is minimal in

q

Www\m.,‘.vva\nm» as required.

If some P, has the form nmdwv then suppose that

Py @mdu for i= 1l...h, for some h with 1<h¢m,

]

P, QKNdu for j= h+l...m, if m>h.
J

Choose k such that vw is minimal in Mﬁwunacuvwmu that is,

i# kand igh =3 ﬂﬂnw.

Suppose that x yeeeyX o are the free occurrences of x in M; then
o8] n
P
for 1= 1l...h, the positions of the members of M\@ are mnmwﬁwnnn.«nmbﬁwm
by Case IV(b). Also for j= (h+l)..m, the position of tha single

member of bu\n is @wu. by Case IV{a).
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and 1 £ k.

P
rhy
p
S
=

Now ?\ﬂ g P

ﬁWdoow" Ctherwisa, one cf ﬂmmwdwgguowpmsdww would be an

extansion of one of Mpmwnwuunnwﬂm:¢ww {suppose 1t is an

S £
sxtension of nmwnwpn
disjoint, it mst be nmJAH that 1s the extension of @mwﬁw.

mm:oe ww MmmSQmeamHQsam ﬁwu and so vH is an extension

of p , contrary to the cholecs of k.

Also wu\n e yh\a if §>h.

Proof: Ctherwise nnq would be an exftiension of ons of

Mpdewuae¢«amsdwwg Suppose it is an extension of pmwﬁw.

Hence ot i3 an extension of o34t 5 and so 1t 1s an sxtension

t
J k
of 03, o Then since P nquz and x AWmsz P must’ occur in x,
which ig impossible.

Hence the cell An_z&\v satisfies the requirvements of (46).

Now it only memains to prove Acmv for 8-cells; wusing (B4)
and the end of Chapter 2, only the cases mentioned on page 8l need be
considered. Then 1f (p, U), (g, /) and (r,U) are B-cells, aAw+ﬁ\u

b

naed only be proved identical to wAw+M\WV when

p <q and r < q and H.\@ﬂ.\h ﬁ\mw and either pir or p <1,

Therafore, since 81900058, are nmuitually
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?,oacmww% the conclusion of Qmw is true for G-cells in all cases, as
ig shown in ﬂma Suppose that U is any member of [{, in which no
varisble is both free and bound, and no variable is ,comaa twice.
Suppose also that Q = ((Ax M) ¥} is the redex at position q in U,
and R and P are the redexss at positions r and p respectively.

r T

For convenlence, define

A?&Su and wn My\|@raw » which is the end of the cell (g, NS

y which 13 the end of the cell

Q
Let X y...yx (0<€n) be the free occurrences of x in M.
Zosy Zos,
_The members of H4\3@\ are co-initial with the members
P
Since two co-initial cells
)

r
of \@+v\,@g bacause mia\,wR m+@\p.
with the same position must be identical, (D°) will follow if it is
shown that the set of positiong of the members of H.\min\, is the
P

same as the set of pogitions of the members of H.\Q‘Lu.\_ .
q

Proof of wm

r P
Case 1 When p< g, 1 < q, \whﬁw \w_ and p |r:
Then R i1s either in M or in ¥ _; that is r = qi1t or r = qat, for
r —qil =2
gome t.

Subcase (&) : When r = q1tt:

( .
(ry NV\ = (qt, ) by Case IV(a) of the definition of residuals.
Anuﬁ&u

ANJN

(q,

T
Thersfors H.\mib\v = ( \vu\Am\nv

applied to r, q and 1 (since r = qt1t),

member and its position is gt.

{)
\AﬁmN\v
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]

(r, L) by Case II.

5\?5 = (qs L) by Case III.

= AH.VR.V ) by above. By Case IV(a

{qs

AH.,‘R.V\AeHv has only one

r
Hence \mib\,ﬁ has just one member,

with position qt.

Now P i3 either in M

—Pp
q2s, for some 3.

Hu”

Then

¥ or in znmm that 1s, elther p = qiis or

When p = q11s:

(p, U

)
\E.ND = Aamuww by Case IV(a).

Therefore F n+v\a = AH.\av\ﬁw\nv = ?ﬁ:ww\guwwvu which is one cell

with position qt, by Case II, since qt _nmo

Henc

Gt

T
q

gs because pjr = a:;i,n:m
= d_m

= qt _nm.

g / tu\@ has Just one member, with position qt,; satisfying Aomv

since gt 1s the position of the one member of H.\ q/ -
Y/,

Thean

When p = qas:

Aﬁu.ﬁ

V\Ew ih = Anmwm.wv:..knmdmxwv by Case IV(b).

)
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T r |
vow Yy < Cl) o awl)
ow q v\@ Av\nv \\Av\.@v

For i= l...n, either as,s | qt or qs.s < qt.

Proof: Regy M and x,{\omwz. so by Corollary 3°7(3),

either mw_ t or mMA t.  Thersforse gs s | qt or as s <qt.
1
(qt, 1) . .
Hence \ﬁu\,V 1s one cell with position qt, by Lemma 2°4 on
mm

page 79. (Since m\n is a a,m<mwovsmzd of MAamev\fﬁiﬁamumgmvwL

Therafors p,s 13 one cell with position qt, as required.
a+v/y
Subease {(b): When r = gat:
(r, W)
\Af = M Apmwﬁ.vv:.l;mn?kvw by Case IV(b).
AH..NS\APQ% = ?JHV by Case II.
?TNS\A?S = ?.TH.V By Case IIT.
T X
Thereforse H‘\En\wu = \vwﬁ.\wv = (ry V\AnfHva

To evaluate AH._\HV\

(@, 107
p < qs therefore = Mlﬁwﬁu ] wa = Mlﬂwmvlnwop U.

Q
p{
Hence the redex at position q in the member mly\%ww.nwc of X is M.Immmwvu@wo.

Supnose it is ((Ay MY for some y, M% N% If the free occurrances

Hf.iOms‘ then by

)
\E.Hv will be a get ‘of cells with

of ¥ in M™ can be proved to have positions ogs

(r, L
Case Hidvu since r = gzt,

IHWMI

1 tioce t.
positions pmw vnm:

Now P is either in M or in N _; that 1s p = qu1s or p = gas,

P

=qti “q2

for some 3.

Then N

Now os _omH for 1= l...n.

P Pq

When p = qtis:

¥(P) WD = (= 1¥) N}, where M¥ is MIM%ommzn m;&m&\nk%m&
Srarinoly = ait N¥ad y ose Motz

meapeTody .

Proof: If, for some i, not os Tumum then by Corollary

3-7(3) om»A os, since xc< M and P M.

i
(py ‘Qv\

Therefors as, b < qs. But is one cell with

Apz‘zv

position qs, by Case IV(a), and the positions of the members

AH.NC\

of are @mwfiiamsd by the previous pags; so

Aﬂu:v

there is a member of H‘\a whose position is @mwﬁu which is an

extenslon of the position of the sole member of v\@a This

T
contradicts the assumption that \nﬂﬁ v\gc

. *
Hence by Lemma 3°12, x ,...,Xx are free occurrences of x in M.

lpomur lomb

But x is not free in P.

Proof: If x,, were a free occurrence of x in P, then X eu

would be an occurrence in M. It could nct be one of tha frea

occurrences in M, becauss not os | osu. Therefore x would

have to be bound in M, and hence bound twice in U, contrary

F¢|on the choice of U.
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Therefore by a result in the proof of Lemma 413, x is not free in

¥(P), and so Xog vevesX are the only free occurrences of x in M¥,

AH< Hu

\A@YHV Mzswow equals F

Hence from the bottom of page 151,

/49y wm

is a set of cells with positions @mwdfoinmz?

{tasyt, r::smsz\vw\
(

_ Tgmwfwufeiﬂmm:ﬁ«w vw\
(

it

r _ AH\V
\@..,v\.n_ = n_\mv\,nv ﬁ\.@v._

by Cage

pmﬁvv w(al).

For i= l...n, gs _nm.«pdv gince os wom Therefore by Case II,

4

i
.nfi;@m:f which are the same as the

(gs ?wv T
i \Anmgwu 1s one cell with position gs t. Hence \p+v\,@ is
a gset of cells with positions an
positions of the cells in T .
\?p\m

When p = gaa:

Then MMMAWW%M@ = ((\x M) ¥*), whers N¥ 1g Mxmmmvommz.

X : Feifactooly |
% (r, V\AQKHV M«%woﬁ equals H\?p.\,ﬁw is a set of cells

wlith positions nmwdf.lmmnf by the bottom of page 151.

r — A ¥ anegkﬁ b V
As above, En\n - M qs; b M\ gs b w w ®)
(e Qv\np.w: = MApmHm.wfi..Em:m‘ uw by Case IV(b).

Also for 1= l...n, qs_ s _mmhﬁ for j= le..n.
i

Proof: p|r end p = qas end r = q2tj hence s | t. So if
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J =1, then nmum _ @mu.? If 3 # 1, then mu. ﬁ mH dmnm.Cmm
atomg occur at both positicns omu and omw in M.

Hence amuﬂ “ g9s,s.

So by Lemma 2°4, A@mi\:m v\An\,u is one cell with position nmw.f for
q

1= 1...n. Hence H.\ p,r is a set of cells with positions gs .t
a+t/y 1

r
e:nmsf which are the same as the positions of the members of \?@\ c
v

P
r
Casa 2 When p<qy T <qy \QA\\\ Hu\@u and p < r:

Let o3 = p-r.
A95\€ Uy = (o X) by Case III.

»
(z,U)

Zo,1) = (s 1) by cese TII.

Now mu. may be either in .an: or in .szm that is r = q11t or r = qat,
for some t.

Subcage (a): When r = qi1t:

Aa.iv . _
Then \Af:v = Anfw\v by Case IV(a). AMso p = rs = qiits,
. {p, W) .
80 by Cese IV(a) again, \AfN: = Aadmswv.
T (*/,) (qt )
’ = D - ¥
Therefore \n+n\ = \:u\.av = V\Edmg&v which 1s one cell
q

with position qt by Case IIT, since gts < gte
r (£/5) (r, X)

- p -
\?b.\,mv = \Am\nw = \TfHV which 18 one cell with position qt,
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r

by Case IV(a). Hence / =%

pr
q+ /q

°

+9
Y0

Subease (b): When r = gat:

U .
Then (=, V\TTN: = Tmmwﬁw%vff“;ms?%vw by Case ITV(b).

p = rs = qzts, so (e, N.C\Aagw: = Tnmwﬁmu%uieigma.nm“wuw , by

?%%E:sm?w:\

(B

Now for i= l...n and J= l...n, either pmu.«m | omwﬁ or pm.,_dm.An.de.

Proof: If j = i, then amudmAam.ﬁ, If § #£1, then

Case IV(b).

r (5/q)

Hence p+m\n = Av\pv =

i

mu | s, and so nmuam | qs,t.

Therefors by Lemma 2¢4, since v\a is an MCD of Mfmwﬁm«w\ugiigmsam.%vw»

.nf,.:nms.n(

¥/ p,r 13 a set of cells with peositions gs
a+/y 1

Au\vaﬂ\vv i

AH;R..V\

T
/e, = (4, 2)"

To evaluate this:

- T lmm.uﬁﬁ ﬂqﬂj

= 3 U = U, where
Q
= mx:&ongc
V() g
So the redex at position q in letlnwc mst be ((ax M) NF). The
free occurrences of x in M ars. x sevesXx 4 and T = g2t, so by
Tos o8
(r, L) 1 B
Case TV(b), .\E.Nv is a set of cells whose positions are nmu.ﬁ.....
r _(r, X ; r
<58 b Since \mxn\v = \Ty VE%HJ and the members of \n+v\p also
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r

: r
have positions qs dn....am:d. \v+a.\.v must be the same as \ﬂ,»v\.a.

1

completing the proof of (0%).

By (5) on page 128, the Church-Rosser property has now
been proved for 875'-contraction of classes, and hence for apys -

contraction of formilae, by pages 126.




Scme Applications of Theorem lel

The Church-Rosser property turns up in several cther
theoriss besidss A-conversion; this chapter gives a few such examples.
The results ars not new, though the proof given hers for the first
example is an Improvement over previous proofs, so only Exampls 1

will be discussed in detail.

EXAMPLE 1

Here all page-refersncss will be to T,NT unless otherwise stated.

In the course of TNT Kleens defines partial rscursive

functions of natural numbers in two ways, a3 follows.

Definition 5°1 Inductive dsfinition by "Schemas!

See pages 42 and 45 of [12]. In this definiticn, letters x, y, 2

n n
will denote arbitrary natural numbers and x' denota ths sucusssor

ether X1 e o X\,‘.\N\Rt-\fi. and n\\f‘m
of X« "X = Y 411l mean that %ggwg%

-Bauats %:ﬂh be a function of natural numbers, and n the number of its
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m&mcaasd:uwmomm.w

(1)

:  If §(x) = x' for all x, then § is partial recursiva.

(II):  If, for some natural number c, %?w?.ixnv = ¢ for all

(I1I):

(v)

(VI):

XppeeosX then @ 1s partial recursive.

If, for some i with L<i<n, A%Axwa..lxsw =x, for all

Nu.f.lst then m“_.u partial recursive.

Ir e, RHT.._ Ra are partial recursive functions and
%AHH:.:xuv = g &H?H.....Nﬁf e ey unanH....Lnbv )

for all X gueesX s then K is partial recursive.

n

If ¥ is a partial recursive function, and

#(0) = ¢ for some natural number ¢,
elthar
and %A%_V = Xy, %G: for all y
thers 1is a partial recursive function v\\ such that
or 4 for all Nmu.....xb and y;

%Aosxmu...uxzv = _\\ANM‘..CNSV and
A\A%_‘.NN‘.:-HSV = XAH-%A%\.qu...«unsvu Nmu....unnv

then ﬁ i3 partiel recursivs.

If p is & partial recursive function, and for soms function o

for all XpsesesX ;¥ and 33

i}

(0 .NH_....anv ¥,

o.,ﬁu__xw.....uxdui = o vAHH....CN:Q.vu X _....Nzhw_v and

1
Plpreraim) = o plasmnnsxy0), %00 px ,0)

then \m:u partial recursiva.
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MA<HV is ths alternative scheme given on pags 45 for the "least-number
opearator?, t{, without the restriction that for all XpsenerX, there
/

mat exist y such that vﬁxww.nnwxsvww =0 — ses pages 46 and 51

for oo;;msw(w

Sygtems of equations

See pages 43 - 44 and 50 - 5l. . y
Klesene describes a formal system, more or less as follows.

Tarms are formulas in the sense of Chapter 3:

(i} The atoms consist of an infinite amount of variablas, wua one
"numeral" for each natural number. ﬁHa this discussion numerals
will not be distinguished from their corresponding sﬁsdaum.m
If n is the numeral corresponding to the number k, then n' is the

numeral corrasponding to the successor of k.
(i1) If X is a term, then so is X',

(i1i) Thera are certain things called "function~symbola":
if Nwwug‘mxw are terms and f is a function-symbol, then

(X Nww is a term.

sRARRE

Positiona and rasplacement can be defined as in Chapter 3, and since there
ares no bound variables here; substitution can be defined by the conclusion
of Lemmas 42 and 4-1(2). In the rest of this example, letters m, n,

hy 1, 3, k will denots numerals or natural numbers; x, y, 2z will

&
!
i
i
i
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denots varisbles, and X, ¥, 2, U, V, M, N, P, Q will denote terms.
%. X, g will denota functions of natural numbers, and f, g, function~
letters.

In the formal system thers is a symbol "=", with which
are assoclated ths following transformation-rules:

(1): From the expression "X = Y%, obtain the expresasion

ﬁsw\xm ,g‘ﬁ:w\xﬁgx = MSH\WMgo..ﬁsw\Nw~M=. whers Nwwtauwxw

are all the variablas occurring in X, ¥, and swu.e.hsw ars

any numerals.

(2): From the expressions "X = Y" and =wAsH.....swv = m",
1t

obtain the expression Y, if Y contains

n
X = m w
P
MszHu...usxv

hﬁzwve‘.uswv at position p.

A formal squation is any expression of the form "X = Y, IfE is a

sat of formal squations, then "E TM]MI X = I" means that the formal

3
2quation "X = Y" can be obtained from membears of E by a finite number
of applications of rules (1) and (2). A finite set, E, of formal

aquations defines % recursively iff there exists a function-symbol f

such that E ?MMMﬂwAHHmocc,usv = m when and only when %ﬁHw....“an = m.

& is partial recursive iff there is a finite set of formal

squations defining m recursively.
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The proof that any function ¢ which 1s partial recursive
according to Def. 5°1 must also be partial recursive according to
Def. 5¢2 proceeds as follows. )

If ¢ is partial recursive according to Def. 5+1, then there
must be a deduction, using (I},...,(VI}), of the fact that ¢ is partial
recursivs. fach step in this deductlion is justified by one, two or
three informal squations, and Introduces a nesw functiion. (In fact,
sach instsnce of (VI} introduces two new functions.) The finite set
of all equations involved in the deduction is transformed into a set, B,
of formal equations by asmociating a distinct formal variable with each
universally—quantified intuitive varilable, and associating a distinct
w:sodwOSAu%adow with sach function in the deduction. Thils is done
in such a way that the symbol assigned to each newly-introduced function
is distinct from the aymbols assigned to the previocusly-occurring
functions.

It can then bes shown that E defines % racursively; in

othar words,

{i}: Whenever tﬁwww‘ggmwaw = m, then mvlwwm.mﬁnwun.gwwdv = m,
(f baing the function-symbol associatad with §.)
and {1i): Whenever mleiM:mAHH~u=v~sz = m, then ﬁAngcgawwzv = M.
s’

The proof of (i1) involves showing that

if B T.H.M,ZHC:;H:W =m and E.Hl_m m:ﬁ::psv =My then m= .

(i.8. B i3 "consistent")

P

R b s b o et

L

|
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Klaene remarks on pages 54 — 55 that Def., 5+2 can be
modified by replacing ruls (2} by a more powsrful ruls, such as
From the expressions "X = ¥" and "U = V", obtain

(3) { the expression Y = ﬁMlvwm= if dnuw Y,

U

" < "
or ths expression mw:vwx =Y if dﬂnw X,

The place where this modified definition is actually used is @uu

pags 731, Def. 2b (to define general recursive functions), and the

definition is extended to cover partial functions in [14], vmwa 152.
The modified definition 5-2 is still equivalent to Def.. 5-1,

by a proof like that on the previous page, but in this case the proof of

the consistency of B that Klsene quotes is non-finitary. He suggests

that a constructive proof could be mwmau by (I quote) " the type of

argument used In the Church-Rosser consistency proof for A-conversion,

and in the Ackermann - von Neumann consistency proof for a certain

part of number theory in terms of the Hilbert e~symbol." This is

what will be done here.

By the way, the remark just quoted suggests that the .

\\rqw{r
Ackermann - von Neumann result might be deducible from one of the ~wrtkM% >
o

theorems in Chapters 1 and 2; I have not yet followed up this el
suggestion.

Actually the literature contains several strengthened
versions of rule (2), of which (3) is the most powerful: obviocusly
the consistency of E with (3) implies the consistency of E with any

weaker ruls.
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Proof of congistency of the previougly-dsfined set E

(uging rules 1 and 3)

Define E' to be the union of E and the set .of all formal
; "rn n; _ [n n " fled 40 LT54
squations of the form M H\u\ ~ h U\V..LN = m H\%L ...ﬁ u\vﬂLM ,

whers "X = I" ig any member of E, uH:.J:u. are any numerals, and

yese,y, are any variables.

7y 3

Dafine a relation r thus:

iff Y is MEI&LT for some member "P = M" of E',

Xry
¥ F

Finally define YE J\WI X = ¥" to mean that "X = Y" can be
)

obtained from members of E by rules 1 and 3.

Lemma 5-1
If E}4—— X =7, then X ~, Y.
1,3 ’ T

Proof:

It is enough to show that ,.)\Hw has all the defining properties of

[H ]
1,3 °
Bagis: If "X = Y" is a member of E, then X r Y and hence N)m. Y.
Ruls (1): To ghow that __\(H__ satisfies rule (1); that is
. n n n
£ ¥ = M H\NHN...T:\?? ~ ~.~ H\HL..% w\wa.
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it is enough to show that for all X, ¥, n and x,
n n
xey = [ ][ ]v
. M 1
To prove the latter, suppose that Y is Mﬂ&m. and "P = M" ig a

member of E'. Then by a result similar to Lemma 4°4(2),

/0% L, g,

© e
e ! d
18 "o/ Jp = [0/ '

M.:\ Tm ig

% Bince "P = M" i3 a member of E', so also

Therefore W:\LN x _..:\L 1.

Rule :  To show that " )\H.__ satisfiss rula (3), that is
X ¥ oand Umg Vo = N)\H.m..mif e 1,
and Tml&x ¥ TS X
note that if U~V and U, ¥y then Y~ ﬂl&w by Lemma 3°14,

Hence 1if N)m. Y, d\(H. V and cﬂw Y, then X \l\d%.mlmwm by the

. 4 Hl
transitivity of ~. Stntlarly 1f Uc X, then Y~ héumq p}x.

Theorem 5-1

r possesgss the Church-Rosser property.

Proof:

By Theorem 1+1, it is enough to provs

('): UrX and UrY = Ja: Xrz ad Yz

If UrXand Ur Y, then X is M%,&c and Y is M‘W'&\c. for some

'
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positions p, q and members "P = M" and "Q = N" of E',

Case I: When @_ q:

Let Z be %WI@WN. which is the same as meﬂww by Lemma 3-12.

Cass II: When g < p:

Then P must contain Q and be distinct from Q.

But from the form of
the equations in Def. 51, P must be mAdwv...u<wvv where g i3 a
function-symbol, <Mu...u<w are atoms and <H is either an atom or ut

for soms atom, u. Therefore @ must occur in one of V. yeuusv ,

1 k
which is impossible because Q must have a form like that of P.

Similarly p< q is impossible.

Case III: Vhen p is the same as g

Then P is the same as Q, and has the form mA<H~....<wv as above.

Suppose that P is Maw\w g...ﬁawxxu
1

m m.
P
JPo and s | H\xL...m H\aLzo

for some member =mo =M

5" of B. (By definition of E')

Also suppose that for some member =@o = 20=

2 is ?\%L.:?i 9, eand W is ?\&.:?\ﬁ?o.

Since P is the same as Qs mo mist start with the same function-symbol

of E,

as GQ,. Hence by the construction of E, the equations =Do =N " and

o]

:w = z n
Q

o Must both correspond to the same step in the deduction that

& is partial recursive. Hence by inspecting Def. 5-1, =mo:u Mg" can

only 'be different from =Do = zo= when for some .atoms u, <m~...‘<w~
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sither P is (0, 4%..:;“ and Q_is glu’, <mt;;<wv

or Qs g(o, v,

.ﬁo.~<ww and P_1is glu', <w\°..~<wv.

In the former case, the formula at position ot in P must be 0, and
the woasdwm at position ot in Q cannot be an atom, which contradicts
the fact that P is the same as Q. The other case is gimilar,

Hence "P, = My" 1s the same equation as "Qp = zo=m that is, mo is @o
and 30 is W,.

To show that M is the same as ¥, notice that no variablas
oceur in My which do not oonﬁw in P, (by inspecting Def. 5-1). Hence
in the expressions for P and M; NH».E.VNW may be assumed to be all the
variables occurring in P,, and to Include all the variables occurring
Than since wo equals @o“

in M. Similarly for %Hw..‘uwu_ Do and zoa

Y may be assumed equal to xw.
Hence N is

i must be the same as j, and for h= l...i, y

Since P equals Q; aw mst be the same ag dw for h= l...i.
" M/ $ m . s
T\HL ol bezo“ which is hJ\L - M\ﬁ?% which is M.

Therefore X is the same as ¥; let 7 be X, completing the

proof.

Wow guppose that E ?Mwwl|&AwHu,..uw:w = SH and that
mTﬁMiHH::LL = am. Then by Lemma 5°1, SH)\a mCH::sz ~. m
Therefore there exists a term Z such that aH 2r 2 and am WHN_ by

If 2 i3 not m must contain the left—hand

Theorem wnH. 4

itgelf, then aw

2

J
i
i
L
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term of a member of E', which 1s impossible, since aH is an atom.

Therefore Z 1is aHv and gimilarly Z is an So BH is the same as amw

proving the consistency of E.

The reasoning in this example can be extended to cover
definitions of “partial recursive relative to a given set of functions®,
Also a similar argument can be used to give an alternativa proof of
Curry and Feys' consistency result for their thsory of definition;
see Theorem 1, page 67 and Theorem 4, page 123 of [5], and see page 122

of [5] for comment.
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EXAMPLE 2

R. Harrop gives a method in mwmu for (I quote) "obtaining
for any propositional caleulus L, which satisfies certain general
conditions, associated calculi L' and L* whose decision~problems are
equivalent to that of L", He says furthar that "L' and L* can always
Be taken as subsystems of positive implicational logic".

He has pointed out to me that an alternative procf of
Lemma 6 in his paper might be given using Theorem 1°1. Such a proof
is outlined in this example. I think that it can be modified to give

Lemma 5 of [16] as wall, but this will not be done here.

The formulae of L (here called "L-formulae") are defined
with an infinite amount of variables as atoms; the nature of the
constructors is irrelevant hers. The formulas of L' and L* (here
called "L*-formulee") are defined with the same atoms as the L-
formilae, but not necessarily the same constructors. In this
example, letters x;, y, z denote arbitrary variables, X, Y, Z, U, V
denots arbitrary I-formulae, M, N; P, Q denote arbitrary L*-formilae,
and g, ¥, denote arbitrary constructors with h and k argument-places
respectively.

For any n>0, and any L-formilae X, NH.e.oszu XyyooesX ;s

" Zyseeesly] "

let X denote the result of simultanecusly substituting

XyyoearX,
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i 1 usl,
Zy for x5 « « ., 3, for x inX. (This can be defined rigorcusly

1 1’
by induction on the definition of X; and it is assumed that

X, = X

=7,
i u.HvNM uv

Y uxmw= is defined to mean that for some n>0 and soms quooowwum xwvaq

It can bs shown that

B
Xy punesXy,
z=fvandv=0t = 2=8x, .. ........ (D
and that any simultanecus substitution can be carried out by a
series of gingle-variable substitutions (which are defined by putting
n =1 on the previous page).
Similar definitions and results hold for L*-Fformulas.
A mapping, T, from L-formulas to L*-formilae is defined
in Mquw its relevant features are
(T1)}: T{(x) = x for all variables, x.
(f2): For each constructor, ¢}
A k) = [P T () :
B, sovey By
for some L -formila m& which is not an atom, and which
contains no other variasbles besides =z maacmawc

1

My s eos M Ny eoos
v h P, = ‘WI|ikftw m& = 4=y
Brees?y )4 B15e0as2)

(13):

(I3) follows from the second part of Lemme 1(iii) in [15].

b B

e
i

PSR
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The term :MM H»%Nw for i= l...n, by a common substitution"
means that for i= 1...n, mw ux%xw and the same formula is substituted
for the same variable in each of NHv,..vxn, Amwawwmwww for w+1wOHs¢Hmm,w

With a few changes in notation, Lemma 6 of [15] says:
_dﬁ%gmoﬁ.ikfﬁwmi are L'-formulae such that for i= 1...n,

@H Hkﬁeﬁxwv for some xwv by a common substitution. Suppose further

that for i= 1l...n, @M n\maﬂxmvu not necessarily by a common

substitution. Then dwmwm exigt qu...uNz such that for i= 1...n,
(a): @M n\%eﬁNww by a common substitution,

(b) u\%xw by a common substitution,
(c): 2z H\%NW.:

[a)

This lemma will be dealt with hers only in the case when n = 1; it can
fairly easily be extended to its full generality by a device
suggested by A. H. Lachlan.

For any LY formila Q; define dm to be the set of all
L-formlae vaOd which g =§7T(x), Then when n = 1, the lemma
says:
g Q 1s any L*-formula, and X and X' are members of “F, then there

Q
sxists Z = wm such that 2z = §X and z = Jx."
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As the first step in proving the lemma, define a relation
r as follows:
XrY iff Y = ELN. for some x occurring in X,
and either V is a variable, or V = glx ;...x)
for soms g and distinct variables XyseensXy not

occurring in X.

Then Nww.mﬁmu\%? RN 6 )

X211 = 1Y n.&% by (I} end the definition of r.

Since a simultaneous substitution can always be carrisd out

by a series of single-variable substitutions, the converse
. Z

implication will follow if ¥ = ﬁMQN =3 X www .

This latter statement can be proved by induction on the

definition of Z.

Define the relation r' thus:

I r'Y Aff Nw.wmaxmummawm\mmc

Then r' possesses property (CR), which implies that 1f X and Y are

members of mm and x‘/m Y, thare must exist Z e MW guch that X ww 2

and Y WW Ze

By Theorem 1-1, Aomﬂ_v follows from
A 1 ) If U, X and Y are members of .u@. and Ur X and Ur Y,
D
rt then there exists Z ¢ mw guch that X r Z and ¥ 1 Z.
1 T g j
(D w.v 1s proved by assuming that X = |30 and Y = ﬁw.q.
——

[T
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vy

where V and W have the forms required by the definition of T,

and dealing with each possible case in turn.

Now any variable y is a member of mw. gince Q = ﬁ%%< = ﬁm*aA%u.

Also the formula X in the hypothesis of the Lemma is the same

¥

WOHasHmM_wdamemasm~% ww N_n HSmHmwOHm N\/m X', and so by the

as TLE hence X = fy, and so y 2, X by (11) . Similarly for the

result on the previous page, thers exists 2 e MM such that X 2.2 and
N_ww Z. Hence by (ID) , 7 = &% and 7 u\%x_, proving the lemma when

n = 1, and completing the example.

Other examples

In Axel Thue's paper "Probleme tber verédnderungen von
( mismavia)
Zeichenreihen nach gageben Regeln" (Videnskabs-Selskabet mwwwwﬁmﬁ\wmwau
which is about replacements in finite sequences of symbols, he proves a

lemma which can ba deduced from Theorem 1°%..

In part of his paper Thue assumes that there is given a list
of ordered pairs Abui muv (for i= 1...n) of finite sequences of symbols,
and a ruls allowing the replacement of an occurrence of any >H in a
gymbol-sequence by the corresponding mw. Further, 1f 1 £ i, then
oceurrencas of >M and >u in a symbol-sequence cannot overlap.

The lemma mentioned above says that if the mmncmsnmm;m

and Z can both be obtained from the sequence X by the replacement rule,
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Sinse this prop : ealk 1 4 d
and nafbhus 1 nor % contains any >Aw then ¥ = 7, e S property is weaker than Aomhvw it might be interesting to
2 T4 deducs this from Theorem 1°1, the relation r i ses 1f 1% can be deduced from weakenad forms of (81)5...,(46), (D7)
and Aumvu
dofined by
v oaerdg and Y are symbel-ssquences and Y 13 the result
of replacing, for some 1, an occurrence of A in X For further comment on the Church-Rosser property, ses the
1
. first few pages of Mwu,
s "
. ad, and Aowmw follows, The lemma can then

Sxaw to 1 oand 2,

L less trivial application of Chaphers 1 and 2 is the
reiation of "weak reduction® in combinatory logic. (Ses 153 and a w
temack in Def., 6°3 later.) The Church-Rosssr property for this ’
ralation does not follow from Thsorem 1°1, but can be deduced from

Theorem 2°1.

T

e raader has probably noticed that in mest of the

quoted uxamplas the Church-Rosser property 18 used to prove soms gort

of consistaney result, o this more precise, define «moh any

ralat]

object ¥ 4o be mlnimal iff Ffor all L, X2 Y = ¥ =X,

PR LN s =1

Then the result which 1s required in most of the axamples ig

Xz

A and X 2, B and A; B minimal =% A = B,
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Somg properties of relations used in Chapters 1 and 2.

Here r, s are arbltrary relations; U, X, Y are arbitrary objects.

Aomav" X~ X HV mN" Xy, 2and¥ 3y Z.

qu" Uz Xand Uz ¥ = 322 X 3 Zend ¥ 3 2.
SH.? UrX and U2 ¥ => 2 X3 Zand¥ 3 2.
GL" UrX andUr?¥ = Jz: Xy Zand ¥ 3z Z.
GC" UrX andUrY¥ => J2: XrZ and Y r 2.
(0): UrX endUs¥ = 3% Xy Zad Yoz
0): UrXx andUs¥ => T XorXy ¥
Gbr UrX and Us Y = JV: XrvVgl,
=

0): Urz andUs¥ Iv: Xxgvrt.

The _sssumptions used in Theorem 2-1.

mmwmf%.n. %H\Z.L\n mH.mg%.gdsﬁwqo?wnwdw&omﬁm.

(A1): x&fx; x<y = yx.

(42): x<Cyandy<cz = xcCaz.

(A3):  If x& y, then un\% has at most one member.
(84): %/ =p.

. Y.
(45): %H@WN and %Hﬁ%m = H\xﬂw w.m\un.

(46} y < x for 1= leeen == ki y, <y mmm&.\«ﬂ%x
J k X \Wn

i
(if 4%,
Aoqv“ If x and y are co-initial, then Nfux\w = %+H\W~
whare N,\.w and ux_\w are MCDs of x\% and %\N respectively.
8. 7 2
(0%):  1f (D') is true, then \xh,\,x = N\ﬁx\w in the following

cases: (1}): zEx and z &y,

(11): y<x, z<x, z¢y and N\Nﬁ%\.




